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Abstract

Esophageal cancer is a common tumor of the digestive system with poor prognosis. This

study was to gain a better understanding of the mechanisms involved in esophageal cancer

and to identify new prognostic markers. We downloaded the esophageal cancer miRNA

expression profile microarray data (GSE113740, GSE112264, GSE122497, GSE113486,

and GSE106817) from the GEO database, extracted the esophageal cancer miRNA

sequencing data from The Cancer Genome Atlas (TCGA) database, and then used a bioin-

formatics approach to select common differentially expressed miRNAs (DEMs). Differen-

tially expressed genes (DEGs) were selected by predicting DEM target genes using the

miRWalk database and intersecting with differential genes obtained from TCGA database

for esophageal cancer. The STRING database was used to obtain protein–protein interac-

tion (PPI) relationships to construct the DEM-DEG network. Furthermore, we selected core

genes and core miRNAs associated with esophageal cancer prognosis by performing sur-

vival and univariate/multivariate COX analysis on DEMs and DEGs in the network and per-

formed GSEA analysis on core genes alone, and finally the expression of the markers was

verified by qPCR in esophageal cancer cell lines Eca109, SKGT-4 and normal esophageal

epithelial cells HEEC. Nine DEMs were obtained, of which three were upregulated and six

were downregulated, and 326 DEGs were obtained, of which 105 were upregulated and 221

were downregulated. Survival univariate/multivariate COX analysis revealed that five

genes, ZBTB16, AQP4, ADCYAP1R1, PDGFD, and VIPR2, and two microRNAs, miR-99a-

5p, and miR-508-5p, were related to esophageal cancer prognosis. GSEA analysis showed

that the following genes may be involved in esophageal cancer prognosis: ZBTB16 may

through the MTOR signaling pathway, AQP4 through the GNRH signaling pathway,

ADCYAP1R1 through the PPAR signaling pathway, VIPR2 through the P53 signaling path-

way and PDGFD through the PENTOSE-PHOSPHATE signaling pathway.
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Introduction

Esophageal cancer is a joint malignant tumor of the digestive system, primarily including two

types of squamous carcinoma and adenocarcinoma [1, 2]. Worldwide, approximately 500,000

patients are diagnosed with esophageal cancer each year, and their 5-year overall survival rate

is generally<15% [3, 4]. Although esophageal cancer treatment has greatly improved the prog-

nosis of patients, the prognosis of patients with esophageal cancer remains poor as endoscopic

diagnosis of early stage esophageal cancer is difficult and most patients with esophageal cancer

are already in the middle or advanced stages at the time of diagnosis [5–7]. MicroRNAs (miR-

NAs) are small noncoding RNAs that regulate gene expression and are implicated in the path-

ogenesis of several cancers [8–10]. It has been shown that measuring circulating miRNA levels

in patients’ serum may be a simple and non-invasive method for diagnosing certain early-

stage cancers [11–13]. In the present study, to explore the mechanism underlying esophageal

cancer development and provide novel targets and pathways for esophageal cancer diagnosis

and treatment, a bioinformatics approach was used to analyze the esophageal cancer data

derived from the public databases The Cancer Genome Atlas (TCGA) [14] and Gene Expres-

sion Omnibus (GEO) [15]. The differential genes and differential miRNAs of esophageal can-

cer were integrated and analyzed to construct a miRNA-mRNA network for esophageal

cancer, and survival analysis, univariate/multivariate COX analysis, and GSEA analysis were

conducted on the genes and miRNAs in the network to provide research directions for further

basic experiments.

Materials and methods

Data

The GEO (https://www.ncbi.nlm.nih.gov./geo/) [15] database and TCGA (https://portal.gdc.

cancer.gov/) [14] database provide a large amount of data on patients with esophageal cancer.

