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The striatal dopaminergic dysfunction in Parkinson’s disease (PD) has been associated

with deficits in skill learning in numerous studies, but some of the findings remain

controversial. Our aim was to explore the generality of the learning deficit using two

widely reported skill learning tasks in the same group of Parkinson’s patients. Thirty-four

patients with PD (mean age: 62.83 years, SD: 7.67) were compared to age-matched

healthy adults. Two tasks were employed: the Serial Reaction Time Task (SRT), testing

the learning of motor sequences, and the Weather Prediction (WP) task, testing non-

sequential probabilistic category learning. On the SRT task, patients with PD showed no

significant evidence for sequence learning. These results support and also extend previous

findings, suggesting that motor skill learning is vulnerable in PD. On theWP task, the PD

group showed the same amount of learning as controls, but they exploited qualitatively

different strategies in predicting the target categories. While controls typically combined

probabilities frommultiple predicting cues, patients with PD instead focused on individual

cues. We also found moderate to high correlations between the different measures of

skill learning. These findings support our hypothesis that skill learning is generally impaired

in PD, and can in some cases be compensated by relying on alternative learning strategies.

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects 1–3% of

the population above 65 years (Hirsch, Jette, Frolkis, Steeves, & Pringsheim, 2016). The
classic symptom triad of PD (tremor, bradykinesia, and rigidity) is associated with the

degeneration of dopamine (DA) neurons in the substantia nigra pars compacta which

causes a massive DA reduction in the basal ganglia (Kish, Shannak, & Hornykiewicz,

1988). Beside the motor symptoms, several cognitive domains are also affected. The

neuropsychological profile of PD is determined by the executive dysfunction
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characterized by deficits on tasks measuring set shifting (Cools, Barker, Sahakian, &

Robbins, 2001), inhibition (Gauggel, Rieger, & Feghoff, 2004), conflict resolution (Obeso

et al., 2011), planning (Lewis, Dove, Robbins, Barker, & Owen, 2003), dual task

performance (Benecke, Rothwell, Dick, Day, & Marsden, 1986), and decision-making
(Kobayakawa, Koyama, Mimura, & Kawamura, 2008). The striatal dopaminergic

dysfunction in Parkinson’s disease (PD) has been associated with deficits in skill learning

in numerous studies, but some of the findings remain controversial. The current study

focuses on PD and tests the generality of skill learning deficits in PD.

Skills are complex patterns of behaviour that are developed through continuous

practice (e.g., Karni, 1996). Skill learning is an online process in which the learner

repeatedly carries out the given complex behaviour to obtain better performance. This

better performance can mean faster execution or more similar outcomes of the same
action. Sport-relatedmovements are the best examples for skill learning.When learning to

swim, participants are aimed at carrying out the same movement repeatedly in a fast and

harmonious way. However, hitting a nail with a hammer can also be considered a skill, in

which learning is manifest in better hit rates. While the above examples, as well as skill

learning research, are dominated by motor skills, the scope of research in the past two

decades has been extended to non-motor cognitive skills, like categorization (Knowlton,

Mangels, & Squire, 1996; Knowlton, Squire, & Gluck, 1994).

Skill acquisition relies mainly on procedural memory, one of two parallel memory
systems that process different types of information (Squire, Knowlton, & Musen, 1993).

Declarative memory supports semantic and episodic knowledge (facts and events) that

can be directly recalled, while procedural memory consists of more fluid process-like

information that is acquired incrementally (Squire et al., 1993). Conscious access to

procedural memory is difficult or impossible (Graf & Schacter, 1985). There is also

evidence suggesting that different memory systems are supported by different neural

bases: The declarative memory system relies on the hippocampus and other medial

temporal lobe (MTL) structures (Henke, 2010), while the procedural memory system
builds on frontostriatal pathways between the basal ganglia and the regions in the frontal

cortex associated with movement, action planning, and motor execution (Packard &

Knowlton, 2002). As the procedural memory system relies mainly on structures and

networks that are dysfunctional in PD, neuropsychological studies started focusing on

whether proceduralmemory functions are in fact deficient in PD. These studies often used

different skill learning tasks and are overviewed in the following section.

Most studies of skill learning in PD focusing onmotor sequence learning used the Serial

Reaction TimeTask (SRT,Nissen&Bullemer, 1987) inwhich participants have to respond
to the location of a target stimulus appearing at oneof four possible locations. Unknown to

the participants, the locations follow a deterministic sequence. As long as the sequence is

present, reaction times (RTs) decrease, while in the absence of the sequence, RTs

increase. Studies found deficient learning on the SRT in PD, especially in terms of

sequence-specific learning (Siegert, Taylor,Weatherall, &Abernethy, 2006; but seeKwak,

M€uller, Bohnen, Dayalu, & Seidler, 2012), but the degree and nature of the impairment

varies greatly across studies. Some studies found no evidence of sequence learning

(Jackson, Jackson, Harrison, Henderson, & Kennard, 1995), while others showed present
but decreased learning performance compared to healthy control (HC) subjects (Ferraro,

Balota, & Connor, 1993; Pascual-Leone et al., 1993). Others argue that the sequence

learning deficit is only observed due to the required motor response. With verbal instead

of motor responses, some studies showed normal performance (Smith, Siegert, &
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McDowall, 2001), while others observed decreased sequence learning (Westwater,

McDowall, Siegert, Mossman, & Abernethy, 1998).

