
HUMAN NEUROSCIENCE

A major goal of Brodmann was to elucidate the evolutionary 
background of structural differentiation in the cortex. Hence, in 
his monograph (for an English translation see Garey, 2006) he 
published cytoarchitectonic maps of the cortex of Homo sapiens 
and eight other mammals ranging from insectivores (Erinaceus 
europaeus or hedgehog) to non-human primates (Cercopithecus or 
guenon). He found that some cortical areas, e.g., areas 4, 1, and 17 
are present in almost all species examined, whereas other regions 
in the frontal, posterior parietal, or temporal cortex increasingly 
differentiate and new areas emerge as one ascends the evolutionary 
tree. In the human cortex, Brodmann defined 11 Hauptregionen 
(regions), each of which was subdivided into a varying number 
of Einzelfelder (areas). They were numbered consecutively from 1 
to 52. However, there are two gaps in the sequence: areas 12, 13, 
14–16, and 48–51 were defined in lower mammals and non-human 
primates, but they are missing in humans. This results in 43 areas 
in the human cortex.

Brodmann’s map has become a “classic” in the field of neuro-
biology. His ideas provided the basis for the concept of “localiza-
tion” of function in the cerebral cortex – in sharp contrast to the 
“holistic” way of viewing brain functions (i.e., higher-level cog-
nitive abilities are functions of the entire brain and not of single 
cortical areas or modules). Despite many advances in neuroscience, 
Brodmann’s nomenclature of cortical areas is still widely used to 
designate functional regions in the cortex, e.g., area 4 for primary 
motor or area 17 for primary visual cortex. As to the functional 
validity of Brodmann areas, it is important to note that cytoarchi-
tectonic borders between these areas are also faithfully reflected 
on a neurochemical level, i.e., within the domain of synaptic 
processing. Binding sites of “classical” neurotransmitters (e.g., 
acetylcholine, noradrenaline, glutamate, GABA), detected with 
quantitative in vitro receptor autoradiography (Zilles et al., 2002), 
a technique developed in the second half of the twentieth century 

Around the turn of the twentieth century, several  neuroanatomists, 
among them Alfred Walter Campbell, Grafton Elliot Smith, 
Korbinian Brodmann, and Cécile and Oskar Vogt, set out to 
study the microanatomy of the human cerebral cortex. They 
noticed that the laminar architectonic pattern of neurons in prep-
arations stained for cell bodies (e.g., with the Nissl technique) 
and/or the arrangement of tangentially and radially oriented 
myelinated fibers in preparations stained for myelin sheaths 
(e.g., with the Weigert technique) are not uniform across the 
cerebral cortex. Instead, there are marked regional variations. 
This allowed the delineation of cortical areas, characterized by 
a uniform cyto- or myeloarchitectonic pattern, and the defi-
nition of borders where the pattern changes. Among the first 
who investigated the functional significance of these areas were 
Cécile and Oskar Vogt who also studied the cortex of non-human 
primates. In laboratory animals, microstructure can be directly 
correlated with function since upon completion of the functional 
experiments (electrical stimulation of the cortex at that time) 
the brains can be sectioned, stained for cell bodies or myelin 
sheaths, and stimulation sites compared with the architectonic 
pattern. Vogt and Vogt (1919) found that stimulation sites with 
comparable motor response properties lie within the same area. 
However, across an architectonic border, the response properties 
change – first evidence that these areas are also functional enti-
ties. Among several cytoarchitectonic maps of the human cortex 
published in the first half of the twentieth century (Campbell, 
1905; Brodmann, 1909; von Economo and Koskinas, 1925; Bailey 
and von Bonin, 1951; Sarkissov et al., 1955), Brodmann’s map 
became the most famous parcellation. In 1909 he published his 
findings in a comprehensive monograph entitled Vergleichende 
Lokalisationslehre der Großhirnrinde (Treatise on Comparative 
Localization in the Cerebral Cortex; see also Annese, 2009; Zilles 
and Amunts, 2010).
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and many years after Brodmann’s death, exhibit marked laminar 
and regional variations in their cortical distribution patterns. It 
has often been shown that borders defined by regional changes in 
these laminar binding patterns precisely match cytoarchitectonic 
“Brodmann borders” in adjacent sections stained for cell bodies, 
e.g., in the motor cortex (Geyer et al., 1996), premotor cortex 
(Zilles et al., 1996), cingulate cortex (Palomero-Gallagher et al., 
2008), Broca’s region (Amunts et al., 2010), somatosensory cortex 
(Geyer et al., 1997), parietal cortex (Zilles and Palomero-Gallagher, 
2001; Scheperjans et al., 2005), auditory cortex (Morosan et al., 
2005), and visual cortex (Zilles et al., 2004; Eickhoff et al., 2008; 
Zilles and Amunts, 2009). This means that not only does cellular 
microanatomy change at these “Brodmann borders,” but so too 
does the entire organization of synaptic wiring and information 
processing. It is not surprising that Brodmann’s map has found 
its way into the world of functional neuroimaging. Talairach and 
Tournoux (1988, 1993) when establishing their stereotaxic ref-
erence system for spatially normalizing imaging data, adopted 
Brodmann’s nomenclature for parcellating the cortex of their 
standard brain in “Talairach Space.”

