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INTRODUCTION 
 

The wide range of heterogeneity in cancerous tumors 

has been amply studied to understand its causes and 

design targeted therapies [1]. While antibodies that 

block immune checkpoint proteins, including cytotoxic 

T-lymphocyte associated protein 4 (CTLA4) and 

programmed cell death protein 1 (PD-1), have been 

approved to treat a variety of cancers [2], the majority 

of cancer patients see little benefits from these 

treatments. One limitation of studies leading to such 

antibody treatments is their failure to characterize single 

cells for their ability to respond to checkpoint inhibitors. 

Indeed, the identification of effective therapeutic bio- 

 

markers requires an in-depth understanding of tumor-

resident immune cells. 

 

Gastric cancer (GC) is the third leading cause of cancer-

related death, with a relatively poor prognosis [3], 

particularly for patients with tumor, node, metastasis 

(TNM) stage T3 and T4 [4]. While targeting immune 

checkpoints has been used with great success to treat 

some types of cancer and offer great promise to treat 

GC, GC patients do not benefit much from the current 

implementation of such therapies. 

 

Recently, single-cell RNA sequencing has enabled 

specific analysis of cell populations in highly complex 
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ABSTRACT 
 

Cancer immunotherapy has achieved positive clinical responses in the treatment of various cancers, including 
gastric cancer (GC). In this study, we characterized the heterogeneity of T cells isolated from GC patients at the 
single-cell level using single-cell RNA sequencing. We identified different immune cell subtypes and their 
heterogeneous transcription factors and depicted their developmental trajectories. In particular, we focused on 
exhausted CD8+ cells and Tregs and discovered that, as compared to control, the IRF8 transcription factor was 
downregulated in CD8+ tumour-infiltrating lymphocytes (TILs) from GC tissues, and that GC patients with lower 
IRF8 levels in blood CD8+ T cells tended to be a at a more advanced disease stage. These findings provide a 
theoretical basis for targeted immune therapy in GC. 
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tumor micro-environments at the single-cell level, thereby 

revealing previously uncharacterized molecular 

complexity [5]. Single-cell analyses might more 

accurately identify rare gene mutations in tumors as 

compared to bulk analyses, and might thus facilitate the 

design of optimal treatments to prevent tumor 

regeneration [6]. For example, single-cell sequencing has 

revealed a T cell exhaustion signature in some types of 

cancer and its connection to T cell activation [7–10]. 

However, there are no reports of specific applications of 

single-cell sequencing to GC. In the present study, we 

analyzed immune cells from a cohort of newly-diagnosed 

GC patients using flow cytometry and RNA-seq. We also 

separately analyzed the different genes in different cell 

clusters from two perspectives: T (gastric cancer tissues) 

vs N (adjacent normal tissues); PB (gastric cancer 

peripheral blood) vs HB (healthy individual peripheral 

blood). We examined signature genes for 

CD4+lymphocytes, CD8+ lymphocytes, B lymphocytes, 

Natural Killer cells (NKs), Dendritic cells (DCs), and 

macrophages. Our findings provide a theoretical basis for 

targeted therapy of immune cells in GC and can be used 

as a valuable resource for studying the basic 

characteristics of immune cells and potentially guide 

effective immune-therapy strategies. 

 

RESULTS 
 

Acquisition of scRNA-seq profiles from primary GC 

samples and immune cell clustering 

 

We performed scRNA-seq on immune cells isolated from 

nine samples including two peripheral blood samples 

taken from two healthy individuals, three preoperational 

peripheral blood samples taken from three GC patients, 

and two pairs of gastric cancer tissues and corresponding 

adjacent non-tumor tissues taken from two GC patients. 

To capture the full spectrum of tumor micro-

environments, we sorted a subset of cells with no pre-

selection based on CD45 isolation and to ensure adequate 

numbers of immune cells for analysis. The data separated 

for by sample are detailed in Table 1. We identified 10 

cell clusters in tissues and nine cell clusters in peripheral 

blood by classifying the cells based on their molecular and 

functional properties (Figure 1A). Next, we identified 

each immune cell subtype and their heterogeneous 

transcription factors (TFs). Figure 1B shows a depiction 

of their developmental trajectories (Figure 1B). Finally, 

we confirmed the expression of some genes and analyzed 

its correlation with clinical features (Figure 1C). 

