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Apolipoprotein E (apoE) is a 34.2 kDa glycoprotein characterized by its wide tissue distribution and multiple functions. The
nonlipid-related properties of apoE include modulating inflammation and oxidation, suppressing T cell proliferation, regulating
macrophage functions, and facilitating lipid antigen presentation by CD1 molecules to natural killer T (NKT) cells, and so forth.
Increasing studies have revealed that APOE ε allele might be associated with multiple sclerosis (MS), although evidence is still not
sufficient enough. In this review, we summarized the current progress of the immunomodulatory functions of apoE, with special
focus on the association of APOE ε allele with the clinical features of MS and of its animal model experimental autoimmune
encephalomyelitis (EAE).

1. Introduction

Apolipoprotein E (apoE) is a 34.2 kDa glycosylated protein
with 299 amino acid residues. The gene encoding apoE,
APOE ε, lies on the 19th chromosome. There are three
isoforms of apoE in human, namely, apoE2, apoE3, and
apoE4 [1] (Table 1). However, murine apoE has only one iso-
type, which resembles human apoE3 in terms of lipoprotein-
binding preferences [2, 3]. Hepatic parenchymal cells are the
principal apoE producing cells in mammalians, presumably
accounting for 60% to 75% of plasma apoE [4] (Figure 1).
Its synthesis and secretion have also been found in the spleen,
brain, lung, kidney, and so forth. In the nervous system, apoE
mRNA is present in astrocytes, nonmyelinating Schwann
cells, ependymal cells, neurons, and so forth [5, 6]. ApoE has
been widely studied in cholesterol transport, atherosclerosis
and cardiovascular diseases [7, 8], neurodegenerative dis-
eases such as Alzheimer’s disease [9, 10], and mild cognitive
impairment [11, 12]. In addition, apoE functions on the
immune system by suppressing T cell proliferation [13] and
neutrophil activation [14], regulating macrophage functions

[15–18], and facilitating the presentation of lipid antigen
by CD1 molecules to natural killer T (NKT) cells, [19, 20]
as well as modulating inflammation and oxidation [21].
The effects of apoE on immune responses have been shown
to be extensive and some of them depend upon ligands,
concentrations, and lipid-binding states. By these properties,
apoE functions in both physiological and pathophysiological
conditions at multiple levels. In this review, we outlined
the immuno-modulatory properties of apoE, with special
focus on the association of APOE ε allele with the clinical
features of multiple sclerosis (MS) and of its animal model
experimental autoimmune encephalomyelitis (EAE).

2. The Role of ApoE in Innate and
Adaptive Immunities

The nonlipid-related properties of apoE were originally
discovered as an inhibitory effect of plasma lipoproteins on
T cell proliferation in vitro [22–24]. Succedent investigation
ascribed this action to apoE, with a series of studies revealing
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Table 1: The main differences among apoE isoforms in humans.

Isoform
AA residues Domain

interaction
Binding to LDLR

112 158

ApoE 2 Cysteine Cysteine No Low affinity

ApoE 3 Cysteine Arginine No High affinity

ApoE 4 Arginine Arginine Yes High affinity

AA:amino-acid.
LDLR:low-density lipoprotein receptor.

SCs

MΦS

Astrocytes

Hepatocytes

etc.

ApoE

Sources of apolipoprotein E in vivo

Figure 1: The synthesis and secretion of apoE are found in spleen,
brain, lung, kidney, peripheral nerves, muscular tissue, adrenal,
ovary and testis, and so forth. Hepatic parenchymal cells are
the principal apoE-producing cells in mammalians, presumably
accounting for 60% to 75% of plasma apoE, followed by astrocytes,
which are the main apoE-producing cells in the brain, macrophages
(MΦs), and nonmyelinating Schwann cells (SCs), and so forth.

that both apoE-containing lipoproteins and synthetic apoE
peptides could inhibit antigen—and mitogen-stimulated T
lymphocyte proliferation by downregulating DNA synthesis
and by reducing phospholipid turnover in T cells [25–27], as
well as modifying the function of interleukin(IL-2) receptor
or modifying intracellular signaling pathways [28, 29]. Fur-
thermore, apoE can downregulate the T helper (Th 1) 1 cell-
mediated immune response [30, 31]. It is noteworthy that
a peptide containing the receptor-binding region (residues
133–149), COG133 other than apoE holoprotein, is enough
to suppress the response [32].