The above-described inconsistencies are partially explained by a recent review

suggesting that the generality of the motor skill learning deficit relies on task and patient
characteristics (Ruitenberg, Duthoo, Santens, Notebaert, & Abrahamse, 2015). Task

characteristics include the length of training, or specific stimulus features, whereas

patient characteristics are related to medication status, disease severity, and sequence

awareness. Medication also seems to have an effect: Results show that sequence learning

can be evenmore vulnerable in participants onmedication than in patients offmedication

(Kwak, M€uller, Bohnen, Dayalu, & Seidler, 2010; Kwak et al., 2012; Ruitenberg et al.,

2015). Studies of disease severity suggest a larger sequence learning deficit in patients

experiencing freezing of gait (Vandenbossche et al., 2013) or less dopaminergic
denervation (Kwak, Bohnen, M€uller, Dayalu, & Seidler, 2013; for an overview, see

Ruitenberg et al., 2015). Ruitenberg et al. (2015) also argue that the deficient effect of

medication might be expressed through decreased explicit awareness to the sequential

regularities.

The previous section described motor skill learning, but deficits have also been found

outside this domain in PD. Feedback-based probabilistic category learning (i.e., category

learning where cues and categories have a probabilistic association) was expected to be

vulnerable in PD for several reasons: because of (1) the importance of DA in feedback-
based learning and the dopaminergic dysfunction in PD (Grahn, Parkinson, & Owen,

2008; Kehagia, Barker, & Robbins, 2013) and (2) the importance of striatal structures in

category learning (Filoteo & Maddox, 2007). In many studies, the Weather Prediction

(WP) task is used as a model of probabilistic category learning (Knowlton et al., 1994). In

the WP task, participants see one, two, or three of four possible cues and have to decide

whether therewould be sunshine or rain. Unknown to the participants, the different cues

and outcomes have a probabilistic relationship. Immediate feedback after each decision

helps the identification of the cue-outcome contingencies (Knowlton et al., 1994). In
accordance with the above-described predictions, the acquisition of non-sequential

probabilistic associations was found to be vulnerable in PD as evidenced by impaired

learning on the WP task (Shohamy, Myers, Onlaor, & Gluck, 2004). Results, however, are

not conclusive on which aspect of learning is deficient. Comparison of feedback-based

(feedback provided after each decision) and observation-based (cue-outcome pairs are

shownwithout required actions) versions of theWP task showed either a selective deficit

in feedback-based learning (Shohamy,Myers, Grossman, et al., 2004), or a selective deficit

in observation-based learning (Schmitt-Eliassen, Ferstl, Wiesner, Deuschl, & Witt, 2007).
Other studies identified practice or strategy-based deficits in PD.One study suggested that

the deficit only emerges at later stages of training (Shohamy, Myers, Grossman, et al.,

2004), while others argue that patients with PD are unable to develop an optimal strategy

for solving the task (Shohamy, Myers, Onlaor, et al., 2004). There is also a study that failed

to find a probabilistic category learning impairment in PD (e.g., Price, 2005).

Although skill learning is often regarded as a prototypically procedural function, skill

learning in real life (together with tasks that model skill learning) relies on multiple

memory systems: Depending on the nature of the task, it taxes procedural, declarative,
and working memory and involves implicit and explicit processes to different degrees.

There is evidence that workingmemory deficits are associatedwith diminished efficiency

of learning on the SRT task (G�omez Beldarrain, Grafman, Pascual-Leone, & Garcia-Monco,

1999). The WP task has been found to rely on explicit processes by a number of

experimental studies (Kem�eny, 2014; Kem�eny& Luk�acs, 2013a; Price, 2009). Reliance on
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suchprocesses canbemore pronounced in the face of striatal dysfunction in PD, as shown

by stronger reliance on single-cue strategies (Shohamy,Myers,Onlaor, et al., 2004) andby

imaging results of increased MTL activation and decreased striatal activation in patients

with PD during the WP task (Moody, Bookheimer, Vanek, & Knowlton, 2004).
As reviewed above, the striatal dopaminergic dysfunction in PD has been associated

with deficits in skill learning in a number of studies using both the SRT and the WP tasks,

but the results are inconclusive so far. Our primary aim in this study was to test different

forms of skill learning in the same group of patients with PD. Are both sequential and non-

sequential forms of learning similarly impaired, when cross-study differences potentially

caused by the heterogeneity of different PD groups or other factors (regarding, e.g.,

severity of symptoms) are controlled for? As we also wanted to relate our findings to

previous results on skill learning in PD,we chose the SRT task to test the learning ofmotor
sequences and theWP task to test probabilistic category learning in a non-sequential task

because they (1) have been extensively used in the literature and (2) measure different

aspects of skill learning. Both tasks are argued to be implicit and procedural (although see

Destrebecqz & Cleeremans, 2001; and Lagnado, Newell, Kahan, & Shanks, 2006; Newell,

Lagnado, & Shanks, 2007), but they differ in several regards. Learning on the SRT task (1)

involves sequence learning, (2) involves motor learning, (3) is deterministic, and (4) is

non-feedback based, while learning on the WP task is (1) non-sequential, (2) non-motor,