 

IRF8 is downregulated in exhausted CD8+ T cells 

from GC samples compared to normal samples 

 

To reveal the intrinsic structure and potential 

functional sub-types of CD8+ T cells including naive, 

cytotoxic, and exhausted CD8+ T cells, we separately 

analyzed the genes in T vs N and PB vs HB groups 

and made heat maps and volcano formats (Figures 2A, 

2B and Supplementary Figures 1, 2). Since co-

inhibitory receptors, such as PDCD1 and TIGIT, are 

targets for cancer immunotherapies, we then focused 

on analyzing the preferential enrichment of exhausted 

CD8+ T cells in GC. Pathway analysis showed that 

these different genes in tumor-infiltrate exhausted 

CD8+ T cells might be involved in cytokine 

production (Figure 2C). In terms of trajectory branch, 

we observed that it started with cytotoxic CD8+ T 

cells and ended with exhausted CD8+ T cells in GC 

tissues (Figure 2D) while in blood it ended with naive 

CD8+ T cells (Figure 2E), which is consistent with the 

normal process of tumors. 

 

We assessed the expression of the interferon 

regulatory factor 8 (IRF8) transcription factor in 

tumor-infiltrate CD8+ exhausted T cells and CD8+ 

TILs from 11 GC patient tumors and found that IRF8 

was downregulated in both compared to normal 

tissues (Figure 2F). Furthermore, we analyzed 

peripheral blood mononuclear cells (PBMCs) from 32 

patients with GC at initial diagnosis to assess IRF8 

expression in CD8+ T cells using flow cytometry 

(Figure 2G). We divided GC patients into Peri-CD8-

IRF8 high and Peri-CD8-IRF8 low groups according 

to the average levels of IRF8 in peripheral blood 

CD8+ T cells. GC patients with low expression of 

IRF8 in blood CD8+ T cells had a more advanced 

tumor stage (Table 2). Based on GC data from The 

Cancer Genome Atlas (TCGA), downregulation of 

IRF8 was associated with shorter overall survival 

(OS) (Figure 2H). Open Targets software showed that 

IRF8 plays a negative regulatory role in cells of the 

immune system (Figure 2I). Together, these data 

indicate that IRF8 was associated with exhausted 

CD8+ T cells in GC. 

 

Identification of genes uniquely associated with Treg 

function in GC 

 

Regulatory T cells (Tregs) are involved in immune 

tolerance [11]. Supplementary Figure 3A, 3B shows 

different gene and pathway analyses in blood-isolated 

Tregs. Great effort has been devoted to identifying 

genes that can serve as to monitor GC prognosis. Our 

results showed that KDM5D and ADRB2 in blood-

isolated Tregs was upregulated in peripheral blood of 

GC patients compared to controls and that high 

expression of KDM5D and ADRB2 correlated with 

poor prognosis (Supplementary Figure 3C, 3D). This 

suggests that KDM5D and ADRB2 might serve as non-

invasive markers in circulating blood to monitor GC 

patient outcomes. 
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Table 1. The sample information of patients. 

Sample ID Age Sex TNM stage Type Cell Number 

RD20180928003  69 Male IIIA T1 1681 

RD20180928004  69 Male IIIA N1 3037 

RD20181119022  67 Female IIB T2 2505 

RD20181119023  67 Female IIB N2 2505 

RD20181018007  61 Male IIIA PB1 377 

RD20181018008  71 Male IIIA PB2 1430 

RD20181109021  83 Male IIB PB3 4154 

RD20181018009  65 Male - HB1 6373 

RD20181018010  72 Female - HB2 7333 

Note: T: Tissue; N: Normal; PB: Peripheral blood of cancer patients; HB: Blood of healthy individuals 
 

 
 

