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Background. Brain computer interface (BCI) is a combination of software and hardware communication protocols that allow brain
to control external devices. Main purpose of BCI controlled external devices is to provide communication medium for disabled
persons. Now these devices are considered as a newway to rehabilitate patients with impunities.There are certain potentials present
in electroencephalogram (EEG) that correspond to specific event.Main issue is to detect such event related potentials online in such
a low signal to noise ratio (SNR). In this paper we propose amethod that will facilitate the concept of online processing by providing
an efficient filtering implementation in a hardware friendly environment by switching to finite impulse response (FIR). Main focus
of this research is to minimize latency and computational delay of preprocessing related to any BCI application. Four different finite
impulse response (FIR) implementations along with large Laplacian filter are implemented in Xilinx System Generator. Efficiency
of 25% is achieved in terms of reduced number of coefficients and multiplications which in turn reduce computational delays
accordingly.

1. Introduction

A brain computer interface (BCI) is a communication system
that allows humans to interact with their surroundings,
without any involvement of nerves and muscles, by using
certain control signals generated by brain that are stored in
the form of electroencephalogram (EEG) [1]. BCI creates an
artificial path between brain and actuated muscle that allows
interaction with different devices such as computers, speech
synthesizers, assistive appliances, and neural prostheses [2].
That is particularly beneficial for individuals whose muscle
pathways are severely damaged by stroke. Such an interface
is improving life standards for stroke patients and is also
reducing intensive care [3].

There are different brain imaging and brain signal acqui-
sition techniques are available that can be invasive or nonin-
vasive. Noninvasive BCI systems do not require any type of

surgery, and these are often preferred over invasive methods
[4]. These techniques help in recording and visualizing brain
activity which is then used to control BCIs. Some of fre-
quently used techniques are electroencephalography (EEG),
magnetoencephalogram (MEG), positron emission tomogra-
phy (PET), single photon computed tomography (SPECT),
functional magnetic resonance imaging (fMRI), functional
near infrared spectroscopy (fNIRS), and Transcranial Direct
Current Stimulation (TCDS) [5]. Every technique has its own
advantages depending on the type of BCI.There are two basic
criteria for selection of any techniques: (1) temporal/spatial
resolution and (2) mobility index [6]. In this study we are
mainly concerned with BCIs that are associated with muscle
movements that require highest temporal resolution and
mobility index [7]. From Figure 1 it is clear that EEG has
highest temporal resolution and mobility index so we are
using EEG. Other popular techniques such as fMRI and
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Figure 1: A comparison of electromagnetic (pink) and neuroimag-
ing techniques (blue) [5].
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Figure 2: Phases of BCI (focus of study (green), not discussed
(grey)).

PET offer best spatial resolution [8] but they offer very bad
temporal resolution [9]. fNIRS improves spatio/temporal
resolution up to some extent [10] but still it cannot reach
temporal resolution of EEG. So we cannot get precise muscle
movement timing in our targeted BCIs for other techniques
except EEG.

The EEG signals reflect a noninvasive method to record
electrical activity of brain which can be termed as neuro-
physiology of associated task. EEG contains huge amount of
data but there are certain potentials present in EEG that are
specifically related to an event. Such potentials are known
as event related potentials. One of the main concern of BCI
system is to detect these potentials with minimum delay.
But to detect these potentials from EEG is a challenging
task because of very low signal to noise ratio. As EEG is
prone to movement artifacts (eye blinking, etc.) and noise of
different frequencies. There are different movement artifacts
removal techniques that can be used to detect an activity from
such noise [13]. Few popular techniques are independent
component analysis (ICA), multimatching pursuit (MMP),
and second-order blind identification (SOBI). For low and
high frequency components present in EEGprecise band pass
filtering is required which is the focus of this study.

Most BCIs consist of three major portions as shown in
Figure 2. First is signal acquisition using EEG and there

are certain standards for that [6, 7, 13]. We are using one
hypothetical EEG signal from random dataset to validate
the results. Multichannel signal which is acquired is then
subjected to preprocessing to enhance SNR and remove
low and high frequency components before processing [14].
We are not implementing any movement artifacts removal
techniques in this study asmain focus is to implement prepro-
cessing steps (spatial filtering, band pass filtering) on Xilinx
System Generator. Spatial and band pass filter are usually
implemented to minimize noise and to improve SNR of
the signal [15]. Depending on different applications different
authors used different ranges of band pass filter along with
different spatial filtering techniques [16]. All techniques are
implemented in IIR domain due to sharp cutoffs of required
filters. IIR filters are good tool for simulating filter response
of sharp cutoff but it cannot be implemented in hardware
because of feedback associated with IIR filter design [17].

We propose FIR implementation for band pass filtering
along with large Laplacian spatial filtering in hardware
friendly environment. Zero phase filtering is used to avoid
any delays associated with FIR filter.

