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Extracellular vesicles (EVs) exert their biological functions by delivering proteins, metabolites,
and nucleic acids to recipient cells. EVs play important roles in cancer development. The anti-
tumor effect of EVs is by their cargos carrying proteins, metabolites, and nucleic acids to affect
cell-to-cell communication. The characteristics of cell-to-cell communication can potentially be
applied for the therapy of cancers, such as gastric cancer. In addition, EVs can be used as an
effective cargos to deliver ncRNAs, peptides, and drugs, to target tumor tissues. In addition,
EVs have the ability to regulate cell apoptosis, autophagy, proliferation, andmigration of cancer
cells. The ncRNA and peptides that were engagedwith EVswere associatedwith cell signaling
pathways in cancer development. This review focuses on the composition, cargo, function,
mechanism, and application of EVs in cancers.
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INTRODUCTION

EVs are 40–100 nm extracellular vesicles that are released by cells (Kahlert and Kalluri, 2013). EVs
were initially observed in sheep reticulocytes in the 1980s (Raposo and Stoorvogel, 2013). Recently,
studies have focused on the source of their endocytosis and on distinguishing them from micro-
vesicles (Théry et al., 2002). EVs have anti-tumor functions associated with the development of a
variety of cancers, such as breast, stomach, liver, and lung cancers (Table 1).

The Biogenesis and Composition of EVs
Mammalian cell, EVs are highly heterogeneous. They contain lipid membranes, proteins, RNAs, and
DNAs (Kowal et al., 2016). The lipid membrane of EVs carries the ligands and receptors from the source
cells and has a role in cell-to-cell communication (Valadi et al., 2007; Kahlert et al., 2014). Due to the
specificity of the lipid membrane, EVs can invade target cells through biogenesis (Balaj et al., 2011). The
components on the membrane also play a key role in cell-to-cell communication (Wu et al., 2021). EVs
use lipidmembranes to enter recipient cells to release cargo and affect recipient cells. These characteristics
indicate that EVs have potential applications in regulating cancer development.

The Formation of EVs
Many EVs formed from normal and pathological cells. In contrast to micro-vesicles, EVs are mainly
derived from multivesicular bodies (MVBs) that are formed by intracellular lysosomal particles. EVs
are released into the extracellular matrix through the fusion of the outer membrane of theMVBs with
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the membrane of source cells (Figure 1). Specifically, EVs are
formed through the endosomal pathway. First, the endosome is
formed by the invasion of the plasma membrane during cell
maturation process (Harding et al., 1983). The endosome is a
membrane-encapsulated vesicular structure and includes both
early and late endosomes. Early endosomes are usually located
outside of the cytoplasm. In contrast, late endosomes are located
inside of the cytoplasm, near the nucleus. Endosomes are acidic
vesicles without lysosomal enzymes (Bainton and Farquhar,
1968). The invasion of endosomes produces MVBs which
contain 40–150 nm vesicles. The inner membrane forms
intraluminal vesicles (ILV). Finally, the late lysosome melts or
fuses with the plasma membrane of the source cell and degrades
MVBS to release EVs (Harding et al., 1983). This process is
known as EV biogenesis and is different from apoptotic bodies
(Taylor and Gercel-Taylor, 2008). EVs are widely observed in
tumor cells, mesenchymal stem cells, fibroblasts, neurons,
endothelial cells (ECs), and epithelial cells (Kalluri, 2016).
Previous reports have suggested that the tumor cells can
specifically absorb their own secreted EVs (Kahlert and
Kalluri, 2013). This implies that during the formation of EVs,
specific biomarkers are formed on the surface of the EVs. These
biomarkers are the cues that render EVs to be absorbed by
specific cells.

EVs Cargo
Nucleic acids such as DNAs or RNAs, proteins, or drugs can be
carried in EVs as cargo to be delivered for cell-to-cell

communication (Figure 2). In the past decades, miRNAs and
mRNAs have been found to be major components of EVs. The
improvement of EV detection techniques has allowed more RNA
species, including transfer RNAs (tRNAs), long non-coding
RNAs (lncRNAs), and viral RNAs, to be observed (Valadi
et al., 2007; Su et al., 2021). An increasing amount of data
suggests that these RNAs, such as lncRNA, have crucial
functions that affect the development of cancer cells
(Gusachenko et al., 2013). Moreover, numerous studies have
demonstrated that the abnormal expressions of miRNAs,
lncRNAs, and mRNAs are associated with cancer development
(Chan and Tay, 2018; Huang et al., 2020). Hence, these RNAs,
that are contained within EVs, can either preserve or degrade
their target genes.

