
sensors

Article

Hyper-Angle Exploitative Searching for Enabling
Multi-Objective Optimization of Fog Computing

Taj-Aldeen Naser Abdali 1 , Rosilah Hassan 1,* , Azana Hafizah Mohd Aman 1 , Quang Ngoc Nguyen 2 and
Ahmed Salih Al-Khaleefa 1

����������
�������

Citation: Naser Abdali, T.-A.;

Hassan, R.; Mohd Aman, A.H.;

Nguyen, Q.N.; Al-Khaleefa, A.S.

Hyper-Angle Exploitative Searching

for Enabling Multi-Objective

Optimization of Fog Computing.

Sensors 2021, 21, 558. https://

doi.org/10.3390/s21020558

Received: 7 December 2020

Accepted: 8 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre for Cyber Security, Faculty of Information Science and Technology (FTSM), Universiti Kebangsaan
Malaysia, UKM, Bangi 43600, Malaysia; P94546@siswa.ukm.edu.my (T.-A.N.A.);
azana@ukm.edu.my (A.H.M.A.); ahmed.salih89@siswa.ukm.edu.my (A.S.A.-K.)

2 Department of Communications and Computer Engineering, Faculty of Science and Engineering, Waseda
University, Tokyo 169-8050, Japan; quang.nguyen@aoni.waseda.jp

* Correspondence: rosilah@ukm.edu.my

Abstract: Fog computing is an emerging technology. It has the potential of enabling various wireless
networks to offer computational services based on certain requirements given by the user. Typically,
the users give their computing tasks to the network manager that has the responsibility of allocating
needed fog nodes optimally for conducting the computation effectively. The optimal allocation
of nodes with respect to various metrics is essential for fast execution and stable, energy-efficient,
balanced, and cost-effective allocation. This article aims to optimize multiple objectives using fog
computing by developing multi-objective optimization with high exploitive searching. The developed
algorithm is an evolutionary genetic type designated as Hyper Angle Exploitative Searching (HAES).
It uses hyper angle along with crowding distance for prioritizing solutions within the same rank and
selecting the highest priority solutions. The approach was evaluated on multi-objective mathematical
problems and its superiority was revealed by comparing its performance with benchmark approaches.
A framework of multi-criteria optimization for fog computing was proposed, the Fog Computing
Closed Loop Model (FCCL). Results have shown that HAES outperforms other relevant benchmarks
in terms of non-domination and optimality metrics with over 70% confidence of the t-test for rejecting
the null-hypothesis of non-superiority in terms of the domination metric set coverage.

Keywords: fog computing; task allocation; multi-objective optimization; evolutionary genetics;
hyper-angle; crowding distance

1. Introduction

Internet of Things (IoT) has been used in several fields such as health care, environ-
mental engineering, transportation, and safety [1,2]. The idea behind IoT is to connect
physical items to the virtual world, so they can be controlled remotely and act as physical
access points to Internet services [3]. These devices increased rapidly around the world
and generate a huge amount of data, termed Big Data (BD) [4,5]. One of the fundamental
challenges in IoT is the data transmissions [6,7] to the Cloud Computing (CC), which
indicate to the infrastructure where both data storage and processing operate outside of
the IoT devices [8,9].

CC data center is far from end-user, then causes high latency and affects the actual time
constraints in many applications [10]. Therefore, CISCO [11] suggests the new paradigm
Fog Computing (FC) to ensure reliable sending and receiving data between the Cloud
and IoT devices [12]. Figure 1 gives a conceptual elaboration of the architecture of IoT,
CC, and FC. The first layer is the IoT environment, this layer close to the user and the
physical environment. It contains several devices such as mobile phones, sensors, smart
cards, readers, and smart vehicles. The second layer fog layer this layer is located on the
edge of the network means between IoT and cloud computing. This layer contains a huge

Sensors 2021, 21, 558. https://doi.org/10.3390/s21020558 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9708-4161
https://orcid.org/0000-0003-1348-5804
https://orcid.org/0000-0001-7337-6736
https://orcid.org/0000-0002-0941-7318
https://orcid.org/0000-0002-6746-6011
https://doi.org/10.3390/s21020558
https://doi.org/10.3390/s21020558
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020558
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/558?type=check_update&version=2

Sensors 2021, 21, 558 2 of 27

number of fog nodes which generally including routers, gateways, switches, access points,
base stations, and specific fog servers. The third layer is the cloud computing layer and
consists of several effective servers and storage devices and provides various application
services for smart homes, smart transportation, smart factories, and so on.

Sensors 2021, 21, x FOR PEER REVIEW 2 of 28

edge of the network means between IoT and cloud computing. This layer contains a huge

number of fog nodes which generally including routers, gateways, switches, access points,

base stations, and specific fog servers. The third layer is the cloud computing layer and

consists of several effective servers and storage devices and provides various application

services for smart homes, smart transportation, smart factories, and so on.

Figure 1. A basic conceptual framework of IoT, cloud computing, and fog computing.

The distributed nature of FC and the relatively limited computation, energy, and

communication power of its nodes have motivated researchers to assure its load balancing

aspect when various applications are required to be executed in FC. The load balancing

of fog computing is accomplished by a set of methodological approaches named Task Al-

location (TA) [13] in the literature. The term TA indicates allocating various network

nodes optimally to execute a given task or application while maintaining various objec-

tives. In the context of TA for FC, we are interested in dividing the given task into a set of

sub-tasks with the independency aspect and dividing them on the network nodes with

matching various constraints. Next, they will be presented with a mathematical model for

calculating the various fog measures, including energy efficiency, cost-effectiveness, time

latency, stability, and reliability. Having the ability to evaluate the candidate solution

from the optimization and to provide its objectives values, we call Fog Computing Closed

Loop (FCCL). This type of problem is regarded as a Non-Deterministic Polynomial Hard

Problem (NP-hard) [14], which makes it a challenging optimization problem. This is due

to the huge number of combinations of nodes’ task allocation and the various conditions

of the nodes and the tasks. Typical approaches for solving such a problem use a meta-

heuristic family of optimization algorithms, and more specifically, the multi-objective

type of meta-heuristic was enhanced to apply for fog computing to hold the huge number

of tasks and set them based on their priority.

Multi-Objective Optimization (MOO) algorithms [15,16] aim at optimizing many ob-

jectives’ functions using heuristic random searching in order to find a set of non-domi-

nated solutions [17]. There is a high similarity between single objective [18] and multi-

objective meta-heuristics [19,20] in the aspect of relying on a random pool of generated

solutions, evaluating them, and selecting the best among them to generate off-spring.

However, the essential difference between the single objective and multi-objective heuris-

tic searching is the means of evaluating solutions. More specifically, in the multi-objective

Figure 1. A basic conceptual framework of IoT, cloud computing, and fog computing.

The distributed nature of FC and the relatively limited computation, energy, and
communication power of its nodes have motivated researchers to assure its load balancing
aspect when various applications are required to be executed in FC. The load balancing
of fog computing is accomplished by a set of methodological approaches named Task
Allocation (TA) [13] in the literature. The term TA indicates allocating various network
nodes optimally to execute a given task or application while maintaining various objectives.
In the context of TA for FC, we are interested in dividing the given task into a set of
sub-tasks with the independency aspect and dividing them on the network nodes with
matching various constraints. Next, they will be presented with a mathematical model for
calculating the various fog measures, including energy efficiency, cost-effectiveness, time
latency, stability, and reliability. Having the ability to evaluate the candidate solution from
the optimization and to provide its objectives values, we call Fog Computing Closed Loop
(FCCL). This type of problem is regarded as a Non-Deterministic Polynomial Hard Problem
(NP-hard) [14], which makes it a challenging optimization problem. This is due to the huge
number of combinations of nodes’ task allocation and the various conditions of the nodes
and the tasks. Typical approaches for solving such a problem use a meta-heuristic family of
optimization algorithms, and more specifically, the multi-objective type of meta-heuristic
was enhanced to apply for fog computing to hold the huge number of tasks and set them
based on their priority.

Multi-Objective Optimization (MOO) algorithms [15,16] aim at optimizing many ob-
jectives’ functions using heuristic random searching in order to find a set of non-dominated
solutions [17]. There is a high similarity between single objective [18] and multi-objective
meta-heuristics [19,20] in the aspect of relying on a random pool of generated solutions,
evaluating them, and selecting the best among them to generate off-spring. However, the
essential difference between the single objective and multi-objective heuristic searching is
the means of evaluating solutions. More specifically, in the multi-objective searching, the
solutions are evaluated based on ranks that include a sub-set of non-dominated solutions

Sensors 2021, 21, 558 3 of 27

instead of simple fitness value as in the single-objective optimization. Consequently, the
goal of the MOO algorithm is to explore the solution space for finding maximum coverage
of non-dominated solutions.

The goal of this article is to develop an optimization framework for computational fog
computing. We aim to enable non-dominated optimization for fog computing by assuring
high domination of the resulted decisions in terms of various performance metrics, which
gives the decision-maker more flexibility as well as high achieved performance. Specifically,
the integration of a novel hyper-angle exploitive searching optimization with the crowding
distance of Non-Dominated Sorting Genetic Algorithm II (NSGA-II) in the context of fog
computing optimization assists in providing more dominant solutions in terms of the fog
measures that the decision-maker aims at optimizing. The article presents the following
contributions.

• Proposing a fog computing optimization framework with multi-criteria perspectives.
The multi-criteria cover the following metrics: Time Latency, Energy Consumption,
Energy Distribution, Renting Cost, and Stability.

• Developing a novel optimization algorithm based on meta-heuristic genetic. The
developed algorithm supports exploitive searching based on the hyper-angle indicator.
We designate it as Hyper-Angle Exploitive Searching (HAES).

• Formulating a novel Fog Computing Closed Loop (FCCL) mathematical function and
using HAES for optimizing it after discretization.

• Designing an adaptive objective partitioning by activating the sub-set of objectives at
each iteration out of the entire objectives.

• Evaluating the developed HAES based on multi-objective optimization performance
metrics and benchmarking mathematical functions and evaluating the optimized
FCCL based on HAES, then analyzing its performance in comparison with other
relevant optimization benchmarking algorithms.

2. Background and Literature Review

The article is focusing on multi-objective optimization for FC. Hence, the literature con-
tains two phases. Firstly, the related work of the MOO algorithms is presented in Section 2.1,
and Section 2.2 provides the related works of MOO fog computing optimization in.

