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Abstract
Lamins are major components of the nuclear lamina, a network of proteins that
supports the nuclear envelope in metazoan cells. Over the past decade,
biochemical studies have provided support for the view that lamins are not
passive bystanders providing mechanical stability to the nucleus but play an
active role in the organization of the genome and the function of fundamental
nuclear processes. It has also become apparent that lamins are critical for
human health, as a large number of mutations identified in the gene that
encodes for A-type lamins are associated with tissue-specific and systemic
genetic diseases, including the accelerated aging disorder known as
Hutchinson-Gilford progeria syndrome. Recent years have witnessed great
advances in our understanding of the role of lamins in the nucleus and the
functional consequences of disease-associated A-type lamin mutations. Many
of these findings have been presented in comprehensive reviews. In this
mini-review, we discuss recent breakthroughs in the role of lamins in health and
disease and what lies ahead in lamin research.
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Lamins and the nuclear lamina
Lamins are members of the family of intermediate filaments that  
are largely but not exclusively localized to the nuclear lamina, a 
multiprotein mesh structure found on the inner side of the nuclear 
membrane of most metazoan cells1–4. Mammalian cells have two 
types of lamins: A-type lamins, which are expressed in most termi-
nally differentiated cells, and B-type lamins, which are expressed 
in most or all somatic cells (Figure 1). A-type lamin A and C are 
encoded by the LMNA gene and generated by alternative splicing, 
whereas B-type lamin B1 and B2 are encoded by two separate 
genes: LMNB1 and LMNB2. Short lamin C2 and lamin B3 isoforms 
encoded by the LMNA and LMNB2, respectively, are expressed only 
in gametes5,6. Two minor isoforms of lamin A (Δ10) and lamin C 
(C2) have also been identified, but their function and regulation are 
not yet fully understood3. Lamin A, B1, and B2, but not lamin C, 
have a carboxy-terminal CaaX motif (C is cysteine, a is an aliphatic 
amino acid, and X is any amino acid) that undergoes sequential 
cysteine farnesylation, aaX cleavage, and carboxy methylation. 
Whereas these modifications are permanent on lamin B1 and B2, 
lamin A is synthesized as a prelamin A precursor that undergoes 
an additional processing step catalyzed by the Zn metallopepti-
dase STE24 (ZMPSTE24) that removes the carboxy-terminal  
15-amino-acid tail, including the modified cysteine to generate 
mature lamin A. Farnesylation is thought to strengthen the associa-
tion of B-type lamins with the inner nuclear membrane, while the 
lack of this modification in lamin A and C allows these lamins to be 
more loosely associated with the nuclear envelope and also occupy 
the nucleoplasmic space. Lamins are believed to provide a frame-
work that supports the assembly and stability of the nuclear envelope  
and contributes to nuclear shape and mechanotransduction1,2,7,8. 
Moreover, a growing body of research has provided compelling 
evidence that lamins make significant contributions to the dynamic 
organization and function of the genome1–4,9. Determining the  
function of lamins is of critical importance for human health 
because of the large number of mutations identified across the 

LMNA gene that are associated with a class of human disorders, 
collectively known as laminopathies, whose clinical symptoms 
include skeletal or cardiac muscular dystrophy, lipodystrophy, 
dysplasia, dermopathy, neuropathy, leukodystrophy, and accel-
erated aging9,10. The discovery in 2003 that Hutchinson-Gilford  
progeria syndrome (HGPS), a rare premature aging disease that 
affects children, is caused by a de novo LMNA mutation that leads 
to impaired processing of prelamin A and the production of a per-
manently farnesylated mutant lamin A protein termed progerin11,12 
has led to an escalation in lamin research with the hope of finding 
a cure for this devastating disease. Expression of progerin causes 
severe cellular defects that affect nuclear morphology, chromatin 
organization, telomere length homeostasis, DNA repair, nucleo-
plasmic transport, and redox homeostasis13–17. Recent studies 
have provided critical information on the contribution of lamins 
to nuclear mechanics and the spatial organization of the nucleus 
(Figure 2) and provided considerable experimental evidence for 
the hypothesis that lamin A mutations disrupt processes that are 
critical for nucleocytoplasmic mechanotransduction, nuclear  
positioning, chromatin organization and function, and responses to 
stress.