In the GEO search box, we entered “esophageal cancer serum” and “miRNA” and selected

human microarray data with sample size greater than 100 and then selected five datasets,

GSE113740 [16], GSE112264 [17], GSE122497 [18], GSE113486 [19], and GSE106817 [20],

from the same platform GPL21263 (3D-Gene Human miRNA V21_1.0.0), as shown in

Table 1, including the serum miRNA microarray data from a total of 5869 healthy controls

and 769 patients with esophageal cancer(Exclusion of large deviations from the data set

GSE124158). RNA sequencing data (miRNA and mRNA) derived from the tumor tissues of

patients with esophageal cancer and tissues of healthy controls were downloaded from TCGA

database, select TCGA-ESCA’s sequencing reads date, including the miRNA sequencing data

from 13 healthy tissues and 185 tumor tissues versus the mRNA sequencing data from 11

healthy tissues and 160 tumor tissues.

Human esophageal cancer SKGT-4 and ECA109 cells, human normal esophageal epithelial

cells (HEEC cells) were purchased from the Cell Bank of the Chinese Academy of Sciences;

Table 1. Grouping characteristics of each data set.

Date Set Contributors Samples of EC Samples of HC Submission date

GSE113740 [13] Yamamoto Y, et al 25 969 30-Jul-20

GSE112264 [14] Urabe F, et al 50 41 Mar 23,2018

GSE122497 [15] Sudo K, et al 566 2000 (Select the first two thousand) 13-Nov-18

GSE113486 [16] Usuba W, et al 40 100 20-Apr-18

GSE106817 [17] Yokoi A, et al 88 2759 13-Nov-17

EC: Esophageal Cancer; HC: healthy control.

https://doi.org/10.1371/journal.pone.0255479.t001
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fetal bovine serum and RPMI1640 cell culture medium were purchased from Hyclone; RNA

extraction kit, Trizol and protein extraction lysis solution were purchased from Biyuntian Bio-

technology Company Limited.

Difference analysis

The data in the five datasets were divided into cancer and healthy control groups, and the

results were analyzed differentially and visualized using the GEO2R tool based on the limma.R

package (https://www.ncbi.nlm.nih.gov./geo/geo2r/) [21], setting padj = 0.05 and log2FC = 1.

The results were incorporated using the RobustRankAggreg.R [22] package, and an R package

for the meta-analysis of multiple sets of GSE data was used to integrate the differential results

and select differentially expressed miRNAs with p< 0.05 (DEMs1). Differential analysis of

data obtained from TCGA database was performed using the Edge.R [23] package, and to

ensure the accuracy of the results, read counts were transformed into counts per million index

to eliminate the effect of sequencing depth. Differential miRNAs with Q values < 0.05,

log2FC> 1 were selected as DEMs2 and Q values< 0.05, log2FC > 2 were used as initial dif-

ferentially expressed genes (DEGs). DEMs1 and DEMs2 were selected for intersection to

obtain differentially expressed miRNAs (DEMs).

miRNA-mRNA and PPI network analysis

The miRWalk database [24] and the STRING database [25] were used for the construction of

the miRNA-mRNA network in esophageal cancer. A total of 326 DEGs were obtained by pre-

dicting the target genes of DEMs using the miRWalk website and taking intersections with the

abovementioned DEGs. The STRING database contains several protein–protein interaction

relationships, and the protein–protein association (PPI) of 326 DEGs was analyzed using the

STRING database. The DEGs with a combined score > 0.7 (139 genes in total) were selected

and outlined with their upstream miRNAs to create an esophageal cancer miRNA-mRNA net-

work using the Cytoscape [26] software to visualize the results.

Univariate/Multivariate COX analysis

Univariate / Multivariate COX analysis and survival analysis often establishes a link with dis-

ease prognosis and is widely used in oncology research. We used genome-wide clinical data

downloaded from TCGA for 160 patients with esophageal cancer to initially screen 139 genes

in the network using univariate COX analysis, before further screening esophageal cancer

prognostic association DGEs using multivariate COX analysis and constructing a prognostic

model for esophageal cancer to test the prognostic model effect using survival curves and ROC

curves. Only DEGs that met p<0.05 for both univariate COX and multivariate COX analyses

could be considered as prognostic-associated DEGs for esophageal cancer. Multivariate COX

analysis was performed online for DEMs using the OncomiR database [27], and then p<0.05

Kaplan-Meier survival curves were plotted for DEMs based on the high and low risk values

obtained from the COX analysis.