Four alternate methods are proposed to simulate zero
phase filtering results with minimized latency in a hardware
friendly environment using Xilinx System Generator:

(i) Flipping coefficient method

(ii) FFT method

(iii) SystolicMultiply Accumulator ormanual filter imple-
mentation 1

(iv) Manual filter implementation 2.

Xilinx System Generator is an efficient way for providing
cosimulation environment. It is compatible with MATLAB
Simulink. There is large amount of Digital Signal Processing
(DSP) blocks available which includes FIR compilers, multi-
pliers, adders, delays, and many more [12]. Black box is used
for manual Verilog coding; it provides maximum flexibility
but can be complex for somedesigns. In this study black box is
used to implement large Laplacian spatial filtering. Band pass
filtering is implemented using multipliers, adders, and delay
blocks and dedicated FIR compiler block is used for band pass
filter simulation. Performance of already given compiler and
manually implemented compiler is evaluated through four
different techniques.

The rest of the paper is organized in the following way.
Second section is for proposed methodology. The method-
ology section is further divided into two subsections, first
subsection explains spatial filtering and second subsection
includes band pass filtering using four proposed methods.
Third section explains cosimulation and selected hardware.
Last section is for results and conclusion.

2. Methodology

2.1. Spatial Filtering. Multichannel data that is acquired from
acquisition unit has very low SNR, so to enhance signal to
noise ratio a spatial filter known as large Laplacian filter
is used. This will create a single surrogate channel with
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Figure 3: Large Laplacian in XSG to reduce SNR using localization.

enhanced SNRvia localization.Different weights are assigned
on the basis of channels [18].

𝑥𝑖 =
{{
{{
{

1, 𝑖 = 1,
−1
𝑁ch − 1
, 𝑖 ̸= 1.

(1)

𝑥𝑖 are the weights given to different channels of EEG signal
to form a single surrogate channel. 𝑁ch depicts the number
of channels. According to equation, Channel 1 was given
maximum priority and maximum weight will be assigned to
it.

In XSG this task is performed using Black Box in which a
Verilog code is translated into MATLAB module as shown
in Figure 3. Number of channels can vary based on the
application of scalp EEG [16, 17].𝑁 channel implementation
is shown in Figure 3. Black box takes sample from nine
channels and multiply each sample with weight and then add
all these weighted samples to generate one output sample.

2.2. Zero Phase Band Pass Filtering. Most important phase
of a BCI is band pass filtering. As EEG contains the brain
activity over passage of time and contains ERPs, it contains
different frequency waves (Alpha, Beta, and gamma) and
abnormalities as well. So in order to detect targeted signals
we limit our focus to specific frequency band via band pass
filtering [17, 19].

Signals such as ERPs can be of very low potentials and
lie in very narrow band.These studies require filter with very
sharp cutoff due to which IIR filter is preferred but IIR cannot
be implemented in hardware and FIR filter requires very large
number of coefficients to achieve such cutoff. In current work
focus is on very narrow band FIR filter that suffices for the
requirement of narrowest range of 0.005 to 0.4 discussed in
previous works [14, 16]. After computing filter coefficients
zero phase filtering is done to avoid any delays associatedwith
linear or nonlinear filtering. In Xilinx SystemGenerator there
is no block available which can perform zero phase filtering.

So in this paper various methods are proposed which can
perform zero phase filtering in XSG.

First MAC performs forward filtering then before using
second MAC filter the output of first MAC filter is reversed
and supplied to second MAC filter; this results into zero
phase filtering. In XSG FIR compiler 5.0 is used for filtering;
it takes FIR coefficients as parameter and filters the input
signal. If we try to implement zero phase filtering using
FIR compiler, then we will require two FIR compilers: first
compiler will filter input signal and then before using second
compiler it will be required to flip the output of first compiler.
For flipping, buffering of signal will be required which will
require extensive memory. An alternative to this method can
be achieved using simple mathematics.

The following equations show zero phase filtering:

𝑦1 = bandpass ∗ data,

𝑦 = bandpass ∗ flip (𝑦1) ,

output = flip (𝑦) ,

output = flip (bandpass ∗ flip (𝑦1)) ,

output = flip (bandpass) ∗ 𝑦1,

(2)

where ∗ show the convolution operation. In frequency
domain the above equation can be represented as

OUTPUT (𝑧) = (BANDPASS (𝑧))2DATA (𝑧) . (3)

Taking inverse Fourier transform we can get

OUTPUT = IFFT ((BANDPASS (z))2) data. (4)

Using mentioned equations we propose four alternative
methods to achieve zero phase filtering in hardware friendly
environment.

2.2.1. Flipping Coefficient Method. We can achieve zero phase
filtering in the following way:
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Figure 4: Flipping coefficients method in XSG to implement zero phase FIR filter.
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y = MAC filter with original coefficients (𝑥)
y2 = MAC filter with reverse coefficients (𝑦).