Lamins in nuclear mechanobiology
The nucleus plays a critical role in the response to mechanical  
forces, and new research adds to a growing body of evidence  
implicating lamin A/C and the linker of nucleo-skeleton to 
cytoskeleton (LINC) complexes, which bridge the nuclear lamina 
to the cytoskeleton, in tissue adaptation to mechanical forces7,8,18.  
Lamins form high-molecular-weight structures, and high-resolution  
microscopy data have revealed that A- and B-type lamins are  
organized in a distinct but interdependent meshwork of fibrils19. 
Each of these structures is likely to contribute to maintaining the 
organization of the nuclear lamina and the shape of the nucleus. 
Yet the observation that depletion of lamin A/C increases nuclear 
deformability in response to mechanical stress suggests that lamin 

Figure 1. Major A-type and B-type lamins in mammals. Prelamin A, lamin B1, and lamin B2 contain a carboxy-terminal CaaX motif (CSIM 
in human prelamin A, CAIM in lamin B1, and CYVM in lamin B2; C is cysteine, S is serine, I is isoleucine, M is methionine, A is alanine, Y is 
tyrosine, and V is valine) which is modified by farnesylation. This is followed by proteolysis of the aaX residues and carboxy methylation at the 
C-terminal end of lamin A, B1, and B2. Prelamin A undergoes further processing to remove the carboxy-terminal 15 amino acids, including 
the farnesylated and carboxy methylated cysteine to generate mature lamin A. In Hutchinson-Gilford progeria syndrome cells, the second 
cleavage site in prelamin A is deleted, and this results in the accumulation of a permanently farnesylated and carboxy methylated prelamin A 
variant termed progerin. Terminal cleavage of prelamin A is catalyzed by the zinc metallopeptidase ZMPSTE24, an enzyme that has recently 
been implicated in clearing proteins through clogged endoplasmic reticulum translocon channel98.

Page 3 of 10

F1000Research 2016, 5(F1000 Faculty Rev):2536 Last updated: 19 OCT 2016



A/C fibrils play a prominent role in regulating the stiffness and elas-
ticity of the nucleus20,21. Consistent with these data, differences in 
lamin A/C expression leading to changes in lamin A/C-to-B ratio 
have been demonstrated across distinct cell types, with higher 
lamin A/C levels observed in cells of tissues often subjected to 
mechanical torsion, including muscle and heart22. Variations in the  
lamin A/C-to-lamin B ratio have also been observed during  
hematopoiesis23, and it is likely that changes in lamin A/C expression 
affect nuclear stiffness in cancer cells, which may contribute to path-
ological outcomes, including metastasis24. A recent study has also 
identified force-dependent changes in lamin A/C conformation25,  
suggesting that other mechanisms of lamin A regulation contrib-
ute to adjusting nuclear shape in response to stress. Research on 
lamin A/C mutations linked to Emery-Dreifuss muscular dystro-
phy (EDMD) and dilated cardiomyopathy (DCM) further under-
scores a role of lamin A/C in nuclear mechanics26–28. These studies  
demonstrated that several disease-causing mutations compromise 
the stiffness of the nucleus and the integrity of the nuclear enve-
lope, including the nuclear pore complex, in cells of the affected  
tissues. Remarkably, a recent report showed that muscle structure 
and function in an animal model of EDMD with tissue-specific  
alterations in nuclear mechanics are returned to normal by gene 
inactivation of the enzyme responsible for protein prenylation29. 
Although the precise mechanism underlying this observation 
remains to be determined, it is possible that changes in the prop-
erties, physical interactions, or high-order structure formed by 
unfarnesylated lamin B confers protection against tissue-specific 
mechanical stress in this animal model. It is important to point out 
that not all LMNA gene mutations linked to EDMD or DMC, nor 
mutations associated with familial partial lipodystrophy, result in 
nuclear fragility27,29, suggesting that distinct mechanical properties 
or nuclear functions are affected by different lamin A mutations.