However, from today’s state-of-the-art neuroimaging perspec-
tive, several major problems arise when an investigator wants 
to use the map as a structural guide to functional units in the 
cerebral cortex.

Firstly, more sensitive microstructural mapping techniques 
developed since Brodmann’s time, e.g., neurofilament protein 
immunohistochemistry (Baleydier et al., 1997) or in vitro trans-
mitter receptor autoradiography (Zilles et al., 2002) have revealed 
functionally relevant subregions within many of the areas consid-
ered by Brodmann to be homogeneous. For example, area 19 is 
actually a mosaic of different regions belonging to the extrastriate 
visual cortex (Orban et al., 2004; Wandell et al., 2007). Likewise, 
area 6 is nowadays subdivided into the supplementary, presup-
plementary, dorsal, and ventral premotor cortex (Rizzolatti et al., 
1998; Geyer et al., 2000).

Secondly, Brodmann’s book – in contrast to, e.g., von Economo 
and Koskinas’s (1925) monograph – does not provide system-
atic verbal or pictorial descriptions of each area’s cytoarchitec-
tonic features. In many instances, he only briefly comments on 
their topographic locations. The map shows each area’s location 
and extent only on the exposed cortical surface, the sulci are 
not opened up, and no information is available on each area’s 
topography within each sulcus. Hence, it is very difficult to com-
pare Brodmann’s map with those of other authors and virtually 
impossible to re-map his areas in histological sections stained 
for cell bodies.

Thirdly, “classical” brain maps such as Brodmann’s parcel-
lation were published in two-dimensional print format. This 
raises problems when structural data from these maps are to be 
matched with data from other brains. “Classical” maps are sche-
matic drawings that reflect the topographical situation in one brain 
and do not address the problem of interindividual variability. 
Furthermore, these maps are “rigid,” i.e., they are not based on 
a spatial reference system and cannot be warped to other brains. 
Multimodal integration of structural and functional data is impos-
sible. Although software programs that are capable of inflating  

and/or  flattening the cortex are available nowadays, e.g., FreeSurfer1, 
Caret2, or BrainVoyager3, the above problems with Brodmann’s 
map remain.

On the other hand, functional imaging techniques, espe-
cially functional magnetic resonance imaging (fMRI), map the 
cortex with ever-increasing spatial resolution, but they have so 
far correlated activations only with macroanatomy (gyri and 
sulci). Invasive electrophysiology in experimental animals (e.g., 
macaques), however, shows functional borders where micro-
anatomy changes (e.g., Luppino et al., 1991; Matelli et al., 1991). 
Unfortunately, microanatomy is topographically variable across 
brains (Rademacher et al., 1993; Geyer et al., 1996, 1999; Amunts 
et al., 1999, 2000; Caspers et al., 2006) and hard to detect with 
MRI. Hence, structural–functional correlations based solely on 
macroanatomy are questionable and may account for at least some 
of the conflicting results functional imaging studies have provided 
in the past. Talairach and Tournoux’s (1988, 1993) atlas is of lim-
ited value as well. The authors adopted Brodmann’s nomenclature 
of areas, but their cortical maps are not based on microstructural 
data. In addition, the atlas indicates only the approximate posi-
tion of each area (borders between areas are not marked) and 
it ignores the problem of interindividual variability (only one 
brain is depicted).