ApoE can neutralize lipopolysaccharide (LPS), attenuate
the inflammatory responses, and, thus, reduce LPS-induced
lethality [33]. ApoE deficiency results in impaired immune
responses in mice to Listeria monocytogenes [34, 35], as
well as to tuberculosis [36]. Ophir et al. showed that
injection of LPS led to significantly higher production of
pro-inflammatory cytokines such as IL-1β, IL-6, and tumor
necrosis factor-α (TNF-α) in human APOE ε4 transgenic
(Tg) mice than in APOE ε3 Tg ones [21].

Activation of macrophages is crucial in the initiation and
effector phases of both the innate and adaptive immunities
[37, 38]. Macrophages from apoE-deficient mice stimulated
by exogenous antigen are more effective in upregulating

the expression of pro-inflammatory cytokines, main his-
tocompatibility complex (MHC) class II molecules, and
costimulatory molecules in vitro [39]. Moreover, apoE
suppresses the production of pro-inflammatory cytokines
such as TNF-α and IL-1β by macrophages in an isoform-
specific manner (E2 > E3 > E4) [40]. Conversely, classical
activation of macrophages by inflammatory stimuli such as
LPS, interferon(IFN-γ), TNF-α, and IL-1β was simultane-
ously accompanied with downregulation of apoE production
[41, 42]. ApoE suppressing the inflammatory signaling in
macrophages, and vice versa, indicate an intricate apoE-
mediated feedback regulation of inflammatory responses.
The production of nitric oxide (NO) represents one of the
principle features of activated macrophages. Treatment of
macrophages and microglia with apoE increases NO produc-
tion [43]. After inflammatory stimulation, macrophages of
APOE ε4 Tg mice produce a higher level of NO than of APOE
ε3 Tg mice, which is coupled with an increased arginine
uptake, depending on p38 mitogen-activated protein kinase
(MAPK) [40, 44]. These findings point to the immuno-
regulatory dysfunction in APOE ε4 carriers. Similar to
apoE-deficient mice, APOE ε4 Tg mice seem to bear an
insufficiency to deal with inflammatory insults.

APOE-knockout mice bear abnormal humoral and cellu-
lar immune responses [45]. Although the antigen-presenting
function of macrophages seems to increase in apoE-deficient
mice [39], there still lacks evidence that apoE directly
functions on the antigen presentation process. This increase
might be due to the enhanced susceptibility to inflammatory
stimulation in apoE-deficient mice, resulting in higher
expression of MHC class II molecules and costimulatory
molecules on macrophages, or due to the elevated tendency
to the Th1 immune response [31]. However, the role of apoE
in facilitating lipid antigen presentation by CD1 molecules
to NKT cells has been extrapolated to be of great importance
in autoimmune diseases [46–49]. CD1 molecules (CD1a-d
in humans and CD1d in mice), similar in structure to the
MHC class I molecules, resemble MHC class II molecules
in function in that they can present lipid antigens to NKT
cells, in which process apoE is implicated. Upon binding to
CD1 via TCR, naive NKT cells respond rapidly to secrete
high amounts of IFN-γ and IL-4, which play a critical
role in the regulation of immune responses [49] (Figure 2).
More recently, B cells have been demonstrated to utilize
the apoE-mediated pathways of lipid antigen presentation
more efficiently than dendritic cells [50]. In terms of CD1-
mediated self-lipid presentation, apoE might be involved in
autoimmune diseases like MS via facilitation of self-lipid
antigen presentation to NKT cells [51–53].