2.1. MOO Algorithms

The studies on meta-heuristic-based MOO in the literature contain various approaches.
Different criteria and techniques are used to generate the dominant Pareto Front (PF) and
provide extensive exploration. In [21], a fitting function or interpolation method was
applied from a finite set of objective values to calculate PF by selecting the individuals
that have the shortest distance to the reference points based on the error matrix. The two
algorithms, called MOGA/fitting and MOGA/interpolation, dealt with MOO without
focusing on attaining the optimal solutions. Bao et al. [22] proposed Hierarchical NDS
(HNDS), which focuses on reducing the number of comparisons in the search. HNDS
initially sorts all the candidate solutions in ascending order, depending on their first
objective. Next, HNDS compares the first solution with the rest of the candidate solutions,
one by one, to make a speedy distinction by realizing different superiority solutions and
then avoid the high number of unnecessary comparisons.

Other notable studies have extended the existing single-objective searching algorithms
to multi-objective ones by introducing the concept of NSGA-II, which is fast NDS with
crowding distance. This extension applies to Multi-Objective Vortex Searching (MOVS),
which was proposed in [23]. MOVS uses the inverse incomplete gamma function with a
parameter ranging from 0 to 1 to spread solutions over the PF. improved NSGA-II to make
it more efficient and have better diversity by presenting a more efficient implementation of
NDS, namely the dominance degree approach for NDS. Part and Select Algorithm (PSA)
was also proposed to maintain diversity, and the entire algorithm after being integrated into
NSGA-II was called Diversity DNSGA2–PSA. Additionally, several researchers have added

Sensors 2021, 21, 558 4 of 27

a local search strategy to NSGA-II [24]. For example, the study in [25] proposed Heavy
Perturbation (HP)-based NSGA-II. Two objectives, the size and total weight of a clique,
were considered. In particular, the larger the size of a clique in terms of set inclusion is and
the higher the total weight is, the better a solution is. HP-NSGA-II is then dedicated to the
clique problem of a weighted graph with weights of vertices in which the perturbation is
conducted by either improving a selected elite with a local search procedure or swapping
its left and right parts.

Several types of research work also developed nature-inspired models for MOO. For
instance, an improved method of GA based on an evolutionary computational model,
namely the Physarum-Inspired Computational Model (PCM), was proposed in [26]. The
initialization of the population used prior knowledge of PCM. Hill climbing was also
used to improve the diversity of solutions, and the traveling salesman problem, which is
one of the most classical NP-hard problems in combinatorial optimization, was utilized.
Apart from improving the optimization of found solutions, several researchers have aimed
at improving the searching speed. In the same context, [27] proposed an algorithm for
MOO and compared it with four other competing algorithms on three different datasets to
reduce the optimization complexity for a large number of objectives from O

(
N logM−1N

)
to O

(
MN log N + MN2), where M denotes the number of objectives and N denotes the

number of solutions. The algorithm removes unnecessary comparisons among solutions to
improve the running time.

The work in [28] added the angle concept to crowd distance searching to balance the
searching procedure among all angles. Other researchers have also used the framework of
NSGA-II with different extensions. For example, [29] used a set of reference points while
searching to maintain diversity. Then, from previous approaches, the concept of crowd
distance, when combined with angle searching, achieves the extensive scope of the search.
Specifically, authors in [30] have used range angle as a criterion to balance the search, then
using it in finding criterion solutions as the goal of the study.

Overall, the previous research works that have focused on meta-heuristic for multi-
objective aimed at incorporating various criteria for accomplishing exploration as well
as exploitation. The crowding distance of NSGA-II is effective for exploration, while the
angle searching was used in MOGA-AQCD as an additional base for the crowd-distance
exploration. However, the angle usage for exploitation has not been explicitly considered
and performed by the existing studies. This article then aims at tackling this aspect by
proposing a novel MOO searching that incorporates angle searching for exploitation.

Particularly, the present paper proposes a MOO searching algorithm that uses crowd-
ing distance for exploration and angle searching for exploitation. The proposal optimizes
the exploitation by selecting solutions from angular sectors that have the maximum found
solutions. The crowding distance is also used for exploration; however, we aim at avoiding
redundant operators for exploration. This goal is achieved by considering angle searching
for exploitation, provided that the crowding distance has successfully played its role in the
exploration process. To our knowledge, this is the first meta-heuristic searching algorithm
for MOO that jointly considers and optimizes the angle criterion for exploitation and
crowding distance for exploration at the same time. In the next section, we present the
system models and the research background.

2.2. Fog Computing Optimization

Solving IoT challenges of data processing within real-time constraints have created
the need to not rely on cloud network for processing. As a result, the concept of Fog
Computing was first introduced by Cisco in 2012. However, congested networks, high
latency in service delivery, and poor Quality of Service (QoS), non-stability, and increased
cost have been experienced [31]. Such challenges have motivated researchers to focus on
fog computing optimization.

The literature contains a significant amount of algorithmic works for fog computing
optimization. Each work has focused on certain aspects of the fog network and followed a

Sensors 2021, 21, 558 5 of 27

certain approach for optimization. While some work has tried to include more practical aspects
of fog computing needs and nature, others were more simplified and ignored some crucial
matters. In the work of [32], the authors have represented the fog computing optimization
as a scheduling problem, where the algorithm has to assign tasks to nodes with assuring
two objectives the stability and speed. Their model ignores energy and cost matters, which
are considered to be crucial aspects of fog computing. On the other side, they used classical
multi-objective optimization NSGA-II to solve their model without significant changes to
explore the solution space more efficiently and find more dominant solutions. We find that
other models have considered energy and cost like the work of [33]; however, there is no
consideration of stability or reliability for finishing the work. Similarly, the work of [34] has
included energy and latency while ignoring cost and reliability, while the work of [35] has
included time latency and cost as objectives and it ignored energy and reliability.

A summary of the covered objectives of each model is given in Table 1. To the best of
our knowledge, there is no developed model for fog computing optimization including
four objectives: time latency, energy, cost, and reliability at the same time. Such inclusion
implies more challenging multi-objective optimization. On the other side, all the previous
works have applied NSGA-II and other similar non-dominated searching optimization
without development in the searching aspect, which is needed because of the non-convex
nature of the problem and a huge number of constraints resulting in the optimization
surface non-linear and non-convex with NP-hard nature.

Table 1. Summary of the covered objectives in the fog computing model in the literature.

Authors/Objectives Energy Consumption Renting Cost Stability Time Latency Energy Distribution

[32] 7 7 � � 7

[33] 7 7 � 7 �
[34] � 7 7 � 7

[35] 7 � 7 � 7

Proposed Model � � � � �

3. Proposed Methodology

This section presents the developed method for accomplishing the goal of the article.
It starts with presenting the problem formulation of optimization and fog computing
framework was provided in Section 3.1. Next, in Section 3.2, we provide the algorithm
named hyper-angle exploitive searching. The fog computing closed-loop model is given in
Section 3.3. Table 2 elaborates on the mathematical terms used in the article.

3.1. Problem Formulation of Optimization and Fog Framework

Assume that we have a tuple x = (x1, x2, . . . xn) ∈ X, where X ⊆ Rn and a tuple
y = (y1, y2, . . . ym) ∈ Y where Y ⊆ Rm in which the following constraints are held:

y1 = f1(x1, x2, . . . xn) (1)

y2 = f2(x1, x2, . . . xn) (2)

ym = fm(x1, x2, . . . xn) (3)

In such a scenario: x is called the decision vectors; y is the objective vector. X is the
solution space, and Y is the objective space to model a minimization problem, with two
vectors a and b. We call b dominates a, denoted as a ≺ b i f f :{

∀ i ∈ {1, 2, . . . m} : fi(a) ≤ fi(b)
∃ j ∈ {1, 2, . . . m} : f j(a) < f j(b)

(4)

The domination of b over a is applied when b is superior over a with at least one of
the objectives j, and b is not worse than a in the remaining objectives i.

Sensors 2021, 21, 558 6 of 27

Table 2. Terms and symbols used for presenting the mathematical models.

Symbol Meaning

DG(Vt, Et) Graph of tasks.
V = {t1, t2, . . . tm} Tasks to be executed in the fog network.
E = {e1, e2, . . . ek} The dependency relation between the tasks.
ei = (tm1, tm2) A connection between task tm1 and tm2.
P = {P1, P2, . . . Pm} Computation load of the task.
L = {L1, L2Lm} Communication loads of the task.

G = {G1, G2, . . . Gn}
Subsets of independent graphs of tasks (a task in any graph can be executed with any order

comparing with other tasks in the same graph).
V = {v1, v2, . . . vn} Speed of CPU of nodes in the network.
UDG(Vn, En) Graph of nodes.
V = {n1, n2 . . . nn} Nodes are available for service in the fog network.
RC = {r1, r2 . . . rn} Renting cost of nodes.
RR = {rr1, rr2 . . . rrn} Reliability of nodes.
Ecomp Energy consumption because of the computational load.
Ecomm Energy consumption because of communication.
B The bandwidth of the connection’s links between nodes that participate in executing the task.
Eσ Energy balance is represented by the standard deviation of the energy
C The cost, which is represented by the total rental cost.
S The stability term is a measure of the reliability of the nodes that execute the task.
d =

[
dij

]
= [d

(
ni, nj

)
] The distance information between every two nodes

e = [ei] The energy consumption rate of nodes in the network
P0 The maximum computational load that can be given to a certain node
L0 The maximum communication load that can be given to a certain node

3.2. Hyper-Angle Exploitive Searching HAES

This section presents a hyper angle exploitive searching HAES algorithm. Firstly, we
present its working principle and the difference between HAES and MOGA-AQCD [30] in
Section 3.2.1. Secondly, we present the objective partitioning in Section 3.2.2. Lastly, the
algorithm of HAES in Section 3.2.3.

3.2.1. Working Principle and the Difference between HAES and MOGA-AQCD

Both the proposed HAES and MOGA-AQCD use the concept of angle quantization
for searching, which is based on dividing the space into equal-angle sectors and building a
histogram that calculates the number of solutions selected for each sector. However, HAES
behaves differently from MOGA-AQCD in terms of the selection of the new solutions.
MOGA-AQCD favors solutions located in the least angular sector in terms of the previously
selected solutions when two solutions are non-dominated with each other. In contrast,
HAES favors solutions located in the maximum angular sector in terms of the previously
selected solutions. Typically, the MOGA-AQCD concept is to perform extensive exploration
to yield substantial optimal solutions, whereas the HAES concept is that sectors that cover
suitable solutions in the past are also likely to be rich in the future. We then provide an
example to explain the critical difference between HAES and MOGA-AQCD regarding the
searching concept.