(3) probabilistic, and (4) feedback based.
In both the WP (Poldrack et al., 2001) and SRT tasks (Dennis & Cabeza, 2011), the

competitive nature of implicit and explicit systems is characterized by the negative

correlation between striatal and MTL activation. Based on the established basal ganglia

deficits in PD and on earlier findings, we expect impaired performance in PD on both the

SRT andWP tasks, although predictions for theWP task are less straightforward. Detailed

strategy analyses of learning on theWP task also allowus to compare learning qualitatively

between the groups. As far as we know, our study is the first to focus on different types of

skill learning in the same group of patients with PD. We expect our results to provide a
step forward in understanding what types of skills rely on the fronto-striatal loops that are

deficient in PD.

Methods

Participants
Altogether, 34 patients with L-dopa responsive idiopathic PD (13 female, 21 male; age

62.83 � 7.9 years, range: 48–78; Hoehn-Yahr stage, 3.7 � 0.5; duration of PD symptoms

9.0 � 3.8 years) were involved in the study. Parkinsonian motor symptoms and signs

were rated using themotorpart III of theUnifiedParkinson’sDiseaseRating Scale (UPDRS:

Goetz et al., 1995). The UPDRS-III motor score in ‘medication off’ state was 47.5 � 7.5,

and in ‘medication on’ state was 27.1 � 8.1, showing a 42.9% improvement after

antiparkinsonianmedication. Daily doses ofmedicationswere standardized by the use of a

formula for L-dopa-equivalent doses (LED: W€ullner et al., 2010). The mean daily LED was
778.6 � 313.3 mg. All PD participants were tested under medication.

Severity of depression in the PD sample was assessed using the Beck Depression

Inventory (4.15 � 6.91, min: 0, max: 15), anxiety by the Spielberger State and Trait

Anxiety Inventory (STAI-S, 20.79 � 12.32, min: 2, max: 48; STAI-T, 24.5 � 9.6, min: 6,

max: 48), and cognitive impairment by the Mini-Mental State Examination (MMSE,

28.06 � 1.5, min: 25, max: 30). The PD group was in the normal range regarding
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depression and anxiety severity, and based on the MMSE scores, none of the patients

showed cognitive impairment.

Performance of the PD group was compared to that of a group of age-matched HC

individuals. Their mean age was 62.76 � 7.86 years (14 female, 20 male, age range: 48–
78). Data of HC participants were collected from a previous cross-sectional study on skill

learning (Luk�acs &Kem�eny, 2015). All participants provided a written informed consent,

in accordance with the principles set out in the Declaration of Helsinki and the

stipulations of the local Institutional Review Board. Sample characteristics are provided in

Table 1.

Stimuli and design
Participants completed two skill learning tasks: the SRT and WP tasks. Both tasks were

presented on a 640 9 480 display, on a computer using E-prime1.2 (Psychology Software

Tools Inc., Pittsburgh, PA, USA).

The SRT task

The SRT task was an adaptation of Meulemans, Van der Linden, and Perruchet (1998).

Four horizontally aligned circles appeared on the screen (diameter approximately 55
pixels). One circle was black (target stimulus), while the other three were white with a

black contour. The distances between the circles were equal.

The task for participants was to press the button corresponding to the location of the

target. The response buttons were Y, C, B, and M. On a standard Hungarian QWERTZ

keyboard, these buttons are arranged horizontally in the bottom line of the keyboardwith

one button between each. A special keyboard was used, in which all keys other than the

response keyswere removed. Each target itemwas on screen until response. In the case of

Table 1. Sample characteristics and results on clinical scales

Characteristics

PD group (n = 34) HC group (n = 34)

Mean SD Mean SD

Age (years) 62.83 7.90 62.76 7.86

Sex (M/F) 21/13 20/14

Hoehn-Yahr stage 3.7 0.5

Medication in LED 778.6 313.03

Duration of illness (years) 9 3.8

UPDRS-III motor score off 47.5 7.5

UPDRS-III motor score on 27.1 8.1

BDI 6.91 4.15

STAI-S 20.79 12.32

STAI-T 24.5 9.6

MMSE 28.06 1.5

Note. BDI = Beck Depression Inventory; HC = healthy control group; LED = levodopa equivalent

units; MMSE = Mini-Mental State Examination; PD = Parkinson’s disease; STAI-S = State and Trait

Anxiety Inventory, State Subscale; STAI-T = State and Trait Anxiety Inventory, Trait Subscale;

UPDRS = Unified Parkinson’s Disease Rating Scale.
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an incorrect response, a 560 ms tone was played.1 The response-stimulus interval was

250 ms. Participants were asked to use the middle and index fingers of both their hands,

and keep them on the keyboard all the time.

The task was composed of 12 blocks, each block including 60 stimuli. The target
stimulus appeared in accordance with a 12-element sequence in blocks 1–11. The
sequence was a second order conditional sequence, in which adjacent (first-order)

elements carry no predictive information (i.e., a stimulus may be followed by any of the

three other possible stimuli with equal probability), but two consecutive elements

together determine what the next element will be: 121,423,413,243, where the numbers

represent the position of the black circle. In Block 12, the sequence was replaced by

pseudorandom appearance of the target stimuli. No immediate repetitions were allowed,

and the frequency of the different elements was equal within the block.