One way to overcome this dilemma is to generate proba-
bilistic cytoarchitectonic maps in standard anatomical (e.g., 
Montreal Neurological Institute, MNI) space (Roland and Zilles, 
1994). Cortical areas are defined cytoarchitectonically in post-
mortem brains, reconstructed in 3-D, and spatially normalized. 
Superimposing data from 10 brains gives a probabilistic description 
of each area’s spatial variability. In this format, the areas can be 
matched with co-registered functional imaging data. However, due 
to the small size of many cortical areas, their close spatial proximity, 
and interindividual variability, the population maps overlap con-
siderably. Only after extensive thresholding (i.e., considering only 
voxels above a certain probability level) – and thus discarding struc-
tural information – is it possible unequivocally to assign a given 
voxel in standard space to a particular population map (or cortical 
area). Furthermore, the invasive nature of microanatomical studies 
precludes microstructure and function to be studied in the same 
brain – such correlations can only be probabilistic in nature.

More recent approaches aim at mapping cortical areas non-
invasively in living human brains. One line of research uses cortical 
folding patterns to estimate the topography of Brodmann areas in 
individual brains (Fischl et al., 2008, 2009; Hinds et al., 2008, 2009). 
In general, the predictability of Brodmann areas from cortical folds 
is high in the case of primary areas (e.g., motor cortex = area 4 or 
visual cortex = area 17), but goes down in the case of higher order 
cortical areas (e.g., Broca’s region = areas 44 and 45; Fischl et al., 
2008). Another approach uses differences in connectivity patterns 
to delineate cortical areas. Diffusion-weighted MRI combined with 
probabilistic tractography measures such connectivity patterns 
in living subjects, and, with an automatic clustering algorithm, 

1http://surfer.nmr.mgh.harvard.edu
2http://brainvis.wustl.edu/wiki/index.php/Caret:About
3http://www.brainvoyager.com/
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For unknown reasons, this fact, self-evident to radiologists 
and MR scientists, has barely been linked with the problem of 
in vivo parcellation of human cerebral cortex. Since the first in vivo 
MRI observation of the Stria of Gennari in primary visual cortex, 
by Clark et al. (1992), there have been only a few careful stud-
ies of the intracortical structure (Barbier et al., 2002; Walters 
et al., 2003; Bridge et al., 2005; Clare and Bridge, 2005; Bridge 
and Clare, 2006; Carmichael et al., 2006; Sigalovsky et al., 2006; 
Duyn et al., 2007; Hinds et al., 2008; Turner et al., 2008; Kim et al., 
2009) often observed incidentally in high-resolution scans. One 
major reason for this is the considerable difficulty in achieving 
sufficient MRI signal to noise in vivo with isotropic voxels of 
<0.6 mm size (Hinds et al., 2008), which is required adequately 
to map the 3-dimensional extent of any cortical area with a dis-
tinguishable myeloarchitecture. Only now, with well-engineered 
scanners at 7 T or more, has it become feasible within a practi-
cable scan time.