Figure 1. Overview of the study design. (A) ScRNA-seq was performed on immune cells isolated from GC preoperational peripheral 

blood samples and GC tissues and corresponding adjacent non-tumor tissues. 10 cell clusters in tissues and 9 cell clusters in peripheral blood 
were identified based on CD45 isolation. (B) Each immune cell subtype, their heterogeneous transcription factors, and their developmental 
trajectories. (C) Correlation between the expression of specific genes and clinical significance. 
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In tumor-infiltrate Tregs, we found that IFIT2, CCL3, 

RBPJ, etc. were upregulated in GC tissues compared 

to adjacent normal tissues while IGJ, XCL1, XCL2, 

etc. were downregulated (Figure 3A). Pathway 

indicated they were enriched in cytokine-cytokine 

receptor interaction, PI3K-AKT, and NF-kB pathway 

(Figure 3B, 3C). For trajectory branch, we observed 

much fewer effector Tregs in the tumor environment 

but more pronounced naive phenotypes in GC tissues 

(Figure 3D). We highlight some membrane receptors, 

transcript factors, and cytokines that are differentially 

expressed in GC. Interestingly, we found that the 

transcription factor RBPJ was overexpressed in 

tumor-infiltrate Tregs (Figure 3E). Interaction 

network analysis using STRING displayed that RBPJ 

was involved in the NOTCH pathway (Figure 3F). 

Next, we performed single-cell analysis using 

CancerSEA. The results suggested that RBPJ might 

function mainly via regulating DNA repair, 

metastasis, and hypoxia to inhibit cancer progression 

(Figure 3G). To explore the potential network which 

could regulate RBPJ expression, we analyzed the TFs 

that might promote or inhibit RBPJ gene transcription. 

We found the top 20 TFs differentially expressed in 

cancer tissues using the Cistrome DB Toolkit (Figure 

3H). We found that RBPJ might act as a TF to 

promote LAG3 and GEPIA2 expression in GC (Figure 

3I, Supplementary Figure 4E). 

 

 
 

Figure 2. The transcription factor IRF8 was associated with CD8+ T cells in GC. (A) Heat map displaying the top 50 genes 

differentially expressed in CD8+ exhausted T cells from tissues. (B and C) Pathway analysis for CD8+ exhausted T cells. (D) Trajectory analysis 
for CD8+ T cells in tissues. (E). Trajectory analysis for CD8+ T cells in blood. (F) Expression of IRF8 in CD8+TILs from GC tissues and normal 
tissues. (G) Expression of IRF8 in peripheral blood CD8+ T cells from GC patients. (H) TGCA analysis of IRF8 in GC prognosis. (I). Pathway and 
disease analysis of IRF8. 
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Table 2. Clinical and pathological features of two groups of patients with Peri-CD8-IRF8high and Peri-CD8-IRF8 low  

Variables No. of patients  Peri-CD8-IRF8 high Peri-CD8-IRF8 low P value 

Age(year)    0.252 

≥60 15 8 7  

<60 17 6 11  

Gender     0.292 

Female   12 4 8  

Male 20 10 10  

Diameter    0.590 

≥5(cm) 21 9 12  

<5(cm) 11 5 6  

Differentiation    0.361 

High 16 6 10  

Low/Middle 16 8 8  

TNM Stage    0.017* 

I–II 15 10 5  

III  17 4 13  

Note: *P<0.05. 
 

Gene signature of B cells and pathway analysis in 

GC 

 

Differentially expressed genes in B cell subsets 

between cancerous and paracancerous tissues was 

comprised of EIF1AY, KRT19, LCN2, RPS4Y1, etc., 

(Figure 4A). In the PB vs HB group, RORA, 

COL6A2, ETS1, FHIT, etc., were overexpressed 

while HBA2, HBA1, IGLL5, C1CB, etc., were 

downregulated (Figure 4B). Pathway analysis 

revealed that upregulated genes in the B cell cluster 

were scattered across the TNF, NOD-like, and CXCR 

chemokine receptor binding pathways (Figure 4C, 

4D). It is worth mentioning that we summarized our 

current knowledge of B cells and performed heat-

maps in T vs N and PB vs HB group. The results 

revealed that B cells exert immune-regulatory 

functions through the production of cytokines 

including IFNG, CCL3, IL-8, etc. We also presented 

a succinct summary of emerging immune targets with 

reported pre-clinical efficacy including activated/ 

inhibitory/co-receptors of B cells [12]. For example, 

CD40, which serves as a B cell activating receptor, 

was downregulated in GC patients (Figure 4E, 4F). 