The WP task

The WP task was the adaptation of Knowlton et al. (1994), and identical to the one used

by previous studies (Kem�eny & Luk�acs, 2013b). Each experimental item was a

combination of one, two, or three of four possible cues appearing simultaneously.

Cue1 was a square, Cue2 was a triangle, Cue3 was a pentagon, and Cue4 was a rhombus.

Cues appeared 144 pixels from the top. Each cue was fit into a 125 9 125 pixel square.
The displays of single cues or cue combinations appeared in the horizontal centre line. In

combinations, Cue1 was always preceding all other cues, Cue2 was always preceding

Cue3 and Cue4, and Cue3 was always left from Cue4 if presented together.

Participantswere asked to guess, based on the cues, whether therewill be sunshine or

rain, and press ENTER or SPACE, respectively. The response keys were marked by a

weather icon of the outcome. Each prediction was followed by a feedback revealing the

correct answer. Feedback was provided in the form of an 83 9 86 pixel icon of a sun or a

cloud with rain. The icon appeared in the horizontal centre line 343 pixels from the top
along with the cue or cue combination.

Therewere four blocks of 50 items. The order of the itemswas pseudorandom.No two

consecutive items used the same cues. That is, the combination of cues 1 and 3 could not

appear twice in a row, while this combination could be followed by, for example, the

combination of cues 1, 3, and 4.

Unknown to the participants, each cue had a preset predictive value. Two cues

predicted each outcome: Cues 1 and 2 predicted sunshine, while cues 3 and 4 predicted

rain. For each outcome, there was a strong and a weak cue, the strong cues were
associatedwith sunshine (Cue1) or rain (Cue4) in 85.7% of their appearances, while Cue2

(sunshine) and Cue3 (rain) predicted their outcome with 70%. Table 2 summarizes the

design.

This experiment was part of a larger project in which participants were tested in

several cognitive domains. Testing consisted of a single session that ran for approximately

4 hr including self-paced breaks between the tasks. Tasks had a fixed order throughout

the session: The SRT task was administered first, and the WP task later.

1 This tone was used to maintain the attention of participants. The feedback appeared only in case of incorrect responses, which
were very few in number, and was related to local stimulus-response contingencies. No feedback was provided on the global,
sequence level.
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Data analysis

Due to technical problems, data of three patients with PDwere not registered: one in the

SRT task and two in the WP task. One additional patient had accuracy below 80% on the
SRT task. Data of these participants were excluded task-wise: Their data from the other

task were included in the analyses. Their age-matched controls were also excluded from

the respective analyses. After the exclusion, the mean accuracy of participants was

98.17% on the SRT task. As this value is close to ceiling, we did not analyse accuracy

further.

For the SRT task, only RTs of correct answers were considered. RTs deviating more

than two standard deviations from themeanwere excluded at the participant level (which

lead to the exclusion of 3.57% of the items overall, 3.56% in the PD, and 3.59% in the HC
group).We computed a raw learning score for sequence learning by subtracting themean

RTs of the last sequenced block from the mean RTs of the random block (Block 12–Block
11).

As previous studies have pointed out the importance of differences in the baseline RTs

between clinical and control groups, we applied individual Z-transformations on RTs.

Individualmean and standard deviationwere calculated for each participant. Each RTwas

transformed by subtracting the participant’s individual mean from the RT and dividing the

difference by the participant’s individual standard deviation (Christ, White, Mandernach,
& Keys, 2001). Z-transformed learning scores were calculated by subtracting Block11

ZRTs from Block12 ZRTs.

Two types of analyses were conducted for the SRT task. First, we compared overall

groupmeans of RTs. Second, based on an earlier study of childrenwith Specific Language

Impairment (Luk�acs & Kem�eny, 2014), we categorized each participant as a ‘learner’ or a

‘non-learner’. To classify participants as ‘learners’ and ‘non-learners’, we defined a

threshold based on our data. Excluding the first six items (due to being block initial), we

split items of the random block (Block 12) into odd and even items. We compared the
median RTs for correct responses for odd versus even items. As the items do not differ in

Table 2. Types and occurrences of cues or cue combinations per blocks of 50 trials. Column 1 (Cues)

identifies cues and combinations. Column 2 (Frequency) shows the number of appearances within a block

of 50 trials. Column 3 provides the probability with which the given cue or combination is associated with

sunshine (which equals 1 minus the probability of rain)

Cues Frequency p(SUN)

1 8 .875

2 4 .75

3 4 .25

4 8 .125

1,2 8 .875

1,3 1 1

2,3 2 .5

2,4 1 0

3,4 8 .125

1,2,3 2 1

1,2,4 1 1

1,3,4 1 0

2,3,4 2 0

Skill learning in Parkinson’s disease 515



experimental settings, the mean difference was not expected to deviate from 0. The

prediction of a lack of difference was borne out by a paired sample t-test,

t(63) = 1.230, p = .223. The observedmean difference was 13.4 mswith the confidence

intervals of�8.37 and 35.17. The upper bound of the confidence interval (35.17 ms) was
used as a threshold for 0 effect (i.e., no learning). All participants having an RT difference

(Block 12 minus Block 11) smaller than 35.17 ms were classified as ‘non-learners’,

whereas all participants above the threshold of 35.17 mswere classified as ‘learners’. This

method is based on a previous study of visual cueing in reading and spelling deficit (Banfi

et al., 2017). After categorizing participants, chi-squared tests were applied to determine

whether the number of learners differed by group (PD vs. HC).