The exact mechanisms by which apoE isoforms affect the
immunity remain unclear. However apoE has been presumed
to influence multiple signaling pathways. ApoE isoforms
might be in part responsible for the differential modulation
of the redox-sensitive transcription pathways such as nuclear
factor-κB (NF-κB) and MAPK [21, 54, 55]. Alternatively,
apoE can act by binding to different cell surface receptors
[56] to exert different functions, among which LDLR-related
protein (LRP) is postulated to mediate the nonlipid-related
effects of apoE [57, 58].
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Figure 2: ApoE facilitates the activation of CD1-restricted natural
killer T (NKT) cells. Inactivated NKT cells express surface marker of
NK1.1 and a semiinvariant T cell receptor (TCR). ApoE facilitates
lipid antigen-presentation by CD1 positive antigen presenting cells
(APCs) mainly through binding to low-density lipoprotein receptor
(LDLR). CD1 molecules present lipid antigens to NKT cells. Upon
ligation to CD1 via TCR, naive NKT cells are activated, and respond
rapidly to secrete high levels of IFN-γ and IL-4, which play a critical
role in the modulation of immune and inflammatory responses.

3. The Role of ApoE in MS

MS is primarily a chronic inflammatory demyelinating
disorder in the central nervous system (CNS) characterized
by focal infiltration of lymphocytes and macrophages, and
subsequent immune-mediated damage to myelin and axons
[59]. Aetiology of MS is suggested to be multifactorial and
pathogenesis of it is still underclarified. A variety of studies
have focused on the isoform-dependent role of apoE in MS,
with an exclusive aim at finding an association of APOE
ε allele with MS, just as the well-established one of APOE
ε4 with Alzheimer’s disease [60]. A general hypothesis is
to assume that apoE genotypes can influence mechanisms
of maintenance and repairing of the nervous system, which
leads to distinct clinical courses in relation to the presence
of a certain allele. A study on MS with magnetic resonance
imaging (MRI) revealed lower total brain volumes in ε4 allele
carriers as compared with non-ε4-carriers [61]. This finding
provides new evidence that links APOE-ε4-related impaired
restoration with severe tissue destruction in MS. However,
considering the relatively low gene frequency of APOE
ε4, especially APOE4/4 genotype in normal populations,
the most probably implicated genotype affecting MS, it
remains far from drawing a conclusion before more larger
population-based studies are conducted.

3.1. ApoE As a Biological Marker in MS. Presently the
useful biomarkers to assess the course and prognosis of
MS are lacking. The ideal biomarker is one that reflects
the neuropathology of MS lesions and, thus, has very high

Table 2: ApoE genotype frequencies.

Phenotype
Prevalence (%)

Utermann et al. [62] Menzel et al. [63]

E4/4 2.8 2.3

E3/3 59.8 62.7

E2/2 1.0 0.8

E4/3 22.9 20.3

E4/2 1.5 3.0

E3/2 12 11.0

Total subjects 1031 1000

specificity and sensitivity, and that has a simple reproducible
testing technique. Many studies reported the markers of
inflammatory and immunological processes in MS [64].
In several studies aiming at finding specific biomarkers
in the cerebrospinal fluid (CSF) of human Guillain-Barré
syndrome (GBS), an analog of MS in the peripheral nervous
system, apoE was shown to decrease in CSF in GBS patients
by proteomic analysis and ELISA [65, 66]. Similarly, the
levels of apoE in CSF decreased in MS [67, 68]. Furthermore,
a study showed lower apoE concentrations in the serum of
MS patients than in healthy subjects [69]. As there is limited
permeability of the blood-brain barrier (BBB) to apoE [70,
71], this decrease in CSF might result from a reduction of
local apoE synthesis and secretion by brain tissue, as a part of
the suppressed systemic production of apoE in acute phage
reaction, while it is difficult to explain the decreased apoE
concentrations in serum [3]. However, other studies failed
to show such a decrease of apoE in CSF [69, 72], or even
presented completely opposite results in MS patients [73].
No correlation of apoE in serum or CSF with age, clinical
course, or prognosis was found [68]. Considering the distinct
status of in vivo inflammation and BBB integrity in different
stages of MS, these conflicting results seem educible before
larger investigations with more detailed stratification are
conducted.