 

More inhibitory receptors and less activated 

receptors secreted by NK cells in response to GC 

 

NK cells are important components of the innate 

immunity and play a key role in host defense by virtue 

of their ability to release cytokines and to mediate 

cytolytic activity against tumor cells [13]. In our 

research, we found that IL8, G0S2, HSPA6, CXCL1, 

etc., were upregulated in GC tissues compared to 

adjacent normal tissues while IGJ, TFF1, NCR2, etc. 

were downregulated (Figure 5A). In the PB vs HB 

group, SCAF1, LAG3, TPM1, etc. were overexpressed 

whereas IGLL5, IGJ, C1QB, etc. were overexpressed 

(Figure 5B). Pathway analysis demonstrated that these 

genes might participate in cytokine-cytokine receptor 

interaction, MAPK signaling, chemokine signaling, and 

T cell receptor signaling (Figure 5C, 5D). Of note, NK 

cells expressed more inhibitory receptors such as 

KIR2DL2 in GC tissues compared to controls. 

Similarly, NK cells expressed fewer activated receptors 

such as KLRK1 and CD226 in GC patient blood 

compared to controls. Lastly, NK cells secreted more 

cytokines including CCL3 and CCL4 in GC (Figure 5E, 

5F). Taken together, these data indicate that NK  

cells participate actively in immunosurveillance to 

prevent GC. 

 

Different dendritic cell subtypes and their 

interactions in GC 

 

Dendritic cells (DCs) are central regulators of the 

adaptive immune response, and as such are necessary 

for T-cell-mediated cancer immunity [14]. Figure 6A, 

6B lists differentially expressed genes in the DC cell 

cluster (Figure 6A, 6B). Pathway analysis suggested 

that these genes are enriched in cytokine activity and 

immune response, MAPK, and NF-KB pathways 

(Figure 6C, 6D). Plasmacytoid DCs (pDCs) are 

recognized as major producers of type I interferons 

(IFN-I) and can promote anti-tumoral immunity 

through direct activity on both tumors and immune 

cells [15]. pDCs selectively express TLR7 and TLR9, 

and their most important function is to produce large 
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quantities of IFN-I in response to single-stranded 

viral RNA and DNA [16]. Our data showed that 

pDCs expressed more TLR7 in GC patients than in 

controls. Additionally, DC cells expressed more 

inhibitory receptors such as FTL and IL8 in GC 

tissues compared to normal tissues and secreted less 

cytokines including CCL4 and CCL5 in GC patient 

blood compared to controls. Myeloid DCs (mDCs) 

are very potent antigen-presenting cells (APCs) that 

possess the unique capacity to prime naive T cells 

and consequently to initiate a primary adaptive 

immune response [17]. We showed that some 

molecules including TLR1, TLR2, TLR6, and TLR10 

are differentially expressed in mDCs (Figure 6E, 6F). 

The complexity of DC subtypes, and their 

interactions, means that multiple complementary 

strategies are likely necessary to drive the eradication 

of cancer in GC patients undergoing DC-mediated 

anti-cancer therapy. 

 

Gene signature of macrophages in GC   

 

Macrophages are a major constituent of the tumor 

microenvironment where they either promote or 

inhibit tumorigenesis and metastasis depending on 

their state  [18]. Pathway analysis failed to identify 

differentially-expressed genes in macrophage subsets 

(Supplementary Figure 4A, 4B). We listed some key 

inflammatory cytokines, inhibitory receptors, 

angiogenesis factors, chemokines, inhibition of  

 

 
 