In the case of the WP task, we calculated a categorization score following previous

publications (e.g., Knowlton et al., 1994). One, two, or three cues can appear in each
item. Each cue has its own predictive value, which is its strength of association with the

outcome of ‘sun’. For each item, we averaged the predictive values of the presented cues.

If the average predictive value is above 50%,we expect sun as an outcome, and if the value

is below 50%, we expect rain as a correct answer. As the expected correct answer is only

probabilistically related to the final outcome, the feedback could show a correct or an

incorrect prediction. Percentages of correct predictions were averaged by block.

Three types of analyseswere conducted onWP results. First, the performance levels of

the two groups and then the rate of ‘learners’ versus ‘non-learners’ were compared. In the
case of the WP task, learners were participants with performance above 55% on block 4

(where 50% is chance level). The third analysis compared strategies used by the two

groups.

Previous studies have identified three different strategies for solving the WP task

(Gluck, Shohamy, &Myers, 2002). Participants using theOne-cue strategy focus on one of

the cues and give a systematic answer only if that specific cue is present. Singleton

strategy-users provide systematic responses if only 1 cue is present at a time; when

combinations are present, they respond randomly. Multi-cue strategy-users provide
answers based on all cues by averaging predictive values. Previous theories suggested that

participants using the Multi-cue strategy rely on procedural memory, while Singleton and

One-cue strategy-users rely on declarative memory (Gluck et al., 2002). Others argue

against the memory system-based distinction (Kem�eny & Luk�acs, 2013a). Although the

results on the foundations of strategy use are not conclusive, we still expect to see

whether possible performance differences are due to different strategies or quantitative

differences in learning by the same strategy.Wecalculated thebest fitting strategy for each

participant in each block following the procedure described in previous studies (Gluck
et al., 2002). Each strategy predicts a certain response to cues or combinations. For each

block of each participant, we calculated a model score for all types of strategies. This

model score is a quantitative measure of how the participants’ responses fit with the

predictions of the given strategy.

To compute the model scores, for each cue and cue combination, we summed up the

difference of the expected and actual ‘sun’ answers and divided them with the sums of

squares of the number of presentations of each cue or cue combination. The computation

of themodel score is provided in Equation (1). If themodel score of theMulti-cue strategy
was lower than 0.1, the participantwas assumed to use theMulti-cue strategy. If themodel

score for the Multi-cue strategy was above 0.1, but any of the other model scores were

below 0.1, the participant was assumed to use a single strategy. If no model scores were

below 0.1, no strategy use was assumed (criteria identical to Gluck et al., 2002).
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ModelScoreM ¼
P

Pð# sun expectedP;M �# sun actualPÞ2
P

Pð#presentationsPÞ2
: ð1Þ

TheMulti-cue strategy is themost optimal strategy for theWP task,while the Singleton

and One-cue strategies are suboptimal. Strategies are fit to each block separately. Healthy

participants are expected to show one of the suboptimal strategies early in the task, and

switch to Multi-cue strategy later (Gluck et al., 2002). Using v2 tests, we compared the

number of participants in the two groups, who managed to develop a Multi-cue strategy.

To seewhether learning on the two different skill learning task is related, andwhether
patients who are impaired on one task are also likely to be impaired on the other, we also

analysed the associations between performance measures on the two tasks. First, we

analysed correlations between the task indices separately for each group. Then, we

compared the rate of learners and non-learners among the tasks within each group using

v2 tests. Finally, on cognitive functions, we tested the correlations between performance

on the two tasks and medication and UPDRS measures. There is a growing literature

(Kehagia et al., 2013; Kudlicka, Clare, & Hindle, 2011; Ruitenberg et al., 2015, 2016) on

the effect of medication and symptom severity on different cognitive functions in PD, and
our aimwith this analysis was to see how ourmain results are modulated by these factors.

This latter analysis was only performed on PD patients’ results (as controls do not have

LEDs andUPDRS scores). As twomeasures of the same SRT taskwere used, the alpha-level

was decreased to .025.

Results

Serial Reaction Times task

Comparison of overall group performance levels

We conducted a univariate ANOVA to test whether raw learning scores differ by group.

Raw learning scores in the HC groupwere significantly higher than those in the PD group

(64.46 ms for the HC,�5.83 ms for the PD group), as revealed by a significantmain effect

of Group, F(1, 62) = 6.170, p = .016, g2
p = .091. To test whether the individual groups

showed evidence of learning (above chance results), their average raw learning scorewas

compared to 0with a one-sample t-test. Mean scores were significantly above 0 in the HC,

t(31) = 2.685, p = .012, but not in the PD group, t(31) = �0.393, p = .697. Reaction
times by Block and by Group are provided in Figure 1.