The concept of HAES is depicted in Figure 2. The solution space is decomposed into a
set of angular sectors. Each angular sector contains a set of solutions. The already found
solutions are marked with black bullets and the candidate solutions are represented with
white bullets. HAES selects the solutions that are located in the highest angular sector with
respect to the number of solutions. We mark the selected solutions with yellow bullets and
the ignored solutions with blue bullets.

Sensors 2021, 21, 558 7 of 27

Figure 2. The selected solution in solution space by HAES.

3.2.2. Objectives Partitioning

The multi-objective optimization when working on a high number of objectives
requires searching within a wide objective space, which makes it challenging to converge
toward the boundary of the objective space. Hence, we do boundary searching mechanisms
by activating the sub-set of objectives at each iteration out of the entire objectives. We name
it objective partitioning; its role is to reach the boundary of the solution space with respect
to the activated objectives. We select at each iteration of the optimization size k < m, where
m denotes the number of objectives, and we use it for evaluating the solutions, sorting
them, and selecting non-dominated ones. The sub-set of objectives is selected randomly at
each iteration using a uniform distribution.

3.2.3. Algorithm of HAES

The general algorithm of HAES is presented in Algorithm 1. The algorithm takes
the number of generations NGen, the number of solutions NSol, the sector range value
SectorRange, and the set of objectives SoB as inputs, the size of objectives partitioning. The
output of the algorithm is the Pareto front ParetoFront. As can be seen in Algorithm 1,
the algorithm starts with the initialization of the first population in line 10, keeping it as
a previous population in line 11, initialization of the counter of the population in line 12,
initialization of the angle range rank in line 13, and initialization of crowding distance
in line 14. Next, an iterative while loop is performed until the number of generations
is finished. The loop is composed of calling for the evaluation of the solutions in the
previous generation using the objective partitioning in function selectSubSet (line 15) and
the objective function calculation in the function evaluate (line 16), updating the crowding
distance using the function updateCrowdingDistance (line 17), updating the ranges using
the function updateRanges (line 18), selecting the elites that are responsible for generating
the off-spring using selectElites (line 20), generating the off-spring using the function
geneticOperations (line 22), and the concatenation of the parents and their off-spring using
the concatenation operator || (line 23), and finally the new population is selected again
from the resulted concatenated using the electElites one more time (line 25). This process is
repeated until the total iterations are finished, then the Pareto front of the last generated
solution is the result of the algorithm, as presented in line 26.

The algorithm calls three essential functions: updateCrowdingDistance(), updateRanges(),
and selectElites(). We provide the details of each of them in Algorithm 2, Algorithm 3,
and Algorithm 4, respectively. For the updateCrowdingDistance(), the algorithm (de-
tailed in Algorithm 2) takes the number of solutions NSolutions and the objective values
objectiveValues as input, and provides the set of crowding distance crowdingDistance. The
algorithm starts with the initialization of the set of the crowding distance with the size of
solutions NSolutions (line 7). Next, the two extreme solutions are assigned the value of
infinity (line 8). Afterward, the algorithm sorts the solutions as the separated lists according
to their objective values (line 9). Then, the algorithm updates the crowding distance in an
accumulated way, corresponding to the difference between each objective of a solution and
the value of its next solution in the sorted list (line 11).

Sensors 2021, 21, 558 8 of 27

Algorithm 1 Pseudocode of the HAES Algorithm

1. Input:
2. NGen //Number of Generations
3. NSol //Number of Solutions
4. SectorRange //Sector Range
5. SoB = fi, where i = 1, 2, . . . , m; //Set of Objectives
6. K //size of objectives partitioning
7. Output:
8. ParetoFront //Found Pareto Front
9. Start:
10. P0 = InitiateFirstPopulation NSol ; //generate first population randomly
11. populationPrevious = P0; //first population is the previous population
12. counterOfGeneration = 1;
13. angleRangeRank = zeros (1, 2π/SectorRange) //initialize the angle range rank
14. while (CounterofGeneration < NGen)
15. SSoB=selectSubSet(SoB, k)
16. [solutionsRanks,objectiveValues] = evaluate (populationPrevious,SSoB)
17. [crowdingDistance] = updateCrowdingDistance (populationPrevious,objectiveValues)
18. [angleRangeRank] = updateRanges (populationPrevious,solutionsRanks,
19. SectorRange,angleRangeRank, SoB) //select NSol from the previous solutions
20. selected Elites = selectElites
21. (P0,solutionsRanks,angleRangeRank,crowdingDistance, NSol)
22. offSpring = geneticOperations (selected Elites)
23. combinedPop = selectedElites || offSpring sortedCombinedPop =
24. NonNominatedSorting (combinedPop)
25. PNew = selectElites (sortedCombinedPop, angleRangeRank,NSol)
26. populationPrevious = PNew;
27. CounterofGeneration++;
28. end while
29. End

Algorithim 2 Pseudocode of calculating the crowding distance

1. Input:
2. NSol
3. objectiveValues
4. Output:
5. CrowdingDistance
6. Start:
7. crowdingDistance = zeros (NSol);
8. crowdingDistance (1) = crowdingDistance (NSol) = ∞
9. for (each i objective of objectiveValues) sortedSolutions = sort (NSol ,i);
10. for (solution j from 2 to NSol)
11. crowdingDistance (j) = crowdingDistance(j) + objectiveValues(i)− objectiveValues(i − 1);
12. end for
13. end for
14. End

The updateRanges() function is provided in Algorithm 3. It takes three variables:
Solutions, SectorRange, and SoB, as input. Additionally, it gives angleRangeRank as output.
The approach of obtaining angleRangeRank is based on performing an iterated loop in the
input Solutions and updating the counter of each sector in the SectorRange that contains
the solution, as presented in the for loop from line 10 to line 13.

Sensors 2021, 21, 558 9 of 27

Algorithim 3 Pseudocode of updating the angle range rank

1. Input:
2. Solutions
3. SectorRange
4. SoB
5. Output:
6. angleRangeRank
7. Start
8. L = length (Solutions)
9. angleRangeRank = zeros (360/SectorRange)
10. for (i = 1 to L)
11. Ai = angle (solution(i))//angle of solution i
12. angleRangeRank (j) = map (Ai, SectorRange) + angleRangeRank (j)
13. end for
14. return angleRangeRank
15. End

The final procedure receives the pool of solutions Pool of Solutions, the rank of so-
lution Rank, the angle range rank AngleRangeRank, the array of the crowding distance
CrowdingDistance, and the number of solutions to be selected N as input and provides se-
lected solutions (Algorithm 4). The procedure performs an iterated loop for N times, where
it selects two solutions in each time and calculates three measures for each solution: rank,
angle range rank, and crowding distance. Next, the selection function determines which
one has a better rank (line 17), better angle range rank (line 19), and better crowding dis-
tance (line 21). Then, the selection process is applied by checking the condition (line 22–24)
to identify which favors a solution that has a better rank. In the case that two solutions
have the same rank, then the solution with better angle range rank is selected. If the two
solutions both have the same values of rank and angle range rank, then the approach will
select the solution that has better crowding distance. In addition, the definition of “better”
is provided for rank in line 17, for angle range rank in line 19, and for crowding distance in
line 21. The detail of the algorithm for selecting the elites is shown in Algorithm 4.

3.3. Fog Computing Closed Loop Model (FCCL)

This section presents our developed integrated objectives fog computing model FCCL.
It is composed of five main sections. Section: 3.3.1 explains the first layer which is the
fog interface. Section 3.3.2 is an overview of the task decomposer and task model. Next,
Section 3.3.3 the task dispatcher. Then, Section 3.3.4 contains the network model, and lastly,
Section 3.3.5 contains the optimization objectives.

From a fog computing perspective, our problem is formulated similarly. The fog
has an interface that receives from the user a request of executing a computational task
with the needed criterion for optimization. Next, it calls an optimization algorithm that
provides a set of non-dominated solutions with respect to the provided criteria. The
user will make a decision for selecting one among them. The criteria are denoted by
vectors y = (y1, y2, . . . ym), where {yi} denotes a criterion for fog computing optimization.
Without loss of generality, we consider five criteria, namely, Energy Consumption, Energy
Distribution, Renting Cost, and Stability.

y = (energy consumption, energy distribution, renting cost, and stability). The solu-
tions that are provided to the user gives the selected fog nodes for the execution of the
request; we are represented by vector x = (x1, x2, . . . xn). The goal is to maximize the
domination aspect of the provided solutions and their diversity. This gives the user more
variety of choices. To elaborate more, we present Figure 3, which elaborates the user giving
a request to the user interface and waiting for a set of non-dominated solutions to select
one. The fog interface communicates with the task decomposer that decomposes the task
that is requested by the user to execute in the fog network. The role of the task decomposer

Sensors 2021, 21, 558 10 of 27

is to partition the task into subsets of independent subtasks; we call each subset a group.
Each group is executable independently on the other task.

Algorithim 4 Pseudocode of selecting the elites

1. Input:
2. Pool of Solutions
3. Rank
4. AngleRangeRank
5 CrowdingDistance
6. N //number of the selected solutions
7. Output:
8. selected solutions
9. Start:
10. for (solution = 1 to N) //number of the selected solutions
11. Select two individuals A, B randomly for an individual
12. Compute Non-domination rank (rank)
13. Compute Crowding distance (distance)
14. Compute Angle rank level (angle Range Rank)
15.
16. //Compare Solutions
17. betterRank = A_rank < B_rank
18. sameRank = A_rank == B_rank
19. betterAngleRangeRank = A_angleRangeRank > B_angleRangeRank
20. sameAngleRangeRank = A_angleRangeRank == B_angleRangeRank
21. betterCrowdingDiandstance = A_distance > B_distance
22. if (betterRank)
23. or (sameRank and betterAngleRangeRank)
24. or (sameRank and sameAngleRangeRank and betterCrowdingDistance)
25. then
26. add A to the selected solutions
27. else
28. add B to the selected solutions
29. end if
30. end for
31. End

This aspect enables shorter execution time, which is one of the metrics to be optimized.
The task decomposer communicates with the task dispatcher that is responsible for calling
the mathematical functions of the fog criterion for calculating the objective function for
any candidate solution. Obviously, the task dispatcher receives the needed information
from the fog network and the task decomposition and specification before carrying the
optimization. The optimization is carried using a multi-objective optimization algorithm
named HAES.