Figure 3. Identification of genes uniquely associated with Treg function in GC. (A) Heat map displaying the top 50 genes 

differentially expressed in Tregs from tissues. (B and C) Pathway analysis for different genes in Tregs. (D) Trajectory analysis for Tregs in 
tissues. (E) Expression of various molecules in Tregs. (F) STRING analysis of RBPJ. (G) Single-cell analysis using CancerSEA. (H) Top 20 
differentially expressed TFs in cancers as shown by Cistrome DB Toolkit for RBPJ. (I) GEPIA analyses showing the association between RBPJ 
and LAG3. 
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angiogenic factors, growth factors, and others in three 

groups and made heat-maps. Results showed that 

macrophages expressed more IL1RN, CXCL1, and 

IL8 in GC tissues and more CCL5, IL2RG, and 

C10orf54 in GC blood than in controls (Supplementary 

Figure 4A, 4B). Plasticity is a hallmark of cells of the 

myelomonocytic lineage [19]. A better understanding of 

the molecular basis of macrophage plasticity will open 

new vistas in immunopathology and therapeutic 

interventions for GC. 

 

DISCUSSION 
 

Intratumoral heterogeneity is a major challenge in 

oncology but scRNA-seq is an emerging efficient tool 

to characterize tumor developmental levels, drug 

resistance, and invasiveness. Here, we provide a 

comprehensive overview of immune cells in human 

gastric cancer (GC) tissues and GC preoperative blood 

at a single-cell resolution. Our findings support the 

view that immune cells from different tissues and 

blood are instructed by environmental factors to 

display different gene-expression profiles. Previous 

studies mostly focused on the expression profile of T 

cell populations in various cancers including liver 

cancer [20], breast cancer [21], and melanoma [22]. 

However, our data identified the distribution of 

immune cell clusters including CD4+, CD8+ T cells, B 

cells, NK cells, DC cells, and macrophages in GC, 

their characteristic gene expression, and pathway 

analyses in T vs N and PB vs HB groups. 

 

Immunization is caused by a complex interaction 

between the innate immune system and the adaptive 

immune system. Innate immunity is the first line of 

defense against infection and abnormal cells. 

Importantly, NK cells, DC cells, and macrophages 

serve as important antigen-presenting cells that 

activate adaptive immunity [13, 23, 24]. Therefore, we 

analyzed innate immunity and listed key inflammatory 

cytokines, inhibitory/activated receptors, angiogenesis 

factors, chemokines, inhibition of angiogenic factors, 

growth factors, and others in NK cells, DC cells, and 

macrophages, which were presented as heat-maps. The 

success of anti-cancer immunotherapy has placed NK 

cells, DC cells, and macrophages under the spotlight, 

 

 
 

Figure 4. Gene signature of B cells and pathway analysis. (A) The expression analysis of functional molecules in B cell cluster in T vs N. 

(B) The expression analysis of functional molecules in B cell cluster in PB vs HB. (C) Pathway analysis of in B cell cluster in T vs N. (D) Pathway 
analysis of in B cell cluster in PB vs HB. (E) The expression analysis of functional molecules in B cell cluster in T vs N. (F) The expression analysis 
of functional molecules in B cell cluster in PB vs HB. 
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given their critical role in initiating anti-tumor T cell 

immunity. Looking forward, the development of novel 

immunotherapeutic interventions for gastric cancer 

should aim to enhance the function of tumor-associated 

NK cells, DC cells, and macrophages to improve  

GC patient outcomes and exploit this critical immune 

cell type. 

 

Transcription factors are key regulators of gene 

expression from DNA to mRNA by binding to specific 

DNA sequences on promoters and enhancers to activate 

or inhibit the expression of specific genes [25]. 

Therefore, the identification of target genes for TFs is 

very important in understanding normal development 

and disease pathogenesis. A central finding from our 

study is that IRF8 was downregulated in tumor-infiltrate 

CD8+ exhausted T cells compared to adjacent normal 

tissues. IRF8 was also downregulated in CD8+ TILs 

from GC tumors compared to normal tissues. GC 

patients with low expression of IRF8 in blood CD8+ T 

cells had a more advanced tumor stage. These data 

indicate that IRF8 was associated with exhausted CD8+ 

T cells in GC. Miyagawa F et al showed that IRF8 

integrates the TCR/costimulation and γc-cytokine-

signaling pathways and mediates the transition of naive 

CD8 T cells to effector cells, thus identifying IRF8 as a 

regulator of CD8 T-cell differentiation [26]. Most 

previous studies have focused on IRF8’s role as a 

transcription factor in DCs. For example, Luda et al 

found that IRF8 Transcription-Factor-Dependent 

Classical Dendritic Cells are essential for intestinal T 

cell homeostasis [27]. Sichien et al 2016 identified IRF8 

as a terminal selector of the cDC1 lineage controlling 

survival. In monocytes, IRF8 was necessary during 

early but not late development. Complete or late 

deletion of IRF8 had no effect on pDC development or 

 