3.2. APOE ε Allele and Clinical Features of MS. The involve-
ment of apoE in MS, although far from being elucidated, has
been indicated by identification of the 19q13 chromosome
as a candidate gene for autoimmune diseases from linkage
analysis [74, 75], such as systemic lupus erythematosus [76].
APOE ε distribution in healthy populations is presented by
two large-scale studies in Table 2. The gene frequencies of
APOE ε2, 3 and 4 are 0.077, 0.773, and 0.150, respectively,
as reported by Utermann et al. [62], and 0.078, 0.783, and
0.139 by Menzel et al. [63]. Regarding the geographical
distribution of APOE ε4, there was a south-to-north gradient
of APOE ε4 frequencies in Europe, with the frequency of
APOE ε4 rising from only 10–15% in the south to 40%–
50% in the north. And this is also the case in Japan [77].
The incidence of MS resembles APOE ε4 allele frequency in
terms of geographical distribution [78]. Thus a hypothesis
on this involvement is that a higher gene frequency of APOE
ε4 is associated with MS. So far, most studies have not
confirmed an alteration in APOE ε allele distribution in MS
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[79, 80]. The association between APOE ε4 homozygosity
and MS was not investigated in most studies, since the
APOE 4/4 homozygotes are rare both in healthy subjects
and in MS patients [63, 81]. Only a limited number of
studies attempted to but were unable to provide a positive
conclusion [82, 83]. However, one exception is Høgh et al.’s
study, in which homozygosity for APOE ε4 is more common
in MS patients [84]. Anyhow, more large-scale studies are
needed to elucidate the APOE ε allele distribution in MS.

Data from animal experiments suggested that BBB dys-
function resulting from apoE deficiency might lead to more
susceptibility to EAE. Although there is no direct evidence
that apoE contributes isoform dependently in maintaining
BBB integrity, considering the preferences of apoE subtypes
binding to lipoproteins and apoE receptors (Table 1), apoE
isoforms may differ in protecting human from MS. Despite
these presumptions, previous allelic association studies did
not confirm the suggested relation of APOE ε4 allele with
liability to MS [85–89]. A recent study reported that African
Americans female MS patients who were APOE ε4 carriers
had an earlier age of onset than Caucasian female MS
patients, indicating that APOE ε allele might not be the
independent factor to determine the age of onset in MS [90].
Albeit Chapman et al. found an earlier age of onset in the
APOE ε4 carriers [91], most of others failed to find such
positive associations [53, 68, 92–94].

The classification of MS is based on the clinical observa-
tions, neuroimaging findings, and histopathological studies,
as well as laboratory examinations. At least four clinical
subtypes of MS have been identified, including relapsing-
remitting MS (RRMS), which accounts for approximately
85% of all MS cases, primary progressive MS (PPMS),
secondary progressive MS (SPMS), and progressive relaps-
ing MS (PRMS). (The clinical course of MS subtypes is
illustrated as in Figure 3.) Up to date, there has not been
clear evidence for an association of apoE polymorphism with
a specific clinical subtype of MS. Most studies denied the
association between a particular APOE ε allele or genotype
with MS subgroups, while the relatively small sample size
limited the statistical power of the research [83, 95].

Currently, the most appropriate method to quantify
severity and rate of progression is Expanded Disability Status
Scale (EDSS), which is nonlinear, providing a mean value
that represents mostly motor deficits. N-acetylaspartate-
creatine ratio, as an index of axonal damage, is lower in the
patients with MS and an ε4 allele, indicating that APOE ε4
allele correlated with MS disease severity [93]. An analysis of
614 patients with MS from 379 families indicated that APOE
ε4 carriers were more likely to be involved in severe diseases
[88]. A more recent study, on the other hand, suggested that
the association of apoE polymorphisms with disease severity
in MS was only in females [96]. Moreover, APOE ε4 was
not associated with a more severe clinical course and did
not appear to influence recovery of exacerbations, as some
researchers revealed [97–100]. One neuroimaging study also
showed a negative correlation between APOE ε allele and
disease severity [101]. The conflicting results might be due
to the heterogeneity of clinical manifestations in MS or due
to the relatively small sample size in these studies. Another