Sensors 2021, 21, 558 11 of 27

Sensors 2021, 21, x FOR PEER REVIEW 11 of 28

(𝑦1, 𝑦2, … 𝑦𝑚), where {𝑦i} denotes a criterion for fog computing optimization. Without

loss of generality, we consider five criteria, namely, Energy Consumption, Energy Distri-

bution, Renting Cost, and Stability.

𝑦 = (𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛, 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝑟𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡, 𝑎𝑛𝑑 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦). The so-

lutions that are provided to the user gives the selected fog nodes for the execution of the

request; we are represented by vector 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛). The goal is to maximize the dom-

ination aspect of the provided solutions and their diversity. This gives the user more va-

riety of choices. To elaborate more, we present Figure 3, which elaborates the user giving

a request to the user interface and waiting for a set of non-dominated solutions to select

one. The fog interface communicates with the task decomposer that decomposes the task

that is requested by the user to execute in the fog network. The role of the task decomposer

is to partition the task into subsets of independent subtasks; we call each subset a group.

Each group is executable independently on the other task.

This aspect enables shorter execution time, which is one of the metrics to be opti-

mized. The task decomposer communicates with the task dispatcher that is responsible

for calling the mathematical functions of the fog criterion for calculating the objective

function for any candidate solution. Obviously, the task dispatcher receives the needed

information from the fog network and the task decomposition and specification before

carrying the optimization. The optimization is carried using a multi-objective optimiza-

tion algorithm named HAES.

Figure 3. The framework of multi-criteria optimization for fog computing.

3.3.1. Fog Interface

Figure 3. The framework of multi-criteria optimization for fog computing.

3.3.1. Fog Interface

The fog interface will accept from the user two inputs. The first one is the task, and
the second one is the preference vector of the various objectives for optimizing the task.
The vector of preference between the five objectives is the five components vector, given
as pre = [pr1 pr2 pr3 pr4 pr5] with the constraint ∑5

i=1 pri = 1. The second input is the
configuration input, which is also given by a vector named con f = [itMax popSize], where
itMax denotes the maximum number of iterations, and popSize denotes the size of the
population. Assuming that there is more interest in the time execution (makespan) and
stability, the second interest is in the cost, and the third interest in the energy consumption
and the energy balance, then the value of pre =

(
1× pr, 1× pr, 1

2 × pr, 1
3 × pr, 1

3 × pr
)

.

This implies, 1× pr + 1× pr + 1
2 × pr + 1

3 × pr + 1
3 × pr = 1. Then, pr = 6/19.

3.3.2. Task Decomposer and Task Model

The logical decomposition of data fusion tasks is a fundamental process in the design
of systems aiming at combining multiple and heterogeneous cues collected by sensors. In
recent years, a relevant body of research has focused on formalizing logical models for
multi-sensor data fusion in order to propose appropriate and general task decomposition.
Therefore, we suggest a task decomposer, which is elaborated in Figure 4, to decompose
the data and classify based on priority. The role of the task’s decomposer is to decompose
the tasks into a set of independent tasks; we denote them into groups G = {G1, G2, . . . GN}.
Example 1 went particularly into decomposing and classifying the tasks.

Sensors 2021, 21, 558 12 of 27

Sensors 2021, 21, x FOR PEER REVIEW 12 of 28

The fog interface will accept from the user two inputs. The first one is the task, and

the second one is the preference vector of the various objectives for optimizing the task.

The vector of preference between the five objectives is the five components vector, given

as 𝑝𝑟𝑒 = [𝑝𝑟1 𝑝𝑟2 𝑝𝑟3 𝑝𝑟4 𝑝𝑟5] with the constraint ∑ 𝑝𝑟𝑖
5
𝑖=1 = 1. The second input is the con-

figuration input, which is also given by a vector named 𝑐𝑜𝑛𝑓 = [𝑖𝑡𝑀𝑎𝑥 𝑝𝑜𝑝𝑆𝑖𝑧𝑒], where

𝑖𝑡𝑀𝑎𝑥 denotes the maximum number of iterations, and 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 denotes the size of the

population. Assuming that there is more interest in the time execution (makespan) and

stability, the second interest is in the cost, and the third interest in the energy consumption

and the energy balance, then the value of 𝑝𝑟𝑒 = (1 × 𝑝𝑟, 1 × 𝑝𝑟,
1

2
× pr,

1

3
× pr,

1

3
× pr). This

implies, 1 × 𝑝𝑟 + 1 × 𝑝𝑟 +
1

2
× pr +

1

3
× pr +

1

3
× pr = 1. Then, 𝑝𝑟 = 6/19.

3.3.2. Task Decomposer and Task Model

The logical decomposition of data fusion tasks is a fundamental process in the design

of systems aiming at combining multiple and heterogeneous cues collected by sensors. In

recent years, a relevant body of research has focused on formalizing logical models for

multi-sensor data fusion in order to propose appropriate and general task decomposition.

Therefore, we suggest a task decomposer, which is elaborated in Figure 4, to decompose

the data and classify based on priority. The role of the task’s decomposer is to decompose

the tasks into a set of independent tasks; we denote them into groups 𝐺 = {𝐺1, 𝐺2, … 𝐺𝑁}.

Example 1 went particularly into decomposing and classifying the tasks.

This component has the role of accepting the task from the user. The task itself is

modeled as a directed graph 𝐷𝐺(𝑉, 𝐸), where 𝑉𝑡 = {𝑡1, 𝑡2, … 𝑡𝑚}, 𝐸 = {𝑒1, 𝑒2, … 𝑒𝑘}, where

𝑚 denotes the number of tasks in the graph and 𝑘 denotes the number of directed edges.

Where each edge 𝑒𝑖 = (𝑡𝑚1, 𝑡𝑚2), it denotes that 𝑡𝑚2 is dependent on 𝑡𝑚1. Another piece

of information that is related to the task and has to be provided by the interface is the

workload of tasks in terms of both computation and communication, where the computa-

tion is described by set 𝑃 = {𝑃1, 𝑃2, … 𝑃𝑚}, where each 𝑃𝑖 denotes the computation that is

the number of a clock for the task 𝑃𝑖 , and the communication load is described by the set

𝐿 = {𝐿1, 𝐿2 … . 𝐿𝑚}, where 𝐿𝑖 represents the communication loads, which describes the to-

tal length of data to be exchanged among selected nodes for executing the task.

Example 1:

Task decomposer will classify the nodes in the network into groups, and each group

depends on the number of nodes in the fog network. In addition, its direct graph, which

is the fog nodes, will forward the request to the next node. The result of the task decom-

poser is set of three groups as 𝐺1 = {1,2,3}, 𝐺2 = {4,5}, and 𝐺3 = {6,7,8,9}. As we see, the

tasks in each group are independent of each other, and they can be processed in any order.

Figure 4. Task Decomposer.

Figure 4. Task Decomposer.

This component has the role of accepting the task from the user. The task itself is
modeled as a directed graph DG(V, E), where Vt = {t1, t2, . . . tm}, E = {e1, e2, . . . ek},
where m denotes the number of tasks in the graph and k denotes the number of directed
edges. Where each edge ei = (tm1, tm2), it denotes that tm2 is dependent on tm1. Another
piece of information that is related to the task and has to be provided by the interface
is the workload of tasks in terms of both computation and communication, where the
computation is described by set P = {P1, P2, . . . Pm}, where each Pi denotes the computation
that is the number of a clock for the task Pi, and the communication load is described by
the set L = {L1, L2Lm}, where Li represents the communication loads, which describes
the total length of data to be exchanged among selected nodes for executing the task.

Example 1:
Task decomposer will classify the nodes in the network into groups, and each group

depends on the number of nodes in the fog network. In addition, its direct graph, which is
the fog nodes, will forward the request to the next node. The result of the task decomposer
is set of three groups as G1 = {1,2,3}, G2 = {4,5}, and G3 = {6,7,8,9}. As we see, the tasks in
each group are independent of each other, and they can be processed in any order.

3.3.3. Task Dispatcher

The task dispatcher is responsible for allocating certain nodes in the fog network
for the execution of the sub-tasks that result from the task decomposer. It contains the
optimization algorithm HAES, which was presented in Section 3.2.3. The fog computing
closed loop is presented in Section 3.3.

3.3.4. Network Model

We assume that the network is an undirected graph UDG(Vn, En), where V =
{n1, n2 . . . nn}, where n denotes the number of nodes in the network. E =

{(
ni, nj

)}
where ni, nj ∈ V. Assuming that the nodes have wireless connections between each other,
then we are interested in the distance between every two nodes. Each node i has a rate
of computational energy consumption ei [j

sec], and each two nodes ni, nj ∈ V, have dis-
tance between them, which is given as dij = d

(
ni, nj

)
. In addition, we assume that each

node ni has a speed for execution vi. Furthermore, we assume that each node has a maxi-
mum capacity for executing computational load p0 and maximum capacity for executing
communication load l0.

3.3.5. Optimization Objectives

We present in this section the equations of the optimization objectives. Our model
has the aspect of integrating five objectives at the same time, which makes it distinguished
from other models in the literature.

A. Time Latency

Sensors 2021, 21, 558 13 of 27

Time latency is an expression of how much time it takes for a packet of data to get
from one designated point to another. It is sometimes measured as the time required for a
packet to be returned to its sender, which is calculated by the following formula.

T =
m

∑
i=1

n

∑
j=1

tij (5)

tij = tij
1 + tij

2 (6)

tij
1 =

Pij

vi
computation time (7)

tij
2 =

lij
B
+ tij

queue communication time (8)

where tij
queue denotes the queue waiting time. Pij denotes the task computational load that

is assigned to node i. The speed is vi of the node i. lij denotes the communication load
between i and j. Lastly, B denotes the bandwidth.

B. Energy Consumption
In order to send number packets from node A until node B, where the distance

between the two nodes is d(A, B) = d, we calculate the consumed energy as Equation (9).

e(A, B) = e(d) =

{ (
eelec + εampd2)l(A, B) f or transmit

eelecl(A, B) f or receive
(9)

where eelec denotes energy consumption for operating the radio model for each bit in the
data. d denotes distance between the two nodes A, B. The coefficient of transmit amplifier
given by εamp. l(A, B) denotes the number of bits to be sent from node A to node B.

Based on the term e(A, B) = eA,B, l(A, B) = lA,B, we can calculate the total
energy consumption based on terms Ecomp, Ecomm, which represent the computation en-
ergy consumption and communication energy, respectively. The total energy is given in
Equation (10), the computation energy is given in Equation (11), and the communication
energy is given in Equation (12).