 
 

Figure 5. More inhibitory receptors and fewer activated receptors are secreted by NK cells in response to GC. (A). Expression 

analysis of functional molecules in the NK cell cluster in T vs N. (B). Expression analysis of functional molecules in the NK cell cluster in PB vs 
HB. (C). Pathway analysis of functional molecules in the NK cell cluster in T vs N. (D). Pathway analysis of functional molecules in the NK cell 
cluster in PB vs HB. (E). Expression analysis of functional molecules in the NK cell cluster in T vs N. (F). Expression analysis of functional 
molecules in the NK cell cluster in PB vs HB. 



 

www.aging-us.com 2755 AGING 

survival but altered their phenotype and gene- 

expression profile leading to increased T cell 

stimulatory function but decreased type 1 interferon 

production [28]. Our results here show a novel 

mechanism for IRF8-mediated tumor CD8+ T cell 

activation. In addition, we found that another 

transcription factor, RBPJ, was overexpressed in 

tumor-infiltrate Tregs and might regulate the LAG3. 

While it is known that RBPJ deficiencies can  

lead to splenomegaly, lymphadenopathy, the 

spontaneous formation of germinal centers, and a 

TH2-associated immunoglobulin class switch [29], 

RBPJ’s contributions to cancer remain poorly 

understood. 

 

The adaptive immune system of the human body 

mainly relies on the T cell receptor (TCR) and 

specific binding of the complementarity-determining 

region on the B cell receptor (BCR) to antigen 

peptides. ScRNA-seq is a powerful tool for defining 

TCR sequences per cell and can be used to identify 

adaptive complexes (MHCs) of viral antigens or 

tumor-specific new antigenic tumor cells [30]. The 

limitation of our study is that we have not used 

immunohistochemical high-throughput immunoassay 

library sequencing to deeply sequence the 

complementarity-determining regions of B cell 

receptors and T cell receptors. Therefore, future 

studies should combine expression and TCR/BCR-

based analyses to reveal the connectivity and 

potential developmental paths of these subsets. 

Nonetheless, our comprehensive single cell database 

here is a detailed characterization of GC immune 

cells from tissues and blood, in term of their 

clustering, dynamics, and developmental trajectory, 

as well as unique expression profiles, highlighting 

potential therapeutic targets for GC such as the 

transcription factor IRF8. 

 

 
 

Figure 6. Different DC subtypes and their interactions in GC.  (A) Expression analysis of functional molecules in the DC cell 

cluster in T vs N. (B) Expression analysis of functional molecules in the DC cell cluster in PB vs HB. (C) Pathway analysis of functional 
molecules in the DC cell cluster in T vs N. (D) Pathway analysis of functional molecules in the DCB cell cluster in PB vs HB. (E) 
Expression analysis of functional molecules in the DC cell cluster in T vs N. (F) Expression analysis of functional molecules in the DC cell 
cluster in PB vs HB. 
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MATERIALS AND METHODS 
 

Patients 

 

Samples were obtained from Department of General 

Surgery in Nanjing First Hospital and Zhongda 

Hospital. The cancer tissue samples were derived from 

two GC patients with untreated, primary, non-metastatic 

gastric tumors that underwent GC resection. The 

adjacent normal gastric tissues were taken more than 5 

cm away from the cancerous tissues. Peripheral blood 

samples were obtained from three GC patients before 

surgery. Two healthy samples of 10 ml normal venous 

blood were obtained from the individuals without any 

underlying diseases in physical examination center of 

Nanjing First Hospital in accordance with the Helsinki 

Declaration. 