In Figure 1 we show an example of microstructural 7 T map-
ping in a post-mortem brain. The tissue block includes portions 
of the pre- and post-central gyrus, which contains the border 
between primary motor (M1) and primary somatosensory cortex 
(S1). Together with a photograph of the block before MR scan-
ning and histological processing (Figure 1A), we show an MRI 
(Figure 1B), a myeloarchitectonic (Figure 1C), and a cytoar-
chitectonic (Figure 1D) section that reproducibly display this 
border at the expected position, somewhat anterior to the fun-
dus of the central sulcus. The MR scan provides a quantitative 
map of the longitudinal relaxation time T1, which is reliably 
reduced in areas of higher myelin density. In these images, it 
is very easy to discriminate the more densely myelinated layers 
of primary motor cortex, and to note its greater thickness than 
corresponding somatosensory cortex. This figure demonstrates 
the ability of 7-T MRI to resolve local cortical myeloarchitecture, 
and precisely to depict cortical boundaries. In Figure 2 we show 
examples of microstructural 7-T MRI in living human brains. 
Corresponding to the cadaver brain section of Figure 1B, a T1 
map in a coronal section through the central sulcus of a volunteer 
subject is shown in Figure 2A, with isotropic spatial resolution of 
600 μm. Although this spatial resolution is inevitably coarser than 
in cadaver brain (330 μm), the difference in cortical thickness 
between Brodmann areas 3a and 4 is clearly visible, the enhanced 
myelination of the layers of area 4 is easily seen, and the border 
between areas 3a and 4 is easily delineated. Figure 2B shows 
FLASH MR images with 400 μm isotropic resolution, in two 
orthogonal sections which include most of the occipital cortex 
of a volunteer subject. These images show myelinated structures 
with excellent T2* contrast. The Stria of Gennari, which identi-
fies primary visual cortex, is strikingly visible in both planes of 
section, due to the use of isotropic voxels (Turner et al., 2008). 
A 600-μm isotropic resolution T1-weighted volumetric data set 
(not shown) was used to segment gray and white matter, and 
cortical profiles with realistic curvature were derived using a 
level-set method. The image intensity values at equidistant points 
on these profiles were formed into feature vectors for each point 
on the gray-white boundary surface. These feature vectors were 
then subjected to an automatic clustering algorithm, with the 

 cortical regions can then be identified with internally coherent but 
 mutually distinct connectivity (Johansen-Berg et al., 2004; Behrens 
and Johansen-Berg, 2005; Anwander et al., 2007; Johansen-Berg and 
Rushworth, 2009). The technique, however, is region of interest 
(ROI)-based (whose voxels are fed into the clustering algorithm) 
which means that the neuroanatomical validity of the parcellation 
result is greatly dependent on the validity of the ROI borders (which 
are not based on microanatomical criteria).

In recent years, however, two observations have been made which 
should result in a clearer picture of the organization of individual 
human brains, thereby opening up exciting questions of the correla-
tion of structure and function (Crick and Jones, 1993; Passingham 
et al., 2002; Devlin and Poldrack, 2007). The first of these is the 
dramatic improvement in the quality of in vivo MRI scanning of 
human brain, by increasing the magnetic field to 7 T and by using a 
much more sensitive design of radiofrequency receiver coil, involv-
ing coil arrays (Roemer et al., 1990) to detect the MRI signal. This 
provides an increase in signal-to-noise ratio by a factor of >10, 
as compared with 1.5-T MRI scanning, and thus allows relatively 
routine 10-min acquisition of whole-brain images with a spatial 
resolution of only 300–400 μm, easily showing significant features 
of intracortical microstructure.

The second of these relates to what has become a poor rela-
tion of Brodmann’s cytoarchitectonic approach to cortical map-
ping, the analysis of cortical areas based on myeloarchitecture. 
Historically, Brodmann’s colleagues, the Vogts, favored this 
type of analysis, and it was perhaps their erroneous concept of 
“haarscharfe Grenzen” (i.e., interareal borders as sharp as a hair) 
that caused their work to fall almost into obscurity. Be this as it 
may, very little histological work has been done ever since in the 
frontal (Sanides, 1964; Rajkowska and Goldman-Rakic, 1995a,b), 
parietal (Hopf, 1969, 1970), temporal (Hopf, 1968; Krimer et al., 
1997), and occipital (Clarke and Miklossy, 1990) cortex in explor-
ing the striking variations of myelin structures within human 
cortex, beyond noting that they are very well correlated with the 
much better researched cytoarchitectonic maps. A cursory glance 
at myelin-stained sections through any region of human cerebral 
cortex reveals that myeloarchitectonic differences between areas 
are not subtle.