E = Ecomp + Ecomm (10)

Ecomp =
n

∑
i = 1

eiti (11)

where ei denotes to the energy consumption because of execution in node i, ti denotes to the
time allocation of the node i, ei,j denotes the energy consumption because of communication
between nodes i and j, and l(i, j) number of bits transferred between nodes i and j.

Ecomm =
m

∑
i,j, i 6=j

ei,jli,j (12)

C. Energy Distribution
This term indicates the differences among the nodes in terms of the energy levels.

The term is calculated as the standard deviation of the node’s energy as it is given in
Equation (13).

Eσ =

√
∑n

i=1 (Ei − E)2

n− 1
(13)

where Ei denotes the consumed energy of node i; E denotes the average consumed energy
of all nodes. n denotes the total number of nodes.

D. Renting Cost

Sensors 2021, 21, 558 14 of 27

The renting cost is defined as the total cost of rent, which is the summation of node i
rental rate ri multiplied by the time of allocating the node according to Equation (14).

C =
n

∑
i=1

tiri (14)

where ri denotes the renting rate of the node i. ti denotes the time of allocating the node i.
E. Stability
This term indicates the total stability of the task execution. It is calculated as the

summation of the reliability percentage of a certain node rri multiplied by the time of
allocating the nodes. The calculation is depicted in Equation (15).

S =
n

∑
i=1

tirri (15)

where rri denotes to the reliability rate of the node ni, and ti denotes the time of allocating
the fog node i.

F. Constraints
Before assigning any given solution to the fog network, it is needed to assure that it

meets the constraints. Basically, there are two types of constraints that should be satisfied.
The first one is the connectivity constraint, which states that any sub-network is assigned
an execution of a task; it should be connected in order to execute the task that is assigned
to the sub-network. The second constraint is named the load constraint. It states that for
a task T with computational load P and communication load L, it should be allocated at
least N0 for execution. The value N0 is calculated based on Equation (16).{

N0 = Max
(

L
L0

, P
P0

)
N ≥ N0

(16)

4. Experimental Design and Parameters Setup

This section comprises three categories for presenting the evaluation of the proposed
model and base benchmarks used in the evaluation. The first category, in Section 4.1, is the
evaluation metrics of HAES and FCCL models. This section talks specifically about the
most common and standard evaluation measures, which are hyper-volume, non-dominated
solution, generational distance measure, inverse relative generational distance measure,
delta metric measure, and set coverage measure. In addition, the parameters for HAES
mode with base models. The second category, Section 4.2, is a dedicated section that
presents the multi-objective mathematical functions that will test HAES and compare it
with state-of-the-art approaches. The third, Section 4.3, presents the parameters for the
FCCL model.

4.1. Evaluation Metrics of HAES and FCCL

This section presents the evaluation metrics that are used for evaluating our developed
approaches, which are HAES and FCCL. Fog computing evaluation metrics are the same
objectives that are used for optimization. We present the hyper-volume in sub-section A
Next, we present the number of non-dominated solutions in sub-section B. Afterward, the
generational distance is presented in sub-section C. Next, the inverse relative generational
distance measure in sub-section D, and the delta metric is provided in sub-section E. Lastly,
set coverage is giving in sub-section F.

A. Hyper Volume (HV) Measure
The hyper volume (HV) metric is widely used in evolutionary MOO to evaluate the

performance of the searching algorithm [36]. It computes the volume of the dominated
portion of the objective space related to the worst solution. This region is the union of the
hypercube, with its diagonal as the distance between the reference point and a solution X

Sensors 2021, 21, 558 15 of 27

from the Pareto Set (PS). High values of this measure present the desirable solutions. HV is
presented by the following (Equation (17)):

HV = volume(∪x∈Ps Hyper Cube (x)). (17)

B. Number of Non-Dominated Solutions (NDS)
The number of non-dominated solutions (NDS), which expresses the effectiveness of

the optimization algorithm [37], can be calculated as the cardinality of PS as (18):

NDS(N) = |Ps|. (18)

C. Generational Distance Measure (GDM)
This metric, also called the GD metric [38], is a measure to evaluate the performance of

a found Pareto Set (PS) compared with a reference point set (a true Pareto set (PS)). This
measure is based on the distance among obtained solutions and reference points, which is
calculated as follows (Equation (19)):

GD(Ps, PT) =

(
∑
|Ps |
i=1 d2

i

) 1
2

|Ps|
. (19)

D. Inverse Relative Generational Distance Measure (IRGD)
Inverse Relative Generational Distance Measure (IRGD)
Another metric that is used is the inverse Relative Generational Distance or IRGD,

and it is given in Equation (20).

IRGD(Ps, PT) =
|Ps|(

∑
|Ps |
i=1 d2

i

) 1
2

. (20)

E. Delta Metric Measure
The delta or diversity metric ∆ shows the extent to which it achieves the spread [14].

The delta measure receives the non-dominated set of solutions and provides the diversity
metric, and can be computed according to the following equation:

∆ =
d f + dI + ∑N−1

i=1 |di − d−|
d f + dI(N − 1)d−

(21)

where N is the number of solutions, d f and di, the Euclidean detachments between the
extreme and border solutions, and d is all the consecutive distances, di (i = 1, 2, . . . , N − 1).
This measure is required to be slight and maintained to be less, because this measure indicates
uniform distribution. In addition, it provides various selections to the decision-maker.

F. Set Coverage Measure
Set coverage measure [37], also called C metric, compares the Pareto sets Ps1 and Ps2

and can be identified by (22):

C(Ps1, Ps2) =
|{y ∈ Ps2|3x ∈ Ps1 : y ≺ x}|

Ps2
(22)

C equals the ratio of nondominated solutions in Ps2 dominated by non-dominated
solutions in Ps1 to the number of solutions in Ps2. Thus, when evaluating a set Ps, the value
of C(X; Ps) must be minimized for all Pareto sets X.

4.2. Multi-Objective Mathematical Functions

The algorithms are evaluated based on various relevant MOO mathematical functions.
The formulas, optimization range, and true PF of each mathematical function are provided
in Table 3. They have been used in most of the existing studies on MOO optimization as

Sensors 2021, 21, 558 16 of 27

the benchmarking functions. The convexity is different for each function. Table 3 shows
the bounds of the variables and the optimal solutions or PFs. In this way, our proposed
approach can be validated against critical MMO measures. We selected three approaches,
NSGA-II, NSGA-III, and MOGA-AQCD, which were presented in the background section,
as the three relevant benchmarks to evaluate HAES.

To make the study quantitative, ten experiments are performed for each function using
different seeds. This study also refers to the previous studies so that the same methodol-
ogy of evaluation as of Multi-Objective Evolutionary Algorithms (MOEAs) is performed.
The test function is chosen based on the well-known studies, including Fleming’s study
(FON) [39], Kursawe’s study (KUR) [40], Poloni’s study (POL) [41], and Schaffer’s study
(SCH) [42]. We then followed those guidelines and suggested six test problems, in which
five of them are presented in Table 3, call ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. All
problems have two objective functions, and none of these problems has any constraint. In
addition, the number of variables, the bounds, the Pareto-optimal solutions, and the nature
of the Pareto-optimal front for each problem.

Table 3. Mathematical functions for evaluating MOO measures.

Prob-
lem n Variable

Bounds Objective Function Optimal Solution Remark

FON 3 [−4, 4]

f 1 (x) =

1− exp

(
−

3
∑

i=1

(
xi− 1

1√
3

)2
)

f 2 (x) =

1− exp

(
−

3
∑

i=1

(
xi− 1

1√
3

)2
) x1 = x2 = x3 Non-convex

KUR 3 [−5, 5]

f1(x) =
n−1
∑

i=1

(
−10 exp

(
−0.2

√
x2

i + x2
i + 1

))
f (x) =

n
∑

i=1

(∣∣xi
∣∣ 0.8 + 5 sin x3

i
) [43] Non-convex

POL 2 [−π, π]

f1(x) =[
1 + (A1 − B1)

2 + (A2 − B2)
2
]

f2(x) =
[
(x1 + 3)2 + (x2 + 1)2

] [43] Non-
convexDisconnected

SCH 1 [10−3, 103]
f1(x) = x2

f2(x) = (x− 2)2 X ∈ [0, 2] Convex

ZDT1 30 [0, 1]

f1(x) =
n−1
∑

i=1
(−10 exp(−0.2

√
x2

i + x2
i+1

f2 (x) =
n
∑

i=1
(|xi| 0.8 + 5 sin x3

i)

x1 ∈ [0, 1]
xi = 0

i = 2, 3,, n
Convex

ZDT2 30 [0, 1]

f1(x) = x1

f2(x) = g(x)
[
1− (x1/gx)

2
]

g(x) = 1 + 9
(

n
∑

i=2
xi

)
/(n− 1)

x1 ∈ [0, 1]
xi = 0

i = 2, 3,, n
Non-convex

ZDT3 30 [0, 1]

f1(x) = x1
f2(x) =

g(x)
[

1−
√

x1
g(x) − x1

g(x) sin(10 π x1)

]
g(x) = 1 + 9

(
n
∑

i=2
xi

)
/(n− 1)

x1 ∈ [0, 1]
xi = 0

i = 2, 3,, n

Convex,
Disconnected

Sensors 2021, 21, 558 17 of 27

Table 3. Cont.

Prob-
lem n Variable

Bounds Objective Function Optimal Solution Remark

ZDT4 10 [0, 1]
[−5, 5]

f1 = x1

f2 = g(x)
[

1− (
f1
g)

0.5
]

g = 1 + 10(N − 1) +
N
∑

i=2

(
x2

i − 10 cos(4πxi)
)

Non-convex

ZDT6 10 [0, 1]

f1(x) =
1− exp(−4x1) sin6 (6πx1)

f2(x) = g(x)
[

1− (
f1(x)
g(x))

2
]

g(x) =

1 + 9
[(

n
∑

i=2
xi

)
/(n− 1)

] 0.25

x1 ∈ [0, 1]
xi = 0

i = 2, 3,, n

Convex,
non-uniformly

spaced

The implementation is conducted using MATLAB 2019b. The parameters for NSGA-II,
NSGA-III, MOGA-AQCD, and HAES are given in Tables 4 and 5. The same number of
solutions and generation was used for all the algorithms in order to have a fair comparison.
An increase in the number of solutions and generations typically yields better performance
results. The numbers of the population and generations are selected to be (100) and (500),
respectively. The parameters of the crossover are determined based on two parts: fraction
and ratio. The fraction is selected to be 2/n, where n denotes the solution length and the
ratio is selected to be 1,2. For the scale of the mutation, we selected the value of 0,1. These
values are the default ones that are used by the MATLAB optimization package.