A similar result was obtained for Z-transformed data. The ANOVA revealed that the Z-

transformed learning scores of the HC group were significantly higher than those of the

PD group (0.384 for the HC and 0.034 for the PD group), F(1, 62) = 8.261, p = .006,

g2
p = .118. One-sample t-tests showed a mean learning score above 0 in the HC group,

t(31) = 3.668, p = .001, but not in the PD group, t(31) = 0.546, p = .589. Figure 2

depicts Z-transformed RTs by Block and by Group.

Comparison of the ratio of learners

A v2 test was applied on the number of participants in the two learning categories

(Learners vs. Non-learners) byGroup (PDvs. HC). Thenumbers of learners are provided in

Table 3. Results revealed that the distribution of category membership differed by group,
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v2(N = 64,df = 1) = 6.349,p = .012,with a significantly higher rate of learners in theHC

group on the SRT task.

Weather Prediction task

Comparison of overall group performance levels

In the case of theWP task,we compared categorization performance by Block (Block 1–4)
and by Group (PD vs. HC) using a mixed-model ANOVA. The Huynh-Feldt corrected

ANOVA2 revealed a significant main effect of Block, F(2.613, 161.976) = 12.432,

p < .001, g2
p = .167 (55.6% on Block1, 59.0% on Block2, 62.1% on Block3, and 64.4%

on Block4). No other effects were significant (both ps > .517, both Fs < 0.425). Figure 3

provides categorization performance by Block and by Group. Performance shows a linear

increase, as suggested by a significant linear contrast, F(1, 62) = 31.427, p < .001,

g2
p = .336.

Figure 2. Z-transformed reaction times by Block and byGroup in the SRT task. Error bars indicate SEM.

Figure 1. Reaction times inmilliseconds by Block and byGroup in the SRT task. Error bars indicate SEM.

2Correction was made due to violation of sphericity as indicated by a significant Mauchly’s test of sphericity.
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Comparison of the ratio of learners

The number of learners and non-learners of the WP task was compared by group

membership (PD vs. HC). Results revealed no significant difference in the ratio of learners

versus non-learners on theWP task, v2(N = 64, df = 1) = 2.003, p = .157, see Table 3 for

the distributions.

Strategy analysis in the WP task

Responses of one participant in the PD group did not match any of the three strategies
throughout the four blocks; hence, this patient was excluded from strategy analysis along

with thematching control participant. Of the 31 patients with PD, 11were able to use the

Multi-cue strategy, and 20 used one of the single strategies. In the control group, 20 Multi-

cue strategy-users and 11 Single strategy-users were identified. A v2 test was computed to

compare the distribution of Multi-cue strategy-users and Single strategy-users across the

two groups. The test showed that the proportion ofMulti-cue strategy-users was higher in

the control group, v2 (N = 62, df = 1) = 5.226, p = .022.

Associations between performance on the SRT and WP tasks

Correlations between performance measures of the two tasks

Associations betweenperformancemeasures of the two taskswere tested using Pearson’s

correlations. Correlations were examined separately in the PD and HC groups, and also in

the entire group of participants (collapsed over PD and HC). Both raw and Z-transformed

Table 3. The percentage and number of participants in each category by group in the tasks

Task Group

N (%)

Learners Non-learners

SRT PD 9 (28.13) 23 (71.87)

HC 19 (59.38) 13 (40.62)

WP PD 26 (81.25) 6 (18.75)

HC 21 (65.62) 11 (34.38)

Note. SRT = Serial Reaction Time task; WP = Weather Prediction task.

Figure 3. Categorization performance on theWP task by Block and byGroup. Error bars indicate SEM.
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learning scores were used from the SRT task, and their associations were tested with

overall performance on the WP task. As two SRT measures were used, alpha-level was

corrected to .025. In the case of HC participants, the correlation between WP

performance and raw SRT learning scores just fell short of significance after Bonferroni
correction, r(n = 30) = .405, p = .026. All other correlations were significant in both

groups separately, and in the entire group as well (correlations were between .360 and

.443, and all ps < .025). Table 4 provides the between-task correlations in each group, as

well as the two groups collapsed.

Comparing the ratio of learners and non-learners across the two tasks

Using v2 tests, we compared the number of learners and non-learners on the SRT task and
WP task in each group. The v2 test revealed that the ratio of learners was larger on theWP

task than on the SRT task in the PD group, v2 (N = 34, df = 1) = 33.356, p < .001, but the

distribution was comparable across the two tasks in the HC group, v2 (N = 34,

df = 1) = 1.602, p = .206.

Correlations between performance and medication and symptom severity

Correlationswere tested between LED andUPDRS-III ‘medication off’ and ‘medication on’
scores on the one hand, and SRT raw and Z-transformed learning scores, as well as WP

performance on the other. This analysis was only carried out for patients with PD.

Pearson’s correlations were used with an alpha-level corrected to .025 because of the use

of two SRT measures. Results showed that in the case of the SRT task (n = 30), LED was

not significantly correlated with either raw learning scores, r = .308, p = .098, or Z-

transformed learning scores, r = .299, p = .109. Similarly, no significant correlations

were observed between LED and overall WP performance (n = 30), r = .147, p = .437.

UPDRS-III motor scores in ‘medication off’ or ‘medication on’ status did not show
significant correlations with performance measures either (�.354 < all rs < �.130, all

ps > .055). Table 5 provides the correlation coefficients between UPDRS and LED

measures and performance indices.