In this method first MAC filter uses original FIR coeffi-
cients and filter sequence x; second MAC filter uses reverse
FIR coefficients and filter sequence y (output of first filter).

Benefit of this method is reduced delay caused by flipping
and buffering complete data. In Xilinx System Generator,
we have to generate a dedicated block for this buffering
to store complete data. But using the proposed method 1,
flipping FIR coefficients offline and supplying to FIR compiler
reduce delay and remove buffer. Main focus is to imple-
ment proposed methods on hardware using Xilinx System
Generator (XSG). In XSG the above task is achieved by using
two FIR compilers 5.0 in cascade. One compiler uses original
FIR coefficients and the other FIR compiler uses Flipped FIR
coefficients as shown in Figure 4.

FIR compiler provided in XSG can implement a filter up
to 1024 coefficients on hardware using cosimulation file. So
this technique can be verified in simulations but cannot be
implemented on actual hardware.

2.2.2. FFT Method. Method one uses two FIR compilers
which is a waste of resources; we can perform the above task
by using only one FIR compiler. If we see into the mathe-
matics of zero phase filtering the same task can be performed
by taking FFT of FIR filter coefficients, then taking square of
FFT, and then performing IFFT.

Then applying MAC filter to input sequence with step 3
produced coefficients. Figure 5 shows implementation of this
method.

Same drawback as defined in previous section highlight-
ing limitation of FIR compiler 5.0 in XSG.

2.2.3. Systolic Multiply Accumulator or Manual Filter Imple-
mentation 1. FIR compiler 5.0 only works for 1024 taps.
Implementing bandpass filter of 5000 taps using FIR compiler
5.0 is not possible. It works only in simulation but when
we move towards hardware cosimulation it results in an
error “5000 taps exceeds the limitation of FIR compiler 5.0.”
Above compiler uses “Distributed Arithmetic” or “Systolic
Multiply Accumulator.” Distributed Arithmetic method is
very difficult to implement using basic blocks given in Xilinx
System Generator library. But Systolic Multiply Accumulator
can be easily implemented using basic blocks. Figure 6 shows
MAC architecture.

Xilinx implementation of this method is shown in Fig-
ure 7.

This manual filter implementation overcomes the limita-
tions of predefined FIR compiler of XSG and if above archi-
tecture is implemented it will require 5000 taps to design filter
of required range (0.05–0.4). In this technique 4999 adders
and 5000multipliers are used. By discarding coefficients close
to zero, for this method adders are reduced to 2499 and
multipliers to 2500. Utilizing symmetry of filter coefficients
we move towards 2nd efficient manual implementation.

2.2.4. Manual Filter Implementation 2. Instead of imple-
menting this filter using the architecture shown in Figure 5,
the more efficient signal flow-graph shown in Figure 8
can be used. In general, the former approach requires 𝑁
multiplications and (𝑁 − 1) additions. In contrast, the
architecture in Figure 8 requires only [𝑁/2] multiplications
and approximately 𝑁 additions. This significant reduction
in the computation workload can be exploited to generate
efficient filter hardware. Further reduction in coefficients is
achieved by discarding coefficients that are very close to zero.
Filter coefficients are symmetric so we can use the following
methodology. This technique uses 2499 adders and 1250
multipliers and reduced number of coefficients from 5000 to
1250. Figure 9 shows the implementation of thismethodusing
XSG blocks.
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3. Cosimulation Files Generation and
Selected Hardware

For creating a cosimulation file, Xilinx System Generator
block is used. It has many options; first option is compilation;
programmer is required to select the target device for which
system generator is supposed to create simulation file. In this
case as there is extensive MAC engine so we have selected
extreme DSP kit (vertex 4 FPGA Family). Vertex 4 FPGA
has dedicated DSP slices for efficient implementation of
multipliers and accumulators while Spartan family FPGAs
lack this feature. In language selection option we have
selected VHDL. After that by XSG it generates cosimulation
files. This process takes some time depending on complexity
of Simulink model. During the process it checks the model
status and simulation time and then performs compilation
and generation. All steps required in chip making are done,
for example, netlist generation, mapping, HDL compilation,
design hierarchy analysis, and low level synthesis.