GSEA analysis of core genes

Gene set enrichment analysis (GSEA) analysis can be used for the pathway enrichment analy-

sis of individual genes, which can better reveal the upregulation and downregulation relation-

ships of individual gene-enriched pathways in disease compared with the common KEGG

analysis. The 160 esophageal cancer samples were divided into gene-high and gene-low expres-

sion groups, and all esophageal cancer genes were analyzed for enrichment in GSEA software
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[28], and some pathways with p-values <0.05 were selected for visualisation. The pathways

that were predominantly enriched for genes were examined in preparation for the subsequent

basic experiments.

Cell culture and qPCR

Human esophageal cancer SKGT-4, ECA109 cell lines and HEEC cell lines were cultured in

sterile RPMI1640 medium containing 10% fetal bovine serum and 1% antibacterial drugs

(penicillin, streptomycin) in a sterile cell culture incubator at 37˚C and 5% CO2.

RT-qPCR is a sensitive technique for quantifying specific RNA targets. Human esophageal

cancer SKGT-4 and ECA109 cells at logarithmic growth stage were collected, with HEEC cells

as control. RNA was extracted using the RNA extraction kit, strictly according to the instruc-

tions. RNA concentration was detected by qPCR. cDNA was synthesized by reverse transcrip-

tion and PCR reactions (PCR reaction conditions: 95˚C30s,95˚C10s,60˚C30s) were performed

to detect the expression levels of miR-99a-5p, miR-508-5p, ZBTB16, AQP4, ADCYAP1R1,

PDGFD and VIPR2. The relative expression levels of the genes were calculated as 2-ΔΔCt.

Results and discussion

Differentially expressed miRNAs (DEMs)

To obtain differential miRNAs for esophageal cancer, we conducted the differential analysis of

sequencing data using the GEO2R tool to obtain differential volcano plots (Fig 1A–1E). The

results of all differential analyses were analyzed using the RobustRankAggreg.R package, and

miRNAs with p values < 0.05 were selected as DEMs1, after which the results were visualized

(Fig 1F). Differential analysis of miRNA sequencing data derived from 13 healthy tissues and

185 tumor tissues in TCGA database was performed using the Edge.R package, and a differen-

tial volcano plot was obtained (Fig 2A). The differential miRNAs with p < 0.05 and

log2FC> 1 were selected as DEMs2, and the final DEMs were obtained by taking the intersec-

tion of DEMs1 and DEMs2 (Fig 2B and 2C). A total of 169 DEMs1 and 141 DEMs2 were

obtained, resulting in 9 DEMs, of which 3 were upregulated and 6 were downregulated.

Differentially expressed genes (DEGs)

To obtain differential genes for esophageal cancer, we used the Edge.R package to perform the

differential analysis of mRNA sequencing data derived from 11 healthy and 160 tumor tissues

downloaded from TCGA database to obtain a differential volcano plot (Fig 2D), and the gene

with p< 0.05 and log2FC > 2 was selected as the initial differential gene (DEGs1). The miR-

Walk database was used to predict the target genes of DEMs, all possible target genes were

obtained, and the final DEGs were obtained by intersecting DEGs1 with the target genes (Fig

2E and 2F). A total of 326 DEGs were obtained, of which 105 were upregulated and 221 were

downregulated.

miRNA-mRNA and PPI networks

To construct the miRNA-mRNA network for esophageal cancer and discover key markers of

esophageal cancer from multiple perspectives, we submitted the DEGs to the STRING data-

base for protein–protein interaction (PPI) analysis, identified the gene associations from the

protein level, selected genes with stronger associations, and visualized them using the Cytos-

cape software (Fig 3).
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Fig 1. Volcano plots of differentially expressed genes in GSE113740, GSE112264, GSE122497, GSE113486, and GSE10681 and log2FC

heatmap of each expression microarray. (A-E) show the volcano plots of differentially expressed genes in GSE10681, GSE112264, GSE113486,

GSE113740, and GSE122497, respectively. The horizontal coordinates represent log2 (fold change), blue represents downregulated genes, and red

represents upregulated genes. The vertical coordinate represents -log10 (p value). N is the normal control group; CA is the cancer group. (F) shows

the log2FC heat map of GSE113740, GSE112264, GSE122497, GSE113486, and GSE10681. The numbers in the plot show the log2FC for each

expression microarray, with red indicating upregulation, and blue indicating downregulation.