Summary and discussion

This study tested the vulnerability of different forms of skill learning associated with the

impairments of frontostriatal circuits in patients with PD using a SRT, testing the learning

Table 4. Pearson’s correlations between WP and SRT performance measures

Groups Raw learning scores Z learning scores

WP performance

PD group .436* .428*

HC group .405 .443*

Groups collapsed .360** .360**

Notes. Number of participants is 30 for each group, and 60 for the collapsed analysis.

HC = healthy controls; PD = Parkinson’s disease; SRT = Serial Reaction Time task; WP = Weather

Prediction task.

*p < .025; **p < .005.
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of motor sequences and aWP task, testing non-sequential probabilistic category learning.

In the case of the SRT task, no evidence of sequence learning was observed in the PD

group,while the control group showed a significant sequence learning effect. Controlling

for baseline RT differences using Z-transformed RTs yielded the same pattern of results
and confirmed the lack of a sequence-specific learning effect in patients with PD on the

SRT task. Taken together, these SRT results argue that, in line with previous findings

(Kwak et al., 2012), sequence learning is deficient in PD, and this impairment is not only

related to a general motor learning deficit, but is shown by missing or smaller sequence-

specific learning (i.e., RT increase at the removal of the sequence in Block 12) in patients

with PD.

Probabilistic categorization, however, seemed to be intact in PD at the first glance:

Performance levels of the clinical and control groups were not statistically different, and
both groups improved significantly across blocks resulting in a quantitatively similar

performance. In spite of similar levels of performance, qualitative differences in strategies

were observed: While the majority of control participants relied on the optimal Multi-cue

strategy, responses of participants in the clinical group reflected the use of one of the

suboptimal strategies.

Findings also showed that the sequence learning deficit observedon the SRT task in the

PD group is evident from the lower proportion of participants who showed evidence of

sequence learning in the PD than in the HC group. Within-group comparisons of the
number of learners and non-learners on the SRT versus WP tasks also showed that motor

sequence learning is more challenging in PD than probabilistic categorization: In PD, a

larger number of participants learnt on the WP than on the SRT task. In the HC group,

there was no statistically significant difference between the ratio of learners versus non-

learners across the two tasks (showing that PD differences in distributions do not stem

from, for example, differences in task difficulty between the SRT and WP tasks).

Our choice of tasks was motivated by earlier findings in the literature and their

controversial nature.We hoped to gain new insight into the generality of the skill learning
deficit in PDon these twowell-established tasks by testing the same group of patientswith

PD, avoiding potential confounds stemming from differences in patient characteristics

across studies. While our results demonstrate the differential vulnerability of different

aspects of skill learning, the observed learning efficiency differences can stem from factors

outside the sequential–non-sequential divide, as pointed out by our reviewers. As

discussed in the Introduction, the two tasks differ on multiple other levels: involving

motor versus non-motor learning, feedback based versus non-feedback based and

depending on deterministic versus probabilistic information. As several of these

Table 5. The associations (Pearson’s correlation) between LEDandUPDRSmotor scale scores and skill

learning performance

LED UPDRS ‘medication off’ UPDRS ‘medication on’

Raw learning scores .308 �.169 �.251

Z learning scores .299 �.179 �.130

WP overall performance .147 �.144 �.354

Notes. No correlations reached significance with alpha = .025 (Bonferroni-corrected).

LED = levodopa equivalent units; UPDRS = Unified Parkinson’s Disease Rating Scale; WP = Weather

Prediction task.
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dimensions can be affected by the dopaminergic dysfunction in PD, the task effect could

reflect problems in these areas aswell. These concerns cannot be addressedby the current

paper and call for further studies comparing, for example, sequential versus non-

sequential motor learning, or other task conditions minimally differing in being feedback
based or not, or deterministic and probabilistic. Such designs could further elucidate the

generality of the impairment in PD.

A more detailed look at the lack of a group difference in probabilistic categorization

showed that on the WP task, the distribution of learners versus non-learners was

comparable in the two groups. Strategy analysis, however, revealed that this comparable

performance is reached using qualitatively different approaches. HC participants are

expected to identify the individual cue-outcome contingencies, combine the contingen-

cies, and base their decision on such a complex process. Patients with PD on the other
hand simplified the task, and only focused on one cue at a time. While previous studies

(Gluck et al., 2002) identified this strategy as ‘suboptimal’, in this study final performance

levels were comparable to those achieved by the ‘optimal’ Multi-cue strategy. The reason

for this might stem from differences in predictive values of cues between the studies.

Predictive values in this study were much higher than those in the Gluck et al. (2002)

study, which might explain why even suboptimal PD strategies yielded good perfor-

mance. With lower probabilities, single-cue strategies are expected to be less successful,

and group differences between patients with PD and HCs might become evident in
performance levels as well. It is also important to note, that despite being generally

considered a suboptimal strategy, it ismore readily available for patientswith PD, andwith

the current predictive values, it successfully compensates categorization performance to

a normal level.

Strategy-based differences have been associated with different memory systems.

Previous studies suggested that single strategies rely on the declarative memory system,

while the Multi-cue strategy is procedural (Gluck et al., 2002; Poldrack et al., 2001).