Table 4. Parameters of NSGA-II, MOGA-AQCD, and HAES.

Parameters NSGA-II MOGA-AQCD HAES

No. of solution 100 100 100
No. of generation 500 500 500

Crossover option Fraction 2/n 2/n 2/n
Ratio 1,2 1,2 1,2

Mutation option
Fraction 2/n 2/n 2/n

Scale 0,1 0,1 0,10
Shrink 0.5 0.5 0.5

Quantification of angle
space (α) N/A 10−7 for all test except

KUR 5× 10−7
10−7 for all test except

KUR 5× 10−7

Table 5. Parameters of NSGA-III.

Parameters NSGA-III

No. of Solution 100
No. of Generation 500

Crossover Percentage 0.5

Mutation Option Mutation Percentage 0.5
Mutation Rate 0.02

Number of Divisions 10

These selected numbers are to obtain the PF within a balanced time. However, increas-
ing both or one of them yields highly dominated solutions, given extensive exploration
will be conducted in the searching space.

4.3. HAES Evaluation Based on FCCL Model

The evaluation is done based on population size 200 and number of generations 200.
We run the model on 10 experiments. Each experiment is conducted on a different value of

Sensors 2021, 21, 558 18 of 27

the quantization, α = {20, 23, 25, 28, 30, 33, 35, 37, 40, 45}. In addition, each experiment is
repeated 10 times with different values of seed, which are given in Table 6. The results are
decomposed into two sub-sections. The first one is the presentation of the results of the
multi-objective mathematical functions, and the second one is the results of the evaluation
of the fog computing closed-loop model.

Table 6. Table of parameters used for evaluation FCCL Model.

Parameter Value

Population size 200
Number of generations 200

Number of random experiments 10
α {20, 23, 25, 28, 30, 33, 35, 37, 40, 45}

Number of nodes 30
Number of tasks 6

Number of objectives 5
Crossover 1.2
Mutation 0.5, 1.5

5. Evolution and Enhanced Model Results

This part presents the results of the two models, HAES and FCCL, and discuss
the experiment results comparing to the other models and their differences. Section 5.1
elaborates on the first phase which is the optimization of HAES with three benchmarks
as follows NSGA-II, NSGA-III, and MOGA-AQCD; Section 5.2, the second phase, is the
model of FCCL and the comparison of our model with the same benchmarks for phase one.

5.1. HAES Experimental Investigation and Results

The evaluation of the HAES algorithm is performed firstly based on mathematical
functions with a challenging MOO nature as follows: FON, KUR, POL, SCH, ZDT1, ZDT2,
ZDT3, ZDT4, and ZDT6. It presents the Pareto front, average hyper volume metric, average
non-dominated solutions metric, an average of delta metric, and the average of generational
distance metric, respectively, in each figure for HAES and other three benchmarks. As we
observe in Figure 5, the Pareto front is plotted with two axes figures, because each of the
mathematical functions has two objectives. Considering that HAES has an exploiting nature
that enables the algorithm to each more dominant solution even if the regions of exploration
were less, this has made it more capable of minimizing the values of the objectives.

In order to present this clearly, we show for each mathematical function two scales: the
first one shows the general Pareto at the top and the second one shows the area of solutions
found by HAES at the bottom. The Pareto front was lower for the functions FON, POL, SCH,
ZDT1, ZDT2, ZDT3, and ZDT4, which is more domination with respect to these functions.
The only function that has not achieved lower values of the Pareto front is KUR. However,
HAES has achieved a more diverse Pareto front for KUR compared with the benchmarks.
Figure 5 elaborate on the results for mathematical functions for each metric particularly.

In order to identify the superiority in terms of domination, we provide two tables:
the first one is showing the domination of the benchmarks over HAES in Table 7, and the
second shows the domination of HAES over the benchmarks in Table 8. As can be seen, the
values in Table 7 are higher than their corresponding values in Table 8, which means that
HAES is more dominant over the MOGA-AQCD, NSGA-III, and NSGA-II.

Sensors 2021, 21, 558 19 of 27

Table 7. Average set coverage values of HAES compared to those of MOGA-AQCD, NSGA-III,
and NSGA-II.

Functions MOGA-AQCD NSGA-III NSGA-II

FON 1.100 × 10−2 3.000 × 10−2 1.500 × 10−2

KUR 3.100 × 10−2 2.290 × 10−1 2.700 × 10−2

POL 8.000 × 10−3 1.000 × 10−3 4.000 × 10−2

SCH 2.000 × 10−3 6.880 × 10−1 2.000 × 10−3

ZDT1 0.000 × 10−0 0.000 × 10−0 1.500 × 10−2

ZDT2 0.000 × 10−0 0.000 × 10−0 0.000 × 10−0

ZDT3 6.000 × 10−3 0.000 × 10−0 1.500 × 10−2

ZDT4 4.815 × 10−2 6.000 × 10−1 9.000 × 10−2

ZDT6 2.750 × 10−1 0.000 × 10−0 2.710 × 10−1

Sensors 2021, 21, x FOR PEER REVIEW 19 of 28

solutions found by HAES at the bottom. The Pareto front was lower for the functions FON,

POL, SCH, ZDT1, ZDT2, ZDT3, and ZDT4, which is more domination with respect to

these functions. The only function that has not achieved lower values of the Pareto front

is KUR. However, HAES has achieved a more diverse Pareto front for KUR compared

with the benchmarks. Figure 5 elaborate on the results for mathematical functions for each

metric particularly.

(a) FON (b) KUR

(c) POL (d) SCH

Figure 5. Cont.

Sensors 2021, 21, 558 20 of 27Sensors 2021, 21, x FOR PEER REVIEW 20 of 28

(e) ZDT1 (f) ZDT2

(g) ZDT3 (h) ZDT4

(i) ZDT6

Figure 5. Pareto front with two scales: sub-figure HAES with MOGA-AQCD for FON, KUR, POL, SCH, ZDT1, ZDT2,

ZDT3, ZDT4, and ZDT6.
Figure 5. Pareto front with two scales: sub-figure HAES with MOGA-AQCD for FON, KUR, POL, SCH, ZDT1, ZDT2, ZDT3, ZDT4,
and ZDT6.

Sensors 2021, 21, 558 21 of 27

Table 8. Average set coverage of MOGA-AQCD, NSGA-III, and NSGA-II compared to that of HAES.

Functions MOGA-AQCD NSGA-III NSGA-II

FON 0.000 × 10−0 0.000 × 10−0 0.000 × 10−0

KUR 8.140 × 10−3 7.488 × 10−3 1.279 × 10−2

POL 1.000 × 10−3 0.000 × 10−0 1.300 × 10−2

SCH 2.000 × 10−3 0.000 × 10−0 2.000 × 10−3

ZDT1 0.000 × 10−0 1.000 × 10−0 3.000 × 10−3

ZDT2 0.000 × 10−0 1.000 × 10−0 0.000 × 10−0

ZDT3 0.000 × 10−0 1.000 × 10−0 0.000 × 10−0

ZDT4 0.0481209 0 0.1139833
ZDT6 0 1 0

In order to assess the performance of HEAS in terms of the richness of the found
solutions compared with the benchmarks, we present the hyper-volume. As it is shown in
Table 9, ZDT6 has accomplished high hyper-volume only for KUR and ZDT6, while it was
less for the other functions. This is interpreted as more domination of solutions that was
accomplished for HAES compared with the benchmarks. This makes it more challenging to
obtain high hyper-volume compared with MOGA-AQCD, NSGA-II, and NSGA-III, which
has generated a lower dominant Pareto front.

Table 9. Average of MOO metrics for benchmarking mathematical functions.

Problems Evaluation Measure HAES MOGA-
AQCD NSGA-III NSGA-II

FON

Average of Hyper Volume 5.685 0.298 0.089 0.297
Average Non-Dominated Solutions 100 100 100 100

Delta Metric 0.991 0.196 1.011 0.281
Average Generational Distance 0.00109 0.001199 0.001483 0.001199

KUR

Average of Hyper Volume 15.85 25.66 2.316 25.67
Average Non-Dominated Solutions 61.8 100 100 100

Delta Metric 0.8695 0.3695 1.035 0.4129
Average Generational Distance 0.01893 0.006606 0.07131 0.006420

POL

Average of Hyper Volume 0.4963 368.2 17.45 369.1
Average Non-Dominated Solutions 100 100 100 100

Delta Metric 0.9289 1.308 1.026 0.9444
Average Generational Distance 0.001193 0.007846 0.204 0.008936

SCH

Average of Hyper Volume 0.02784 13.26 17.45 13.26
Average Non-Dominated Solutions 100 100 100 100

Delta Metric 1.057 0.6812 1.021 0.6812
Average Generational Distance 0.001227 0.0008915 1.15 0.0008915

ZDT1

Average of Hyper Volume 0.0012 0.6591 187.1 0.6579
Average Non-Dominated Solutions 100 100 66 100

Delta Metric 0.9863 0.4984 0.9223 0.6562
Average Generational Distance 7.92 × 10−4 4.18 × 10−4 10.9096 5.02 × 10−4

ZDT2

Average of Hyper Volume 1.6993 0.3274 0.3247 2.1159
Averages Non-Dominated Solutions 100 100 13.8 100

Delta Metric 0.9985 0.3258 1.295 0.6794
Average Generational Distance 0.0011 5.06 × 10−4 2.31 × 1011 5.31 × 10−4

ZDT3

Average of Hyper Volume 0.0012 0.7763 341.5 0.7771
Average Non-Dominated Solutions 100 100 39.1 100

Delta Metric 0.9915 0.7661 0.9718 0.7541
Average Generational Distance 5.55 × 10−4 6.81 × 10−4 14.3872 6.60 × 10−4

Sensors 2021, 21, 558 22 of 27

Table 9. Cont.

Problems Evaluation Measure HAES MOGA-
AQCD NSGA-III NSGA-II

ZDT4

Average of Hyper Volume 0.2211 0.6407 0.829 0.6119
Average Non-Dominated Solutions 87.3 100 67.6 100

Delta Metric 1.014 0.4384 1.013 0.3854
Average Generational Distance 9.05 × 10−4 0.0012 7.9171 09.05 × 10−4

ZDT6

Average of Hyper Volume 0.4746 0.2646 0 0.2636
Average Non-Dominated Solutions 59.8 100 1.4 100

Delta Metric 1.214 0.635 0.9666 0.7989
Average Generational Distance 0.0363 3.35 × 10−4 3.47 × 1085 3.20 × 10−4

In addition to hyper-volume, we generated an NDS measure that indicates the number
of found solutions in the Pareto front. A higher value of NDS is equivalent to better
performance in general. However, it is important to read NDS as a secondary metric after
domination. We observe that HAES has accomplished competing values of NDS to the
benchmarks for FON, POL, ZDT1, ZDT3, ZDT4, and ZDT6. Hence, it is considered a good
performing algorithm from the perspective of not only domination, but also NDS.