RRMS

SPMS

PPMS

PRMS

Clinical subtypes of MS

Figure 3: The four common clinical subtypes of MS are illustrated.
RRMS (Relapsing-remitting MS). At least one clinical attack
resulting from demyelination (relapsing phase) follows by complete
or partial recovery (remitting phase), after the first recovery
from an attack. SPMS (Secondary progressive MS). Symptoms are
continuously and gradually worsening, after a period of RRMS.
PPMS (Primary progressive MS). Symptoms keep worsening after
the onset, without obvious relapsing-remitting phases. PRMS
(Progressive relapsing MS). MS with characteristics of both PPMS
and RRMS.

explanation is that the relation of APOE ε4 with clinical
severity is probably not very strong [72].

Whether APOE ε allele influences the relapse or pro-
gression of MS is not clear. Relapse can be defined as a
clinical attack resulting from demyelination, apart from the
first episode of MS, characterized by three-phase clinical
course, namely, onset, nadir, and recovery stages; the latter
of which can either be complete or partial. It is assumed
that a certain APOE ε allele is associated with more rapid
relapse or progression. However, the results obtained from
previous studies are contradictory. Most results proved the
hypothesis of an association between the APOE ε4 allele
and rapid progression of the disease [53, 84, 88, 91, 102],
whereas others did not [79, 80, 103]. Neuroimaging data
demonstrated accelerated brain-tissue loss and a higher pro-
portion of lesions evolving into “black holes” in MS patients
with APOE ε4. The annual reduction in brain volume in
APOE ε4 carriers is five-fold higher than non-ε4-carriers
[104]. There are also indications that the APOE ε4 allele
is related to more severe progression of MS, as measured
by MRI markers [105]. Some studies reported that the
presence of the APOE ε4 allele was associated with a poorer
outcome after evaluation with EDSS, progression index, and
so forth [53, 88, 106], while a meta-analysis did not support
this finding [80, 86, 95, 107–109]. It is worth noting that
most of the aforementioned studies are retrospective cross-
sectional ones, but not prospective longitudinal ones. The
preexisting records, in such cases, were recorded for purposes
other than validating the hypothesis and, therefore, might
result in incomplete followups needed for the evaluation
of progression or relapse in MS patients. Although still far
from clarified, the apoE ε4 isoform has a higher affinity
than the others to lipid molecules, and is thus postulated to
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associate with the poorer outcome in MS, which is related
to a compromised capacity of remyelination or regeneration
[95].

The recognition of the importance of cognitive impair-
ment in MS patients is increasing. Cognitive impairment
is now considered one of the earliest manifestations of the
disease, which can affect up to 65% of MS cases [110, 111].
The association between APOE ε4 allele and cognitive deficits
in MS has been verified by dozens of studies [112–114].
However, there usually lacks robust interpretation of the
cognitive impairment in MS in most studies, which can
either be only a symptom on account of myelin damage
and axonal loss, suggesting the severity of the disease, or be
at a subclinical stage of neurodegenerative diseases such as
Alzheimer’s disease, irrelevant of the disease of MS per se.
Hence findings, either positive or negative, must be inter-
preted with caution [115]. Anyway, cognitive impairment in
newly diagnosed MS is intriguing, since it may be of help
to evaluate the disease. Besides, the depression is common
in MS and is thought to interplay with cognitive and non-
cognitive activities, but efforts to explain its aetiology, from
effects of drugs, to physical disability, cognitive deficits,
fatigue, and disease duration have not been successful.
Recent studies have shown a relation between depression and
demyelination in MS [116, 117]. Interestingly, the presence
of the APOE ε2 allele seemed protective against depressive
symptoms in MS [118], although further studies are needed
to explain the mechanisms implicated.