Cancers develop because of the expression and interaction of
numerous genes or proteins. EVs can express proteins through
genetic engineering (Silva et al., 2021). The EVs were obtained
from the source cells that were transfected with the target gene
plasmids. These EVs contain the synthesized proteins or peptides
through cell culture (Perin et al., 2011). There is evidence that
fusing the exosomally-enriched membrane protein (Lamp 2b)
with the ischemic myocardium-targeting peptide (IMTP) can be
used to inhibit cancer development by molecular cloning
lentiviral packaging protocols (Fernández et al., 2002). EVs
secreted by tumor cells can be taken up by the same tumor
cell with specificity. Somemolecules (such as Let-7a) can be easily
introduced to donor cells through EVs, and tumor targeting EVs
carrying these molecules can be used for cancer treatment (Wu

TABLE 1 | The function of EVs in cancers.

Name Fatality rate (%) Function of EVs References

Lung cancer 89 Diagnosis Kahlert and Kalluri, (2013)
Liver cancer 60–70 Inhibited cell growth Raposo and Stoorvogel, (2013)
gastric cancer 12.4 Induce cell apoptosis Théry et al. (2002)
Colon cancer 12 Inhibited EMT Kowal et al. (2016)
Breast cancer 6.6 Plasma biomarkers Kahlert et al. (2014)

FIGURE 1 | Formation of EVs.
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et al., 2021). In addition, EVs can carry various chemotherapeutic
drugs and materials for targeted treatment of cancers (Wang
et al., 2019a).

EVs can Decide Cell Fate
The function of EVs depends on the source cells, such as tumor
cells or stem cells (Draganov et al., 2019; Dzobo et al., 2020). The
EVs released from these source cells can affect the apoptosis,
growth, cell cycle, migration, invasion, and differentiation of
recipient cells. Previous studies have indicated that tumor-
released EVs could deliver genetic information to the recipient
cells for cell-to-cell communication (Valadi et al., 2007). This
process promotes cell growth, invasion, and active angiogenesis
in a tumor microenvironment (Figure 3).

Initially, EVs were considered to be “garbage bags” that could
not affect other cells (Kalluri, 2016). However, it was found that

EVs could be absorbed by target cells and their cargos could be
released to affect cell signaling transduction, therefore
determining the fate of the recipient cells (Pan et al., 1985).
Additional evidence suggested that tumor cells released EVs that
promoted tumor growth and invasion in vivo (Ramírez-Ricardo
et al., 2020). EVs that carried tumor suppressors, such as let-7a,
could inhibited tumor growth (Melo et al., 2014).

The Function of EVs in Cell Proliferation
Indefinite proliferation is a key feature of tumor cells. The
abnormal cell cycle of tumor cells is associated with un-
controlled cell growth. Previous reports confirmed that
miRNA-122 was involved in the cell cycle as well as the
proliferation of hepatocellular carcinoma (HCC) cells
(Fernández et al., 2002; Xu et al., 2011). A recent report
showed that the EVs carrying circRNA plays a role in the

FIGURE 2 | The contents of EVs.

FIGURE 3 | EVs decide cell fate.
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proliferation of HCC cells (Xue et al., 2017). In addition, arsenite
could increase the expression of circRNA_100284 carried by EVs,
altering the cell cycle and their proliferation by acting onmiR-217
(Lu et al., 2015). The expression of the cell proliferation
biomarkers E2H2 and cyclin D1 were regulated by the
circRNA_100284 contained within EVs, and the expression of
circRASSF2 was increased in laryngeal squamous cell carcinoma
(LSCC) tissue compared to paracancerous tissue. The circRASSF2
carried by EVs promoted LSCC cell growth via the miR-302B-3p/
IGF-1R axis (Tian et al., 2019). Thus, EVs have the ability to
regulate cell proliferation through their cargos.