Lamins in chromatin structure and spatial 
organization of the genome
Within the past few years, efforts have been directed at better under-
standing the relationship between lamins and genome organization 
and stability. Both A- and B-type lamins bind DNA in vitro30 and 
associate with chromatin in vivo2,31, and their loss affects genome 
integrity32–34. Analysis of chromatin-lamin interactions using an 
in vivo tagging approach (DNA adenine methyltransferase iden-
tification, or DamID)35,36 demonstrated that lamins make dynamic 
contacts with large regions of chromatin, which have been termed 
lamina-associated domains (LADs), adjacent to the nuclear  
lamina. These domains are enriched in repressive histone markers,  
including dimethylated H3K9 and trimethylated H3K27, sug-
gesting that LADs represent a repressive chromatin environment. 
In spite of these findings, the role of lamins in the formation of 
LAD remains unclear. A recent study has indicated that lamin C is 
sufficient for LAD formation at the nuclear lamina37, and another 
has questioned the need of any lamin for the formation of these 
domains38. Interestingly, whereas the DamID studies suggested a 
very high degree of concordance between lamin A/C- and lamin  
B-associated chromosome domains, recent work using a chromatin- 
immunoprecipitation approach has identified a subpopulation of 
lamin A/C that interacts with active regions of chromatin, in coor-
dination with the lamin-associated factor LAP2α39. These are likely 
interactions that occur within the nucleoplasmic space away from 
the nuclear lamina since LAP2α colocalizes with lamin A/C within 
the nuclear interior40,41. Importantly, both LAP2α levels and the 
nucleoplasmic pool of lamin A/C are dramatically reduced in the 
presence of the lamin A mutant progerin42,43, and these changes 
are thought to influence processes that are critical for cell prolif-
eration. The conclusion of this and other recent studies on this topic 
is that a tight balance between lamin A/C and LAP2α must be  

Figure 2. Lamins influence the mechanical properties of the nucleus and contribute to genome organization, function, and stability. 
Lamins have roles that support various aspects of nuclear structure and function. Lamins provide mechanical strength to the cell nucleus 
and contribute to cellular mechanotransduction. Lamins influence the nucleoplasmic environment and contribute to shaping the spatial 
organization of the genome. Lamins influence genome function and stability by contributing, through interactions with various nuclear factors, 
to the epigenetic regulation of chromatin, DNA replication and repair, and gene transcription.
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maintained to ensure proper cell function, although how this is 
achieved remains to be worked out. Other studies have also demon-
strated that lamins, together with other components of the nuclear 
lamina termed nuclear envelope transmembrane proteins (NETs), 
contribute to tissue-specific organization of the genome and influ-
ence gene expression by securing peripheral heterochromatin to the 
nuclear lamina and repositioning genes within the nucleus during 
cell differentiation44,45. The NET lamin B receptor (LBR) has also 
been recently implicated in the recruitment of the X chromosome 
to the nuclear lamina to promote X-inactive-specific transcript  
(Xist)-mediated gene silencing46. Taken together with the observa-
tion that muscle-specific chromatin reorganization is disrupted in 
an animal model of EDMD28, these findings suggest that altered 
spatial organization of heterochromatin or incorrect positioning of 
genes contributes to the development of tissue-specific patholo-
gies in at least a subset of the diseases that have been linked to  
mutations in lamins or NETs.

Lamin A and the mutant progerin have been shown to differen-
tially influence the stability and spatial localization of epigenetic  
regulators of chromatin structure31,47, and several studies have 
reported a gradual decrease in peripheral heterochromatin and  
global loss of several histone markers of heterochromatin in  
progerin-expressing cells48–52. However, a recent study has added 
a twist to this story by showing that increased levels of the  
heterochromatic histone modification trimethyl H3K9 contribute  
to the development of the progeroid phenotype53. The authors  
demonstrated a direct interaction between lamin A and SUV39h1, 
a chromatin modifier that is responsible for H3K9me3. Progerin 
also binds SUV39h1, albeit more tightly than lamin A, which 
results in increased levels of H3K9me3 in progeria cells. This is an  
unanticipated result that differs from other studies. A clarification 
of the type of epigenetic changes caused by progerin requires fur-
ther investigation, but it is possible, as suggested by the authors 
of this study, that the decreased heterochromatinization reported 
by others reflects an in vitro cell passage-dependent effect rather 
than an in vivo process. The concept that progerin disrupts lamin  
A-protein interactions that locally influence chromatin organiza-
tion is supported by another recent study54. In this work, lamin A 
is shown to recruit chromatin modifiers through interactions with 
barrier-to-autointegration factor (BAF), a family of proteins that 
are thought to mediate interactions between various factors and  
chromatin55. As seen with SUV39h1, progerin binds stronger  
than lamin A to BAF and this interaction results in BAF mislo-
calization, leading to epigenetic changes that alter chromosome  
organization and are likely to contribute to cell dysfunction.