4. The Role of ApoE in EAE

EAE, which is a CD4+ T cell-mediated experimental disorder
in the CNS, has been proposed as an animal model for MS
to investigate the pathogenesis and to test new therapeutic
strategies. Since the first classical study by Rivers in monkeys
immunized with brain homogenate, virtually all mammalian
species have been revealed to be susceptible to EAE [119].
EAE has been in the last 30 years, the most frequently used
animal model to study MS. Although restricted to the limited
number of apoE-related EAE studies, current knowledge
from literature points towards an affirmatory role of apoE
in the pathogenesis of EAE. In as early as 1980s, activated
macrophages and lesions in the CNS were proposed to be
causally related to the increased apoE in plasma in EAE
[120]. Exacerbated EAE in apoE-deficient mice was later
demonstrated to be concomitant with significantly more
infiltration of lymphocytes and macrophages in the lesions
in vivo and increased lymphocyte proliferation stimulated
by myelin antigens and mitogens in vitro [121]. ApoE can
bind to sulfatide, a myelin-derived glycolipid, and regulates
the sulfatide level either in brain tissue or in CSF [122].
The aggravation of EAE might be a consequence of reduced
priming of sulfatide-specific CD1d-restricted regulatory T
cells that can inhibit EAE [123].

The aforementioned derived peptide from apoE,
COG133, attenuates the severity of EAE by inhibiting
production of cytokines and free radicals, as well as by
reducing T cell proliferation [124]. COG133 downregulates

the activation of microglia and macrophages, and reduces
release of TNF-α, IL-6, and NO [125]. In vivo, COG133 can
also suppress LPS-induced inflammation in CNS [32].

APOE ε4 allele results in early cognitive deficits in EAE
mice, including deficits in spatial learning and recalling.
Regional decreases in choline acetyltransferase in the hip-
pocampus might explain these deficits [126]. This is in
accordance with MS studies on human [114, 127].

As argued lately, EAE would only be useful as a
model of CNS demyelination such as acute disseminated
encephalomyelitis, whilst the misleading role of EAE should
not be neglected [128]. The isoform-specific effects of apoE
on EAE must be properly interpreted now that EAE cannot
mimic clinical MS to a fractional.

5. Conclusions and Prospectives

The immuno-modulatory functions of apoE have been
extensively studied, while only ambiguous or even con-
troversial results have been obtained in elucidating the
isotype-dependent effects of apoE on MS and EAE. This is
partly due to the difficulty of interpretation of results from
animal experiments to a general conclusion. For example, the
difference of serum and tissue apoE levels in APOE ε2, ε3,
and ε4 Tg mice might be a confounding factor when isoform-
dependent effects are studied. Domain interaction (Table 1)
distinguishes apoE4 from apoE2 and apoE3 in biological
functions, and contributes to the detrimental effects of apoE4
[129, 130]. Because of domain interaction, apoE4 binds
preferentially to very low-density lipoproteins, which are
more rapidly removed from plasma than other lipoproteins
such as HDL, to which apoE3 and apoE2 bind preferentially,
resulting a lower level of apoE in serum [130, 131]. The lower
level of apoE4 causally depresses the protective role of apoE
in both inflammatory and immune responses. Additionally,
lipid-free apoE only binds to LRP [132, 133]. Therefore,
in interpreting the effects of apoE on immune responses,
its lipidation state, concentration, and location of action
must be taken into account. The comparison of APOE
4ε carriers, especially APOE 4ε heterozygotes in MS, with
healthy subjects might not be efficient enough to exclude the
influence of other APOE ε alleles, for no evidence as yet has
confirmed a similar or contrary effect among apoE isoforms
on susceptibility to or clinical severity of MS. Moreover,
interaction between APOE and other genes should be taken
into account in studying the pathogenesis of MS, as in
other apoE related diseases such as Alzheimer’s disease [134].
Anyway, the elucidation of the exact mechanisms by which
apoE functions on the immune responses is appealing in that
it may provide new insights to the preventive or therapeutic
strategies in coping with autoimmune diseases and even
other diseases.
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