This relative neglect of myeloarchitectonic cortical parcellation 
is particularly striking in the light of the second observation: that 
almost all types of MR image contrast variously depend on the 
presence of myelin within the image voxel. Variations of cytoar-
chitecture are detectable with MRI only in rare instances, e.g., in 
the case of the unique islands of large neurons in layer II of the 
entorhinal cortex (Augustinack et al., 2005), but myelin is very easy 
to pick out. It is the major source of contrast in T1-weighted and 
proton density images, and is responsible for T2 and T2* contrast 
in most of the brain, except for the small deep brain structures 
naturally containing sequestered ferritin, such as the basal ganglia 
and the subthalamic nucleus, where the magnetic effects of iron 
obviously dominate the contrast. Oriented bundles of myelinated 
axons determine most of the anisotropy of water mobility detected 
using diffusion tensor MRI. Where myelinated fibers are found 
within the cortex, in the form of tangential layers and radial bun-
dles, they also give excellent MRI contrast.
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Figure 1 | Microstructural 7-T Mr mapping in post-mortem brains. (A) 
Tissue block (pre- and post-central gyrus, right hemisphere) from a post-
mortem human brain (female, 61 years, died of pulmonary failure and chronic 
obstructive pulmonary disease, autopsy performed with informed consent of 
the patient’s relatives, post-mortem interval before fixation 24 h, fixed in 4% 
formalin for 2 months) prior to MR scanning and histological processing. 
M1 = primary motor cortex in the posterior wall of the precentral gyrus, 
S1 = primary somatosensory cortex in the anterior wall of the post-central 
gyrus. (B) Quantitative T1 map of the tissue block [for plane of sectioning see 
rectangle in (A)]. MP2RAGE sequence (Marques et al., 2010) at 7 T, voxel size 
(0.33 mm)3, 32 averages, acquisition time 3 h 50 min, surrounding medium: 
Fomblin (Solvay Solexis, Bollate, Italy). Arrow indicates a sharp change in T1 
contrast at the base of the precentral gyrus that matches a change in the 

myelo- and cytoarchitectonic pattern [cf. (C,D)]. (C,D) Frozen sections (30 μm) 
from a corresponding position of the same block stained for myelin basic 
protein [rat monoclonal antibody, avidin–biotin–peroxidase complex (ABC) 
method, chromogen: DAB and ammonium nickel(II) sulfate (C)] and cell bodies 
[according to Merker, 1983; (D)]. Micrographs show the fundus of the central 
sulcus [same orientation as in (A,B)]. The drop in T1 values at the base of the 
precentral gyrus coincides with an increase in myelin basic protein 
immunostaining [line in (C)]. In an accompanying section stained for cell bodies, 
this position is characterized by an increase in gray matter thickness, a 
disappearing inner granular layer (asterisks), and emerging giant pyramidal 
(Betz) cells (arrowheads). This transition [lines in (C,D)] corresponds to the 
border between area 3a (somatosensory cortex) and area 4 (primary motor 
cortex; Geyer et al., 1999).
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Figure 2 | Microstructural 7-T Mr mapping in living brains. 
(A) Quantitative T1 map of the central region in vivo (female, 25 years, coronal 
section). MP2RAGE sequence (Marques et al., 2010) at 7 T, voxel size 
(0.6 mm)3, 3 averages, acquisition time 60 min. Arrows mark a drop in T1 
values and an increase in cortical thickness at the base of the precentral gyrus 
(cf. insets). The border matches the corresponding border in the post-mortem 
tissue block between area 3a and area 4. CS = central sulcus, PoG = post-
central gyrus, PrG = precentral gyrus. (B) Ultra high-resolution (0.4 mm)3 
FLASH MR image covering the occipital lobe of a living subject (female, 
27 years) shown in coronal (top) and axial (bottom) view. In the left hemisphere 
the well depicted Stria of Gennari (arrowheads) can be seen, whereas in the 
right hemisphere results of an automatic clustering algorithm are shown. 

Cortical surfaces were reconstructed on the basis of a high-resolution 
T1-weighted image (not shown) using a level-set approach. Additional 
transcortical profiles were computed perpendicular to the isosurfaces of the 
level-set function. Sampling the FLASH data along these profiles extracts 
laminar fingerprints for each point on the cortical surface that can be 
interpreted as feature vectors in a multi-dimensional space. Feeding those into 
an automatic k-means clustering algorithm parcellates the cortex into areas of 
similar laminar structure. The green cluster indicates the area containing the 
Stria of Gennari and marks the primary visual cortex (V1). CF = calcarine 
fissure. (C) The same cluster as in (B) is mapped onto an intermediate 
(∼1.5 mm from gray/white matter border) cortical surface. The medial surface 
(left) and the occipital pole (right) are shown.
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