Based on the declarative-procedural dissociation, we could argue that the procedural
deficit in PD is compensated by declarative strategies. A similar compensation (‘seesaw’

effect, Ullman & Pullman, 2015) has already been described in developmental dyslexia

(Hedenius, Ullman, Alm, Jennische, & Persson, 2013) and specific language impairment

(Luk�acs, Kem�eny, Lum, & Ullman, 2017). Note, however, that experimental psycholog-

ical studies question whether the different strategies can bemapped onto the procedural-

declarative memory distinction (see Kem�eny, 2014; Kem�eny & Luk�acs, 2013a for detailed
discussion).

Performance on theWP task has been described as a result of competition between the
different memory systems. In healthy adult participants, the mediotemporal lobe was

found to be activated early on in the task, but this activation was followed by a rapid

deactivation (Poldrack et al., 2001). This deactivation was accompanied by a later

activation of the basal ganglia, which correlated with learning performance. Shohamy,

Myers, Onlaor, et al. (2004) argue that this later activation might be indicative of the

integration of information, which is related to the use of the Multi-cue strategy. Using

Multi-cue strategy has been found to be deficient in Parkinson’s syndrome by both

previous papers (e.g., Shohamy, Myers, Onlaor, et al., 2004), and by the current results.
Our study, however, was not designed to examine declarative compensation of

procedural dysfunctions.

The novelty of this study is that it tests two different forms of skill learning within the

same group of participants, eliminating possible differences in patient characteristics this

way. The sequence learning deficit together with qualitatively different learning on the
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WP task in patients with PD is suggestive of a general deficit in skill learning. The

generality of the deficit is further supported by the finding that performance measures of

theWPand SRT tasks are positively correlated, showing that patientswho are impaired on

one type of skill learning are also likely to be impaired on the other type (the association
was also present in the HC group).

As discussed in the Introduction, skill learningperformancehasbeenhypothesized tobe

closely associated with medication status (Ruitenberg et al., 2015). Previous work has

shown that DA depletion is associated with cognitive impairment in PD (e.g., Grahn et al.,

2008; Lewis et al., 2003). In the early stage of the disease, DA depletion is restricted to the

putamen and the dorsal caudate nucleus, sparing more ventral parts of the striatum (Cools

et al., 2001; Kish et al., 1988). This pattern could explain the differential effect of

dopaminergic replacement therapy on various cognitive functions. According to the
‘dopamine overdose hypothesis’, while DA medication increases the low DA level in the

putamen and dorsal striatum, it over-stimulates the ventral striatum. This hypothesis is

supported by observations that patientswith PDmanifest improved cognitive performance

after DA therapy on planning and set shifting tasks mediated by the dorsolateral

frontostriatal circuit (Cools et al., 2001; Lange et al., 1992) and impaired performance on

those that involve the ventral striatum and its ventrolateral prefrontal connections, such as

reversal learning (Swainson et al., 2000), reward learning (Cools, Altamirano,&D’Esposito,

2006), and risk-taking paradigms (Cools et al., 2001; Voon & Fox, 2007). Taking these
results into consideration, a possible explanation for somewhat controversial findings in

studies onmotor sequence learning in PD could be that some of these studies included DA

medication in the analysis of results while others have not. Kwak et al. (2010, 2012), for

example, argue that DA medication has a differential effect on early and later phases of

sequence learning. A significant impairment associatedwithmedicationwas observed only

in the earlyphase of learningcompared toPDpatientsOFF theirmedication andHCs (Kwak

et al., 2010). The early phase of sequence learning is reliant on the ventral and anterior

striatum,while learning in the laterphase ismore related to thedorsal andposterior striatum
(Leh�ericy et al., 2005; Miyachi, Hikosaka, & Lu, 2002). This is in line with Kwak et al.

(2012)’s other findings, demonstrating that patients ONmedication show no activity in the

ventral striatum in the early phase of sequence learning, whereas activity is observed in this

area OFF medication. In another study, Ruitenberg et al. (2016) found evidence that DA

medication impairs planning processes but enhances execution processes of movement

sequence learning. Regarding the performance on the WP task, most of the results point

towards a negative effect of DA medication on learning (e.g., Jahanshahi et al., 2010;

Wilkinson, Lagnado, Quallo, & Jahanshahi, 2008).
While the current experiment was not designed to test the role of medication in skill

learning, we did have information on the medication doses and motor effects. We

therefore analysed the correlations between LED and learning scores on both tasks. We

also tested the relationship between symptom severity assessed by the UPDRS-III motor

subscale (‘medication off’ and ‘on’ state, respectively) and task performancemeasures.No

significant correlations were found between performancemeasures and UPDRS-III scores

(either ‘medication on’ or ‘medication off’). Targeted studies should explore how

medication and symptom severity affects cognitive functions.

Conclusions

We investigated the generality of the skill learning deficit by testing two different forms of

skill learning in the same group of Parkinson’s patients with a basal ganglia deficit. We
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found a severe deficit inmotor sequence learning on the SRT task. Patientswith PD, on the

other hand, showed probabilistic category learning performance comparable to HCs on

theWP task. This typical performance was due to successful compensatory mechanisms.

These findings, together with associations between performance measures on the two
tasks, suggest a general deficit of skill learning in PD.
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