4. Results

Comparison between previously implemented techniques
(using IIR) and four proposed FIR methods is shown in
Table 1. Hypothetical EEG signal is used from random
dataset.Then difference of preprocessing is shown by extract-
ing an MRCP from data before and after bandpass filter-
ing. As explained earlier MRCPs are potentials present in
EEG signal between very short ranges of 0.05Hz to 0.4Hz
[14]. Noisy extractions from EEG signal are also shown in
Figure 10 for MATLAB and Figure 11 for XSG. This range
is implemented in MATLAB using 2nd-order Butterworth

filter. MRCPs are then extracted from EEG using bandpass
filtering. Output of filtered MRCP signals using Butterworth
IIR filter and proposed method is shown in Figures 12 and 13.
IIR filters have definite response and are preferred for such
narrow ranges. IIR filters cannot be implemented in actual
hardware because of feedback coefficients. First and second
proposed methods use FIR filter with 5000 coefficients to
replicate the response of Butterworth IIR filter; it is imple-
mented in simulations using two different approaches but
these methods require extensive buffering and it cannot be
implemented in hardware. Third method (5000 coefficients)
is manual filter implementation to replicate response of first
two methods but it is efficient as it does not require any
buffering. Method 4 (1250 coefficients) utilizes symmetry of
coefficients and analytical removal of coefficients closer to
zero and its result is shown in Figure 13. Simulation results
shown in Figure 13 depict that we can extract MRCPs with
proposed efficient filtering technique.

Efficiency of proposed method is calculated in com-
parison to previous available techniques. Response of IIR
filters was replicated using FIR filter and it contains 5000
coefficients which is then considered as benchmark to val-
idate results. Our proposed method reduces the number of
coefficients without any significant loss in signal and MRCP
can easily be captured from this method.

Efficiency Criteria = 100 ∗
NC𝑝
NC𝑜
. (5)

NC𝑝 is number of coefficients of proposed method. NC𝑜 is
number of coefficients of original method.
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Figure 10: Noisy MRCP obtained from actual EEG data on MATLAB.
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Table 1: Comparison between IIR filtering techniques and four proposed methods.

Technique Problem Advantage Computational delay (300000 samples)
Butterworth IIR filters Hardware constraints Defined responses, better for simulations 1.22 s (MATLAB)
FIR filters High taps Hardware friendly, linear phase 17.4 s (MATLAB)

FIR filter (method 1) 5000 taps Implemented in simulation environment
closer to hardware 20 s (Xilinx System Generator)

FIR filter (method 2) 5000 taps
Implemented in simulation environment

closer to hardware using half components as
compared to method 1

13 s (Xilinx System Generator)

FIR filter (method 3) 5000 taps Implemented on XSG via Systolic Multiply
Accumulator 10 s (Xilinx System generator)

FIR filter (method 4) 1250 taps
Implemented on actual hardware via
Systolic Multiply Accumulator and

symmetry aspect of filter
3 s (Xilinx System generator + VERTIX 4)

Figure 11: Noisy MRCP obtained from actual EEG data on XSG
(samples along 𝑥-axis; amplitude is along 𝑦-axis).

From Table 1 NC𝑝 = 1250 and NC𝑜 = 5000 so using
equation we get efficiency of 25%.

Similar implication can be made for other event related
potentials as well. We are usingMRCP as an example but this
can easily be extended for other ERPs. Proposedmethodwith
these results shows that we can move from offline filtering to
real-time on device filtering.

5. Discussion

In this work, an effort is made to implement preprocessing
steps of any BCI system that requires sharp cutoff band
pass filtering in XSG to provide fast reliable hardware based
filtering. Replicating response of a sharp cutoff filter in FIR
domain requires very large number of coefficients. Filter used
in [14, 16] is Butterworth IIR filter of range (0.05 to 0.4).
FIR filter to replicate this response requires 5000 coefficients
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Figure 12: MRCP obtained from previous simulation methods.

as implemented in step 1 and step 2. There are certain
limitations associated with XSG [20] and it cannot process
large number of coefficients required for proposed FIR filter.
So an alternative method to implement sharp cutoff filters
is suggested in this study (Method 3 and Method 4). If we
see into the implementation perspective first two methods
cannot be used to produce cosimulation results due to the
filter coefficient limitation of FIR compiler 5.0. But methods
3 and 4 are implemented in hardware (VERTEX 4). We were
looking to minimize the delay associated with preprocessing
of BCIs and one way to reduce that delay is by reducing
the calculations (multiplications and additions). In method
4 number of coefficients are reduced from 5000 to 1250 with
acceptable result as shown in Figure 13. With this reduction
in coefficients we claim the efficiency of 25%which will affect
the computational delays as shown in Table 1 and can be
considered as statistical significance of the proposedmethod.
This also enables us to move from offline filtering towards
real-time hardware based filtering with minimal delays.
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Figure 13: MRCP obtained from proposed method (samples along
𝑥-axis; amplitude is along 𝑦-axis).

6. Conclusion

Results show that all proposed methods produce satisfactory
results in simulation environment. Method 4 is the best of all
with least latency to replicate the response of IIR filters that
were used in previous studies, after performing preprocessing
steps in hardware environment and after validating results.
In future work we will be looking into the artifacts removal
techniques of EEG. Another direction is to focus on process-
ing aspect of ERPs such asmatched filtering and classification
techniques.
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