The Function of EVs in
Epithelial-Mesenchymal Transition
The cell-to-cell communication in tumors might promote EMT
of cancers. Previous data has shown that the EV-released
circRNA PED8A was associated with increased lymphatic
invasion, TNM staging, and low survival rate of patients.
Furthermore, the circRNA PED8A from EVs promoted tumor
cell growth by activatingMET, which is a tyrosine kinase receptor
(Luna et al., 2019). In addition, the release of circRNA PED8A
contained within EVs into the blood circulation promotes
invasion and metastasis through the MACC-MET-ERK or
AKT pathway. More evidence indicated that EV-released
circRNA NRIP1 promoted proliferation, migration, and
metastasis through AKT1/mTOR signaling pathway in gastric
cancer. The involvement of this pathway has also been confirmed
in breast cancer cells in patients (Wang et al., 2019b; Zhang et al.,
2019). The circPTGR1 carried in EVs was found to contribute to
the metastasis of hepatocellular carcinoma (Wang et al., 2019c).
Interestingly, knock out of circPTGR1 in the source cells, their
EVs inhibited invasion and migration of cancer cells. The
increased expression of EV-released circ-IARS is related to the
EMT of pancreatic cancer (Li et al., 2018). Therefore, EVs can act
as messenger vehicles for cell-to-cell communication, releasing
ncRNAs that contribute to the EMT in cancers.

The Function of EVs in Apoptosis and
Autophagy
Cell apoptosis and autophagy are programmed cell death, both of
them are abnormal in cancers. Previous reports have indicated
that EVs containing anti-tumor drugs can induce cell apoptosis in
HCCs (Slomka et al., 2020). Furthermore, EVs containing
miRNA mimics such as let-7a have been found to induce cell
apoptosis in breast cancer (Ahmed et al., 2021). In addition, EVs
have the ability to regulate autophagy. There is evidence that EVs
can enhance autophagy in glioblastoma (GBM) (Pavlyukov et al.,
2018). These findings suggest that EVs play a role in cell apoptosis
and autophagy.

EVs Stimulate Oxidative Stress
Studies have shown that low levels of reactive oxygen species
(ROS) were observed in the stem cells of liver cancer and breast
cancer (Shi et al., 2012). The EVs of SV-HUC-1 cells were found
to mediate the P38/NF-kB signaling pathway, enhancing the
levels of OS (Xi et al., 2020). This suggests that EVs were
involved in OS, that may contribute to the development of
cancers (Figure 4).

EVs Regulate the Expression of lncRNA
LncRNA usually acts as a regulator of nuclear transcription
factors (Wu et al., 2021). An increasing amount of data has
shown that long non-coding RNAs (lncRNAs) are associated with
the development of cancers (Huang et al., 2021a). EVs containing
lncRNA-APC1 inhibited tumor growth in colorectal cancer
(CRC). lncRNA-APC1 is an important mediator of APC
development through the APC1/RAB5B axis (Wang et al.,
2021). The increased expression of lncRNA H19, which is
normally regulated by DNA methylation, was observed in
numerous cancers (Yang et al., 2021). Previous studies have
suggested that EV-contained H19 promotes cell migration and
invasion in CRC (Ren et al., 2018). The abnormal expression of
XIST, a key factor in the X chromosome inactive (XCI) process,
was observed in gastric cancer (Chen et al., 2016; Huang et al.,

FIGURE 4 | The function of EVs.
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2021a; Huang et al., 2021b). EV-contained XIST was found to
stimulate cell growth in breast cancer (Xing et al., 2018).

To investigate the role of EVs that contained lncRNAs in
cancers, appropriate EVs were collected. The EVs were mostly
obtained from the cells that were enriched in expressed lncRNA,
such as the A549 cell line which exhibited increased H19
expression (Hao et al., 2017). In addition, the EVs were
cultured in an environment that encouraged the increased
expression of lncRNAs (Born et al., 2020).