Lamins in the regulation of nuclear processes
Fundamental nuclear processes such as transcription, replication, 
and DNA repair are tightly connected to the spatial organization 
of the genome and their function relies on the timely recruitment 
of specific factors to the proper chromosome locations. Recent 
studies have suggested that progerin disrupts these processes by 
preventing the recruitment of specific factors to their target site. 
One example is sirtuin 6 (SIRT6), a protein involved in multiple 
processes related to genomic stability, stress resistance, telomere 
maintenance, and energy homeostasis56. A study has shown that 
both lamin A and progerin bind SIRT6, but a stronger interaction 

with progerin results in SIRT6 sequestration to the nuclear lamina, 
which prevents SIRT6 from relocalizing to sites of DNA damage. 
Taken together with prior data showing that progerin affects the 
function of other DNA repair factors16, these results underscore the 
significant hurdle imposed by this mutant lamin A on the pathways 
that maintain genome integrity. Intriguingly, SIRT6 also plays a 
role in the recruitment to telomeres of the Werner syndrome protein 
(WRN)57, a protein whose loss-of-function mutations cause genetic 
instability leading to an adult-onset type of progeria58. Although it 
is not known whether WRN function is affected in cells express-
ing progerin, it is possible that mislocalization of SIRT6 prevents 
WRN recruitment to telomeres, and this may contribute to telomere  
dysfunction in HGPS cells. Unfortunately, overexpression of SIRT6 
is not sufficient to rescue progeria cell dysfunction, thus limiting  
the usefulness of potential SIRT6-based therapeutic interventions59.

In support of the idea that sequestration by progerin is a major 
mechanism leading to cell dysfunction, it has recently been reported 
that progerin binds NRF2, a transcription factor that regulates the 
expression of genes involved in maintaining redox homeostasis60, 
and relocates it to the nuclear lamina61. Oxidative stress, which 
has been linked to defective nucleocytoplasmic transport and is 
likely contributing to persistent DNA damage in HGPS cells62–66, 
appears to be a central factor in the pathophysiology of progeria. 
Since ectopic expression of constitutively active NRF2 ameliorates 
several of the cellular defects of progeria cells, deregulation of 
NRF2 function has been suggested to be a primary driver of accel-
erated aging. Although it is unclear how constitutively active NRF2 
escapes sequestration to the nuclear lamina by progerin, these  
findings suggest that therapeutic approaches that restore NRF2 
function may be beneficial to patients with HGPS. Deregulation 
of NRF2 has also been observed in cells from muscular dystrophy 
patients expressing certain missense lamin A mutants that tend  
to mislocalize to the cytoplasm67. However, this study reported 
activation rather than repression of NRF2 in these cells through a 
mechanism that does not involve lamin A binding.