The delta metric shows how much the solutions were equally distributed on the
resultant Pareto front. A lower value of the delta metric implies a more equal distribution
of the found solutions on the Pareto front. Considering that HAES’s focus is to search in an
exploiting way, it provides lower distributed solutions in the Pareto front, which makes its
value higher compared with the benchmarks and in general closer in order to the value of
delta metric of NSGA-III. On the other side, we observe that NSGA-II and MOGA-AQCD
have lower values of delta metric.

Another metric that is used to evaluate the performance of MOO is GD, which is
preferred to be lower. It shows that HAES has accomplished lower GD for FON, POL, SCH,
ZDT1, ZDT2, ZDT4, and ZDT6. We also observe that NSGA-III has suffered from relatively
higher values of GD compared with the other approaches. It is important to point out that
GD is not always correlated with the percentage of domination due to the change of scales
between one objective and the other.

5.2. FCCL Investigation and Results

This section presents the evaluation of implementing HAES on the fog computing
closed-loop model. Three main measures are presented for each of the provided configu-
rations in the experimental design, namely, IRGD, which represented the inverse of the
relative generational distance, HV, which represents the hyper volume, and NDS, which
denotes the number of non-dominated solutions. The evaluation measures are presented
with the different configurations in Figure 6. Looking at the figure, we observe that HAES
was capable of accomplishing full IRGD and NDS for configurations 23, 25, 33, and 45.
Additionally, we observe that HAES’ different configuration was not able to bring HV to
its maximum value.

For a more quantitative comparison of the difference in the performance between
HAES and other benchmarks, we generated the results of the t-test in Figure 7 for three
metrics: IRGD, HV, and set coverage. Their values reveal that HAES has outperformed
other benchmarks with respect to set coverage with a confidence of more than 70%, and
with respect to IRGD with a confidence of more than 90%. However, HAES was less
superior with respect to HV, with a confidence of more than 90%.

Looking at the hyper-volume as a secondary measure after the domination and
considering that reaching more optimal solutions might limit their spread in the objective
space, we interpret that hyper-volume of HAES has not outperformed the hyper-volume
of the benchmarks. However, we could have accomplished more optimal solutions with
HAES compared with the benchmarks, as both IRGD and set-coverage of HAES have
outperformed their corresponding values in the benchmarks.

Sensors 2021, 21, 558 23 of 27

Sensors 2021, 21, x FOR PEER REVIEW 23 of 28

Additionally, we observe that HAES’ different configuration was not able to bring HV to

its maximum value.

Figure 6. Cont.

Sensors 2021, 21, 558 24 of 27Sensors 2021, 21, x FOR PEER REVIEW 24 of 28

Sensors 2021, 21, x FOR PEER REVIEW 25 of 28

Figure 6. Comparison between HAES different configurations in terms of alpha and the other algorithms.

For a more quantitative comparison of the difference in the performance between

HAES and other benchmarks, we generated the results of the t-test in Figure 7 for three

metrics: IRGD, HV, and set coverage. Their values reveal that HAES has outperformed

other benchmarks with respect to set coverage with a confidence of more than 70%, and

with respect to IRGD with a confidence of more than 90%. However, HAES was less su-

perior with respect to HV, with a confidence of more than 90%.

Looking at the hyper-volume as a secondary measure after the domination and con-

sidering that reaching more optimal solutions might limit their spread in the objective

space, we interpret that hyper-volume of HAES has not outperformed the hyper-volume

of the benchmarks. However, we could have accomplished more optimal solutions with

HAES compared with the benchmarks, as both IRGD and set-coverage of HAES have out-

performed their corresponding values in the benchmarks.

(a) IRGD Metric

(b) Hyper Volume Metric

Figure 6. Comparison between HAES different configurations in terms of alpha and the other algorithms.

Sensors 2021, 21, 558 25 of 27

Sensors 2021, 21, x FOR PEER REVIEW 25 of 28

Figure 6. Comparison between HAES different configurations in terms of alpha and the other algorithms.

For a more quantitative comparison of the difference in the performance between

HAES and other benchmarks, we generated the results of the t-test in Figure 7 for three

metrics: IRGD, HV, and set coverage. Their values reveal that HAES has outperformed

other benchmarks with respect to set coverage with a confidence of more than 70%, and

with respect to IRGD with a confidence of more than 90%. However, HAES was less su-

perior with respect to HV, with a confidence of more than 90%.

Looking at the hyper-volume as a secondary measure after the domination and con-

sidering that reaching more optimal solutions might limit their spread in the objective

space, we interpret that hyper-volume of HAES has not outperformed the hyper-volume

of the benchmarks. However, we could have accomplished more optimal solutions with

HAES compared with the benchmarks, as both IRGD and set-coverage of HAES have out-

performed their corresponding values in the benchmarks.

(a) IRGD Metric

(b) Hyper Volume Metric

Sensors 2021, 21, x FOR PEER REVIEW 26 of 28

(c) Set Coverage Metric

Figure 7. t-test to compare the performance of HAES and MOGA-AQCD, NSGA-II, and NSGA-III.

6. Conclusions and Future Works

This article has presented a novel formulation of the problem of fog computing opti-

mization with a multi-objective perspective. The covered objectives are the time latency,

the energy consumption with the energy distribution, the renting cost, and stability. The

multi-objective and the conflicting nature of the problem require adopting meta-heuristic

searching for solving it. However, due to the relatively high number of objectives, differ-

ent from the relevant existing studies in literature, this research has proposed a novel hy-

per-angle genetic optimization. The role of the hyper angle is to prioritize solutions within

the same rank based on their best-accomplishing rank, which gives the algorithm more

exploitive capability. In addition, the article has adopted the concept of objective decom-

position by evaluating the approach on various sizes of sub-set of objectives for the objec-

tive’s decomposition. Objective decomposition enables exploring the boundary of the ob-

jective space before going to the intermediate region while searching. Such an approach

is crucial for the relatively large number of objectives. Furthermore, various values of an-

gle resolutions were used for the evaluation. It was found that the number of sub-set of

objectives while performing the objectives decomposition as well as the value of the angle

Figure 7. t-test to compare the performance of HAES and MOGA-AQCD, NSGA-II, and NSGA-III.

6. Conclusions and Future Works

This article has presented a novel formulation of the problem of fog computing
optimization with a multi-objective perspective. The covered objectives are the time
latency, the energy consumption with the energy distribution, the renting cost, and stability.
The multi-objective and the conflicting nature of the problem require adopting meta-
heuristic searching for solving it. However, due to the relatively high number of objectives,
different from the relevant existing studies in literature, this research has proposed a novel
hyper-angle genetic optimization. The role of the hyper angle is to prioritize solutions
within the same rank based on their best-accomplishing rank, which gives the algorithm
more exploitive capability. In addition, the article has adopted the concept of objective
decomposition by evaluating the approach on various sizes of sub-set of objectives for
the objective’s decomposition. Objective decomposition enables exploring the boundary
of the objective space before going to the intermediate region while searching. Such an
approach is crucial for the relatively large number of objectives. Furthermore, various
values of angle resolutions were used for the evaluation. It was found that the number of
sub-set of objectives while performing the objectives decomposition as well as the value of
the angle play an important role in the overall performance. The approach is limited in its
dependency on static parameters for both. Hence, our planned future work is to enable an
adaptive number of objectives, in which the value of the angle is investigated.

Author Contributions: Supervision: R.H.; validation: A.H.M.A.; visualization and writing—original
draft: T.-A.N.A.; review and editing: A.S.A.-K. and Q.N.N. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper is supported under grant Fundamental Research Grant Scheme FRGS/1/2018/T
K04/UKM/02/17 and Dana Impak Perdana UKM DIP-2018-040.

Sensors 2021, 21, 558 26 of 27

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, [RH], upon reasonable request.

Acknowledgments: The authors would like to acknowledge the support provided by the Network
and Communication Technology (NCT) Research Groups, FTSM, UKM in providing facilities through-
out this paper. The authors would also like to thank the Editor and the anonymous reviewers for
their valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Badii, C.; Bellini, P.; Difino, A.; Nesi, P. Sii-Mobility: An IoT/IoE architecture to enhance smart city mobility and transportation

services. Sensors 2019, 19, 1. [CrossRef]
2. Wu, F.; Wu, T.; Yuce, M.R. An internet-of-things (IoT) network system for connected safety and health monitoring applications.

Sensors 2019, 19, 21. [CrossRef] [PubMed]
3. Ibrahim, M.Z.; Hassan, R. The Implementation of Internet of Things using Test Bed in the UKMnet Environment. Asia Pac. J. Inf.

Technol. Multimed 2019, 8, 1–17. [CrossRef]
4. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming analytics: A survey. Ieee

Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]
5. Sadeq, A.S.; Hassan, R.; Al-rawi, S.S.; Jubair, A.M.; Aman, A.H.M. A Qos Approach For Internet Of Things (Iot) Environment

Using Mqtt Protocol. In Proceedings of the 2019 International Conference on Cybersecurity (ICoCSec), Negeri Sembilan, Malaysia,
25–26 September 2019; pp. 59–63.

6. Jia, M.; Yin, Z.; Li, D.; Guo, Q.; Gu, X. Toward improved offloading efficiency of data transmission in the IoT-cloud by leveraging
secure truncating OFDM. Ieee Internet Things J. 2018, 6, 4252–4261. [CrossRef]

7. Aman, A.H.M.; Yadegaridehkordi, E.; Attarbashi, Z.S.; Hassan, R.; Park, Y.-J. A survey on trend and classification of internet of
things reviews. Ieee Access 2020, 8, 111763–111782. [CrossRef]

8. Stergiou, C.; Psannis, K.E.; Kim, B.-G.; Gupta, B. Secure integration of IoT and cloud computing. Future Gener. Comput. Syst. 2018,
78, 964–975. [CrossRef]

9. Hassan, R.; Jubair, A.M.; Azmi, K.; Bakar, A. Adaptive congestion control mechanism in CoAP application protocol for internet of
things (IoT). In Proceedings of the 2016 International Conference on Signal Processing and Communication (ICSC), Noida, India,
26–28 December 2016; pp. 121–125.