EVs Regulate the Expression of miRNA
In contrast to lncRNAs, miRNAs are 20–22 nucleotides long. Both
miRNAs and lncRNAs are single-stranded, endogenous RNAs, and
play roles in the development of cancers. SomemiRNAs, such as let-
7a and the miR29 family, are involved in EMT, metastasis,
migration, invasion, cell cycle, proliferation, and apoptosis of
numerous cancers (Rostas et al., 2014; Song et al., 2020). A few
miRNAs have been confirmed to be post-transcriptional regulators
for target mRNAs. They can be used as the potential biomarkers for
classification, prognosis, chemotherapy, and radiotherapy resistance
in triple-negative breast cancer (TNBC) (Ding et al., 2019). Results
show that miRNA of EVs have a curing effect on breast cancer
(Ohno et al., 2013). MiRNAs can be coated by EVs and delivered to
target cells, affect the H19/MAPK/ERK pathways (Ding et al., 2018;
Wu et al., 2021).

A database indicated that EVs are enriched in miRNAs,
lncRNAs, and proteins (Berardocco et al., 2017). In contrast to
transfected mimics or miRNAs inhibitors, EVs that obtained
from source cells can specifically and accurately deliver these
miRNAs endogenously (Table 2). Considering the characteristics
of EVs, therapies using EVs could be a potential approach for
cancer treatment.

EVs Regulate Gene Expression by siRNA
SiRNAs are produced by short, exogenous double-stranded
RNAs (dsRNAs) as an RNA interference (RNAi) tool (Kim
et al., 2018; Dharamdasani et al., 2020; Feng et al., 2020).
SiRNA can be used to effectively silence target genes. A recent
study showed that the use of siRNA, such as siRNA-027 can
inhibit cell growth and induce apoptosis in numerous cancers
(Chen et al., 2020). Hence, siRNA can be used to potentially
analyze the development of cancers. A barrier to the RNAi-based
therapy of cancers is the low specificity of siRNA delivery. EVs are

nano-scale vesicles that can be used to deliver siRNAs as cargos to
the target cells by cell-to-cell communication. Previous reports
have suggested that the EVs of human plasma cells can deliver
siRNA to monocytes and lymphocytes that can silence the
expression of mitogen-activated protein kinase 1 (Wahlgren
et al., 2012). This suggests that EVs can be used as gene
delivery vehicles (GDV) to transport exogenous siRNA in
cancer research. Consequently, EVs combined with siRNA are
more effective and demonstrate higher specificities than
traditionally siRNA delivery in cancer treatment.

EVs Regulate the Expression of Protein
The mitochondrial proteins contained in EVs can promote
tumorigenesis by cell-to-cell communication (Al-Nedawi et al.,
2008; Demory Beckler et al., 2013). The expression of MET (also
known as hepatocyte growth factor receptors) associated with
circulating EVs and phosphorylated MET (Tyr1349) was
increased in patients with stage 3 and stage 4 melanoma
compare to control (Peinado et al., 2012). This finding
indicates that EVs can be used to detect the development of
cancer (Costa-Silva et al., 2015). This assumption was confirmed
when the expression of MIF and GPC-1 proteins in EVs was
detected in cancer patients, allowing them to analyze the
prognosis of cancer (Melo et al., 2015). Furthermore,
phospholipid-binding proteins-carrying EVs can inhibit cell
growth and induced apoptosis in numerous cancers (Dhondt
et al., 2020). Thus, the proteins contained in EVs were useful for
the detection and prognosis of cancers.

The Function of EVs in the Tumor
Micro-environment
EVs are a key component of the tumor microenvironment.
Tumor heterogeneity includes genomic heterogeneity in both
tumor cells and non-cancerous microenvironments. Moreover,
the tumor nanoenvironment (TNE) is a special nano-scale tumor
microenvironment that possesses complex structures and unique
components (Eguchi et al., 2018). The TNE includes EVs and
apoptotic bodies. EVs released by tumor cells were absorbed by
other cells in the tumor microenvironment, influencing the
development of cancer through tumor heterogeneity (Tredan
et al., 2007). EVs thus contribute to the formation of the tumor
microenvironment in the form of cell-to-cell communication.

TABLE 2 | The miRNA of EVs in cancers.