 

Tissue and blood processing 

 

Gastric tissues were taken by pathologists from 

normal and tumor regions. Tissues were sliced into 

small pieces and put into a gentle MACS C Tube 

(Miltenyi Biotec; 130-093-237) containing 200 μL 

Enzyme H, 100uL Enzyme R, 25uL Enzyme A (all 

provided in the human tumor dissociation kit 

[Miltenyi Biotec; 130-095-929]), and 4.7ml RPMI 

1640 (Gibco; 8117133). The C tube was processed on 

a gentle MACS Octo Dissociator with Heaters 

(Miltenyi Biotec; 130-096-427) using the program 

“37C_h_TDK_2” for 1h. The resulting suspension 

was passed through a 70 μm cells strainer (Miltenyi 

Biotec; 130-098-462) and washed with 1X PBS 

containing 0.04% BSA. Live cells were enriched 

using a Dead Cell Removal kit (Miltenyi Biotec; 130-

090-101) as per the manufacturer’s instructions. 

Enriched live cells were washed with and counted 

using a hemocytometer with trypan blue. Peripheral 

blood mononuclear cells (PBMCs) were isolated from 

blood using a Ficoll-Paque Plus (GE;17-1440-02) 

according to the manufacturer’s instructions. 

 

Flow cytometry and cell sorting of samples 

 

The antibodies used for cell surface labeling were Hu 

CD45 PE HI30 (BD; 555483). Cells were labeled for 45 

min at 4 °C while protected from light. Sorting of single 

cells was performed on BD FACS Aria III instrument, 

with specific forward and side scatter settings to select 

for immune cells and exclude doublets. The data we 

analyzed with FlowJo 10.0.7 software. 

 

10X genomics scRNA-seq 

 

The concentrations of single cell suspensions were 

manually counted using a hemocytometer. Cells were 

loaded according to standard protocol of the 

Chromium single cell 3’ kit in order to capture 

between 3000/5000 cells/chip position (V2 

chemistry). Single-cell capture, reverse transcription, 

cell lysis, and library preparation were performed per 

the manufacturer’s protocol. Sequencing was 

performed on HiSeq 4000 (Illumina, 150-bp paired-

end protocol). 

 

Data analysis  

 

SCANPY is a scalable toolkit for analyzing single-cell 

gene expression data. It includes methods for pre-

processing, visualization, clustering, pseudotime and 

trajectory inference, differential expression testing, and 

simulation of gene regulatory networks. Its Python-

based implementation efficiently deals with data sets of 

more than one million cells (https://github.com/ 

theislab/Scanpy) [31]  

 

Definition and grouping criteria of CD8+ exhausted 

T cells in GC 

 

CD8+ exhausted T cells are highly expressed on the 

surface of some inhibitory molecules, such as PD-1, 

CTLA4, LAG3 (lymphocyte-activation gene-3), and 

TIGIT (T cell immunoreceptor with Ig and ITIM 

domains). These inhibitory surface molecules, 

combined with corresponding ligands on the surface of 

tumor cells, inhibit the killing capacity of CD8+ T cells, 

leading to tumor immune escape. 

 

Online prediction software 

 

We used KaplanMeier Plotter (http://kmplot.com/ 

analysis/index.php?p=background) to examine 

correlations between gene expression and prognosis of 

cancer [32]. CancerSEA (http://biocc.hrbmu.edu.cn/ 

CancerSEA/) was used to explore the potential roles of 

IRF8 in cancer [33]. Metascape (http://metascape.org/ 

gp/index.html#/main/step1) is a web-based portal that 

combines functional enrichment, interactome analysis, 

gene annotation, and membership search [34]. STRING 

(https://string-db.org/cgi/input.pl) is a database of known 

and predicted protein-protein interactions. We utilized 

STRING to create an interaction network between IRF8 

and other important proteins [35]. The Cistrome DB 

Toolkit database (http://dbtoolkit.cistrome.org) allows 

users to query transcription factors (TFs) that might 

regulate genes of interest to identify binding factors, 

histone modifications, and chromatin accessibility in a 

genomic interval of interest up to 2 Mb in length [36]. 