10. Iyer, G.N. Evolutionary games for cloud, fog and edge computing—A comprehensive study. In Computational Intelligence in Data
Mining; Springer: Berlin/Heidelberg, Germany, 2020; pp. 299–309.

11. Cisco Systems. Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are; White paper; Cisco Systems:
Cisco San Jose, CA, USA, 2015.

12. Shabisha, P.; Braeken, A.; Steenhaut, K. Symmetric Key-Based Secure Storage and Retrieval of IoT Data on a Semi-trusted Cloud
Server. Wirel. Pers. Commun. 2020, 113, 1–17. [CrossRef]

13. Zhu, C.; Tao, J.; Pastor, G.; Xiao, Y.; Ji, Y.; Zhou, Q.; Li, Y.; Ylä-Jääski, A. Folo: Latency and quality optimized task allocation in
vehicular fog computing. Ieee Internet Things J. 2018, 6, 4150–4161. [CrossRef]

14. Bjerkevik, H.B.; Botnan, M.B.; Kerber, M. Computing the interleaving distance is NP-hard. Found. Comput. Math. 2019, 20, 1–35.
[CrossRef]

15. Wang, H.; Olhofer, M.; Jin, Y. A mini-review on preference modeling and articulation in multi-objective optimization: Current
status and challenges. Complex Intell. Syst. 2017, 3, 233–245. [CrossRef]

16. Han, D.; Li, Y.; Song, T.; Liu, Z. Multi-Objective Optimization of Loop Closure Detection Parameters for Indoor 2D Simultaneous
Localization and Mapping. Sensors 2020, 20, 1906. [CrossRef] [PubMed]

17. Mayer, M.J.; Szilágyi, A.; Gróf, G. Environmental and economic multi-objective optimization of a household level hybrid
renewable energy system by genetic algorithm. Appl. Energy 2020, 269, 115058. [CrossRef]

18. Albadr, M.A.; Tiun, S.; Ayob, M.; AL-Dhief, F. Genetic Algorithm Based on Natural Selection Theory for Optimization Problems.
Symmetry 2020, 12, 1758. [CrossRef]

19. Abdali, T.-A.N.; Hassan, R.; Muniyandi, R.C.; Mohd Aman, A.H.; Nguyen, Q.N.; Al-Khaleefa, A.S. Optimized Particle Swarm
Optimization Algorithm for the Realization of an Enhanced Energy-Aware Location-Aided Routing Protocol in MANET.
Information 2020, 11, 529. [CrossRef]

20. Mai, Y.; Shi, H.; Liao, Q.; Sheng, Z.; Zhao, S.; Ni, Q.; Zhang, W. Using the Decomposition-Based Multi-Objective Evolutionary
Algorithm with Adaptive Neighborhood Sizes and Dynamic Constraint Strategies to Retrieve Atmospheric Ducts. Sensors 2020,
20, 2230. [CrossRef]

21. Han, C.; Wang, L.; Zhang, Z.; Xie, J.; Xing, Z. A multi-objective genetic algorithm based on fitting and interpolation. Ieee Access
2018, 6, 22920–22929. [CrossRef]

22. Bao, C.; Xu, L.; Goodman, E.D.; Cao, L. A novel non-dominated sorting algorithm for evolutionary multi-objective optimization.
J. Comput. Sci. 2017, 23, 31–43. [CrossRef]

http://doi.org/10.3390/s19010001
http://doi.org/10.3390/s19010021
http://www.ncbi.nlm.nih.gov/pubmed/30577646
http://doi.org/10.17576/apjitm-2019-0802-01
http://doi.org/10.1109/COMST.2018.2844341
http://doi.org/10.1109/JIOT.2018.2875743
http://doi.org/10.1109/ACCESS.2020.3002932
http://doi.org/10.1016/j.future.2016.11.031
http://doi.org/10.1007/s11277-020-07230-4
http://doi.org/10.1109/JIOT.2018.2875520
http://doi.org/10.1007/s10208-019-09442-y
http://doi.org/10.1007/s40747-017-0053-9
http://doi.org/10.3390/s20071906
http://www.ncbi.nlm.nih.gov/pubmed/32235456
http://doi.org/10.1016/j.apenergy.2020.115058
http://doi.org/10.3390/sym12111758
http://doi.org/10.3390/info11110529
http://doi.org/10.3390/s20082230
http://doi.org/10.1109/ACCESS.2018.2829262
http://doi.org/10.1016/j.jocs.2017.09.015

Sensors 2021, 21, 558 27 of 27

23. Arslan, H.D.; Özer, G.; Özkiş, A. Evaluation of Final Product Integrated with Intelligent Systems in Architectural Education
Studios. Online J. Art Des. 2017, 5, 119.

24. Qu, D.; Ding, X.; Wang, H. An improved multiobjective algorithm: DNSGA2-PSA. J. Robot. 2018, 2018, 9697104. [CrossRef]
25. Cai, D.; Gao, Y.; Yin, M. NSGAII with local search based heavy perturbation for bi-objective weighted clique problem. Ieee Access

2018, 6, 51253–51261. [CrossRef]
26. Chen, X.; Liu, Y.; Li, X.; Wang, Z.; Wang, S.; Gao, C. A new evolutionary multiobjective model for traveling salesman problem.

Ieee Access 2019, 7, 66964–66979. [CrossRef]
27. Roy, P.C.; Islam, M.M.; Deb, K. Best order sort: A new algorithm to non-dominated sorting for evolutionary multi-objective

optimization. In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, Denver, CO, USA,
20–24 July 2016; pp. 1113–1120.

28. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. Ieee Trans. Evol..
Comput. 2002, 6, 182–197. [CrossRef]

29. Mkaouer, W.; Kessentini, M.; Shaout, A.; Koligheu, P.; Bechikh, S.; Deb, K.; Ouni, A. Many-objective software remodularization
using NSGA-III. Acm Trans. Softw. Eng. Methodol. (Tosem) 2015, 24, 1–45. [CrossRef]

30. Metiaf, A.; Wu, Q.; Aljeroudi, Y. Searching with direction awareness: Multi-objective genetic algorithm based on angle quantiza-
tion and crowding distance MOGA-AQCD. Ieee Access 2019, 7, 10196–10207. [CrossRef]

31. Mahmud, R.; Kotagiri, R.; Buyya, R. Fog computing: A taxonomy, survey and future directions. In Internet of Everything; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 103–130.

32. Sun, Y.; Lin, F.; Xu, H. Multi-objective optimization of resource scheduling in fog computing using an improved NSGA-II. Wirel.
Pers. Commun. 2018, 102, 1369–1385. [CrossRef]

33. Liu, L.; Chang, Z.; Guo, X.; Mao, S.; Ristaniemi, T. Multiobjective optimization for computation offloading in fog computing. Ieee
Internet Things J. 2017, 5, 283–294. [CrossRef]

34. Cui, L.; Xu, C.; Yang, S.; Huang, J.Z.; Li, J.; Wang, X.; Ming, Z.; Lu, N. Joint optimization of energy consumption and latency in
mobile edge computing for Internet of Things. Ieee Internet Things J. 2018, 6, 4791–4803. [CrossRef]

35. Zahoor, S.; Javaid, S.; Javaid, N.; Ashraf, M.; Ishmanov, F.; Afzal, M.K. Cloud–fog–based smart grid model for efficient resource
management. Sustainability 2018, 10, 2079. [CrossRef]

36. Rakshit, P. Memory based self-adaptive sampling for noisy multi-objective optimization. Inf. Sci. 2020, 511, 243–264. [CrossRef]
37. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. Ieee

Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]
38. Kleeman, M.P.; Seibert, B.A.; Lamont, G.B.; Hopkinson, K.M.; Graham, S.R. Solving multicommodity capacitated network design

problems using multiobjective evolutionary algorithms. Ieee Trans. Evol. Comput. 2012, 16, 449–471. [CrossRef]
39. Fonseca, C.M.; Fleming, P.J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A

unified formulation. Ieee Trans. Syst. Man Cybern.-Part A Syst. Hum. 1998, 28, 26–37. [CrossRef]
40. Kursawe, F. A variant of evolution strategies for vector optimization. In Proceedings of the International Conference on Parallel

Problem Solving from Nature, Edinburgh, Scotland, 17–21 September 2016; pp. 193–197.
41. Poloni, C. Hybrid GA for Multi Objective Aerodynamic Shape Optimisation; Genetic Algorithms in Engineering and Computer Science;

Winter, G., Periaux, J., Galan, M., Cuesta, P., Eds.; 1997; pp. 397–414.
42. Lin, J.C.-W.; Zhang, Y.; Zhang, B.; Fournier-Viger, P.; Djenouri, Y. Hiding sensitive itemsets with multiple objective optimization.

Soft Comput. 2019, 23, 12779–12797. [CrossRef]
43. Deb, K. Multi-Objective Optimization using Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2001; Volume 16.

http://doi.org/10.1155/2018/9697104
http://doi.org/10.1109/ACCESS.2018.2869732
http://doi.org/10.1109/ACCESS.2019.2917838
http://doi.org/10.1109/4235.996017
http://doi.org/10.1145/2729974
http://doi.org/10.1109/ACCESS.2018.2890461
http://doi.org/10.1007/s11277-017-5200-5
http://doi.org/10.1109/JIOT.2017.2780236
http://doi.org/10.1109/JIOT.2018.2869226
http://doi.org/10.3390/su10062079
http://doi.org/10.1016/j.ins.2019.09.060
http://doi.org/10.1109/4235.797969
http://doi.org/10.1109/TEVC.2011.2125968
http://doi.org/10.1109/3468.650319
http://doi.org/10.1007/s00500-019-03829-3

	Introduction
	Background and Literature Review
	MOO Algorithms
	Fog Computing Optimization

	Proposed Methodology
	Problem Formulation of Optimization and Fog Framework
	Hyper-Angle Exploitive Searching HAES
	Working Principle and the Difference between HAES and MOGA-AQCD
	Objectives Partitioning
	Algorithm of HAES

	Fog Computing Closed Loop Model (FCCL)
	Fog Interface
	Task Decomposer and Task Model
	Task Dispatcher
	Network Model
	Optimization Objectives

	Experimental Design and Parameters Setup
	Evaluation Metrics of HAES and FCCL
	Multi-Objective Mathematical Functions
	HAES Evaluation Based on FCCL Model

	Evolution and Enhanced Model Results
	HAES Experimental Investigation and Results
	FCCL Investigation and Results

	Conclusions and Future Works
	References