EVs source miRNA Mimics/Inhibitor Function Cancer References

LIM1863 cells miR-106b-3p Mimics Inhibits cell growth CRC Valadi et al. (2007)
LIM1863 cells miR-126–3p Inhibitor Inhibits metastasis Breast cancer Balaj et al. (2011)
LIM1863 cells miR-126–5p Mimics Inhibits EMT Prostate cancer Wu et al. (2021)
LIM1863 cells miR-355–3p Mimics Inhibits cell growth CRC Harding et al. (1983)
Urine FOLH1 Mimics Diagnostic Prostate cancer Bainton and Farquhar, (1968)
Urine HPN Mimics Diagnostic Prostate cancer Bainton and Farquhar, (1968)
Urine ITSN1 Mimics Diagnostic Prostate cancer Bainton and Farquhar, (1968)
Urine CFD miR-21 Inhibitor Diagnostic Prostate cancer Bainton and Farquhar, (1968)
PDAC cell lines miR-195 Mimics Diagnostic PDAC Taylor and Gercel-Taylor, (2008)
PDAC cell lines Mimics Diagnostic PDAC Taylor and Gercel-Taylor, (2008)
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DISCUSSION

Considering that EVs can carry any cargos, including nucleic acids
and proteins, EVs can thus be used as clinical diagnostic biomarkers.
For example, the detection of tumor-specific RNAs in EVs can be
used as biomarkers for cancer diagnosis (Gurunathan et al., 2019).
Furthermore, proteins contained within EVs such as TSG101, RAS-
related protein RAB-11B (RAB11B), CD63, and CD81 can be used
as biomarkers for diagnosis of HCCs and other cancers (Möbius
et al., 2003; Valadi et al., 2007). In contrast to traditional diagnostic
methods such as peripheral blood or histopathology, the accuracy
and specificity of EVs were more closely associated with the
development of cancers.

EVs can be combined with engineered materials to specifically
affect cancer cells. Gold nanoparticles (AuNPs) can mediate
photothermal therapy (PPT) to inhibit cell growth and induce
cell death (Hu et al., 2020). However, most AuNPs have low
specificity. EVs combined with AuNPs can increase their
specificity and accelerate the release of their cargos, enhancing
the anti-tumor effect of PTT (Nasseri et al., 2020). This could be
an important form of therapy for the treatment of cancers in the
future. Due to the endogenous nature of EVs, their cargos can escape
the immune system and accurately and effectively target tumor cells.
In addition, as nano-vesicles, EVs can bypass the blood-brain barrier
(Yin et al., 2012). The EVs of immature dendritic cells have been
engineered to contain proteins that can target tumors originated
from the neuroendothelial and nerve cells in the brain (Federici et al.,
2014). Therefore, EVs as nano-vesicles can be used to cross the
blood-brain barrier in cancer treatment.

EVs containing anti-cancer drugs, such as therapeutic agents,
can be used in the treatment of cancers. In contrast to liposomes,
EVs injected in vivo can be absorbed without the interference of
the immune system (Ferguson and Nguyen, 2016; Kalluri, 2016;
Barile and Vassalli, 2017; Fitts et al., 2019; Liao et al., 2019).
Furthermore, EVs are safe and are tolerable in vivo. Recent
studies have demonstrated that repeatedly injected
mesenchymal cells (MHC) or the IPCs of EVs do not induce
toxicity (Zhu et al., 2017; Mendt et al., 2018).

The EVs that carry chemotherapeutics can decide the cell fate
by cell-to-cell communication. For example, αv integrin-specific

EVs have been shown to have a therapeutic effect on breast cancer
(Tian et al., 2014). Another report suggested that paclitaxel
surrounding the EVs of macrophages inhibited lung cancer
growth in mice (Kim et al., 2016). These reports indicated that
chemotherapeutic agent encapsulating EVs have an anti-tumor
effect. Recently, studies have shown that the bioavailability of
EVs-engineered doxorubicin was improved compared to the free
doxorubicin (Tian et al., 2014; Kojima et al., 2018). These studies
suggested that as a vesicle, EVs can enhance the efficacy of drugs.
Despite the advancements in the understanding of EVs, there are
still some challenges that need to be solved (Figure 5).

CONCLUSION

EVs are derived from multivesicular bodies formed by
intracellular lysosomal particles that are released into the
extracellular matrix. The source cells determine the specificity
of their EVs. EVs contained RNAs, proteins, and drugs that can
play important roles in the development of cancers. EVs have the
ability to decide the fate of cells by cell-to-cell communication.
EVs have potential applications in anti-cancer treatments in the
future.
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FIGURE 5 | The challenge of EVs.
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