GEPIA2 (http://gepia2.cancer-pku.cn/#index) provides 

tumor/normal differential expression analysis, correlation 

analysis, and dimensionality reduction analysis. 

 

https://github.com/theislab/Scanpy
https://github.com/theislab/Scanpy
http://kmplot.com/analysis/index.php?p=background
http://kmplot.com/analysis/index.php?p=background
http://biocc.hrbmu.edu.cn/CancerSEA
http://biocc.hrbmu.edu.cn/CancerSEA
http://metascape.org/
http://metascape.org/
https://string-db.org/cgi/input.pl
http://dbtoolkit.cistrome.org/
http://gepia2.cancer-pku.cn/#index
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Confirmation of IRF8 

 

PBMCs isolated from patients with GCs or HVs 

(healthy volunteers) were stained with the following 

antibodies: FITC anti-human CD3(BD Biosciences), 

APC anti-human CD8 (BD Biosciences), PE anti-

human IRF8 (BD Biosciences). The molecular 

phenotypes of peripheral blood leucocytes were 

analyzed immediately by flow cytometry (BD FACS 

Canto™ II) using the FlowJo V10 (Tree Star) software. 

CD8+ TIL cells were isolated from GC tissues using a 

human CD8+ T cell isolation kit (#17953, Stem cell) 

following the manufacturer’s instructions. QRT-PCR 

reactions were performed to detect the expression of 

IRF8 using the ABI7500 System and the SYBR Green 

PCR Master Mix (TaKaRa). The primers used were 

IRF8 F: 5′-TCCGGATCCC TTGGAAACAC and IRF8 

R: 5′-CCTCAGGAACAATTCGGTAA. GAPDH was 

used as a control. 

 

Statistical analysis 

 

Data are presented as mean ± standard error of the mean 

(SEM). Statistical analyses and graphic presentation 

were carried out using the GraphPad Prism version 5.0 

(GraphPad Software, San Diego, CA, USA). A t-test 

was used if a normality test was passed; otherwise, the 

nonparametric Mann-Whitney test was used to analyse 

the data. Similarly, the Pearson method or the 

nonparametric Spearman method was used for 

correlation analyses. Regarding cut-off values, P < 0.05 

was considered statistically significant. 

 

Ethics approval and consent to participate 

 

The human cancer tissues used in this study were 

approved by the Ethics Committee of Nanjing First 

Hospital and Ethics Committee of Zhongda Hospital. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Identification of CD8+ naive T cells in GC. (A) Heat map displaying the top 50 different genes in CD8+ naive T 

cells in T vs N. (B) Heat map displaying the top 50 different genes in CD8+ naive T cells in PB vs HB. (C) Volcano plot showing the top 10 
upregulated and 10 downregulated genes in CD8+ naive T cells in T vs N. (D) Volcano plot showing the top 10 upregulated and 10 
downregulated genes in CD8+ naive T cells in PB vs HB. 
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Supplementary Figure 2. Identification of CD8+ cytotoxic T cells in GC. (A) Heat map displaying the top 50 differentially expressed 

genes in CD8+ cytotoxic T cells in T vs N. (B) Heat map displaying the top 50 differentially expressed genes in CD8+ cytotoxic T cells in PB vs HB. 
(C) Volcano plot showing the top 10 upregulated and 10 downregulated genes in CD8+ cytotoxic T cells in T vs N. (D) Volcano plot showing the 
top 10 up-regulated and 10 down-regulated genes in CD8+ cytotoxic T cells in PB vs HB. 
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Supplementary Figure 3. Identification of Tregs in GC blood. (A) Heat map displaying the top 50 differential genes in Tregs from 

blood. (B) Pathway analysis for different genes in Tregs. (C and D) KM-plotter database analysis of KDM5D and ADRB2 in GC. (E) RBPJ 
regulates the locus of LAG3. 
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Supplementary Figure 4. Gene signature of macrophages and pathway analysis. (A) The expression analysis of functional 

molecules in macrophages cell cluster in T vs N. (B) The expression analysis of functional molecules in macrophages cell cluster in PB vs HB 

 