Therapeutic approaches to Hutchinson-Gilford 
progeria syndrome
Translation of basic science findings into therapeutic approaches 
is the uttermost goal of biomedical research. In this regard, the 
Progeria Research Foundation (http://www.progeriaresearch.org), 
a non-profit organization founded by the parents of a child with 
HGPS, has been influential in raising awareness and funds for 
research on finding a cure for this disease, and these efforts have 
contributed significantly to the large increase in lamin A research 
during the last decade. The cellular toxicity of partially processed 
prelamin A mutants like progerin is due primarily to the presence 
of the farnesyl group at the carboxy-terminal cysteine. Drugs that 
inhibit protein farnesyl transferase (farnesyl transferase inhibitors, 
or FTIs) have been shown to improve the cellular phenotype of  
progeria cells and ameliorate the pathology of mouse models of  
the disease68–79. FTIs may also hold therapeutic potential for patients 
carrying EDMD-linked mutations29. Driven by these findings,  
the Progeria Research Foundation sponsored a single-arm clinical 
trial using the FTI lonafarnib and reported improvements in weight 
gain, bone structure, and the cardiovascular system of patients with 
progeria80. However, FTIs are far from being a cure for progeria 
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and better drugs are urgently needed. Since then, a new clinical trial 
using pharmacological inhibitors of the mevalonate biosynthetic 
pathway (pravastatin, zoledronic acid, and lonafarnib) has been 
under way, and preliminary findings have just been published81. 
They indicate that even though the three-drug regimen improves 
bone size and mineral density, no additional benefit over the  
one-drug treatment is observed in cardiovascular structure and 
function. Small molecules that reduce the accumulation of pro-
gerin (that is, rapamycin) or influence the microtubule network 
(that is, remodelin) have recently been shown to have beneficial 
effects in tissue culture models of progeria82–84, and they offer new 
opportunities for therapeutic intervention. Rapamycin may have a  
therapeutic effect on other laminopathies, since temsirolimus, a 
rapamycin analog, has been shown to counteract the deterioration 
of cardiac function in a murine model of cardiomyopathy caused 
by a lamin A mutation85. Future studies in animal models will  
be crucial to better understand the efficacy and usefulness of these 
and other new drugs in treating patients with LMNA mutations.

Future challenges
The number of articles published on lamins has grown exponen-
tially during the last few years, and tremendous progress has been 
made in understanding the biological properties of these proteins 
and lamin A mutants associated with disease. In spite of this gained 
knowledge, a number of challenges remain. More studies are  
needed to better understand the relative contributions of lamin A 
and lamin C to the dynamic spatial organization of the genome in 
different cell types during development and differentiation. The 
potential role of lamins in organizing transcription or replication 
units and DNA damage repair foci needs to be further explored, and 
future investigations are expected to provide important insights on  
these topics. Relatively little is known about the molecular mecha-
nisms of tissue-specific disorders caused by LMNA missense muta-
tions that do not affect prelamin A processing. A study in cells from 
a mouse model of DCM has recently shown that expression of a 
missense mutant N195K-lamin A (N195K) impairs nucleocytoplas-
mic shuttling of a key factor in cardiac development86. These results 
suggest that a single amino acid change in the lamin A polypeptide 
induces structural alterations that influence the intracellular distri-
bution and function of a cell-type-specific factor. In a new report, 
two missense LMNA mutations linked to muscular dystrophy  
(R453W and R482W) have been shown to disrupt LAD and alter 
heterochromatin organization during myogenic differentiation87. 
These findings strengthen the idea that lamin A/C contributes 
to the spatial and structural remodeling of chromatin that takes 
place during cell differentiation. There are hundreds of mutations 
in the LMNA gene known to be associated with tissue-specific  

diseases9. Thus, one may speculate that at least some of these 
mutations cause tissue-specific defects by affecting the localiza-
tion or subcellular distribution of factors that, by regulating cell-
type-specific regulatory genes or pathways, orchestrate the spatial 
organization and function of the nucleus. There is also more to 
learn about the functions of lamin B1 and B2, which, in spite of 
the high degree of sequence conservation, do not seem to be func-
tionally redundant88,89. There is strong evidence that B-type lamins 
are required for DNA replication, and recent work has identified 
a specific role for lamin B1 during the elongation phase of this  
process32,90–92. Both lamin B1 and B2 have also been implicated 
in neuronal migration and survival, and altered distribution of the 
nuclear pore complex has been observed in lamin B1-deficient  
cortical neurons93–97. This defect has been suggested to affect  
nucleocytoplasmic shuttling of certain factors97, which is reminis-
cent of the cellular defect caused by the lamin A mutation asso-
ciated with DCM discussed above86. These are findings that bring 
excitement as well as challenges to an area of research that is  
predicted to expand further over the next several years.
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