https://doi.org/10.1371/journal.pone.0255479.g001
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Univariate / Multivariate COX analysis

To obtain further core genes and core miRNAs associated with the prognosis of esophageal

cancer, this study used clinical data from 11 healthy patients and 160 esophageal cancer

patients in the TCGA database to perform univariate/multivariate COX analysis on 139 DEGs

in the network, and univariate COX analysis yielded 22 prognosis-associated genes. Multivari-

ate COX analysis yielded SIX2, ADIPOQ, ZBTB16, AQP4, ADCYAP1R1, PDGFD and VIPR2

seven (of which p<0.05 for a total of five genes ZBTB16, AQP4, ADCYAP1R1, PDGFD and

VIPR2) genes associated with prognosis in esophageal cancer, seven-gene prognostic model

survival p = 0.01252, area under the ROC curve AUC = 0.634 (Fig 4C–4F). OncomiR, a power-

ful database for studying cancer miRNAs online, was used to perform multivariate COX sur-

vival analysis of DEMs using 184 esophageal cancer clinical data in OncomiR, and miRNAs

with p<0.05 were selected as the last associated with esophageal cancer prognosis of de novo

markers (Fig 4A and 4B).

Fig 2. Differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs). (A) and (D) indicate the differential volcano plots

of differentially expressed miRNAs in esophageal cancer tissues versus normal tissues in TCGA database and differential volcano plots of

differentially expressed genes in esophageal cancer tissues versus normal tissues in TCGA database, respectively, where red indicates upregulation,

and green indicates downregulation. (B) and (C) indicate the intersecting Venn diagrams of upregulated DEM1 and upregulated DEM2 and the

intersecting Venn diagrams of downregulated DEM1 and downregulated DEM2, respectively. (E) and (F) indicate the Wayne diagrams of

intersection of DEMs predicted upregulated target genes and TCGA database differentially expressed upregulated genes and the Wayne diagrams

of intersection of DEMs predicted downregulated target genes and TCGA database differentially expressed downregulated genes, respectively.

https://doi.org/10.1371/journal.pone.0255479.g002
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GSEA analysis of core genes

The expression values of five genes, ZBTB16, AQP4, ADCYAP1R1, PDGFD and VIPR2, were

sorted and divided into gene-high and low expression groups for patients with esophageal

Fig 3. Diagram of miRNA-mRNA network in esophageal cancer and PPI network of DEGs. The above miRNA-mRNA network is based on the

miRWalk database, where miRNAs are represented by diamonds, and genes are represented by circles. PPI linkage of DEGs was obtained by

STRING database screening, where red indicates upregulation in esophageal cancer, green indicates downregulation, marquee dash-type lines

indicate miRNA–gene interactions, and solid lines indicate gene-to-gene interactions. The color and thickness of the lines in the PPI network of

DEG are drawn according to the combined score from the SRTING database.

https://doi.org/10.1371/journal.pone.0255479.g003
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cancer, and then the core genes were sequenced using the esophageal cancer RNA downloaded

from the TCGA database, and after counts per million (CPM) quantification, the GSEA soft-

ware was used to The high- and low-expression groups were subjected to GSEA pathway

enrichment analysis, and the top-ranked pathways with p value< 0.05 were selected for visual-

ization, respectively (Fig 5A–5E).

qPCR

The results showed that the relative expression levels of miR-508-5p, AQP4, ADCYAP1R1 and

VIPR2 were significantly up-regulated in human esophageal cancer SKGT-4 and ECA109 cells

compared with HEEC cells, and the differences were all statistically significant (Fig 6B, 6D, 6F

and 6G). The relative expression levels of miR-99a-5p were significantly down-regulated in

human esophageal cancer SKGT-4 cells compared with HEEC cells, and the differences were

statistically significant (Fig 6A).

Significance and impacts

The method of analyzing sequencing and microarray data through bioinformatics approaches

is widely applied in the medical field, including the field of research on tumor mechanisms

Fig 4. Prognostic risk models for ZBTB16, AQP4, ADCYAP1R1, PDGFD, VIPR2 and survival curves for miR-99a-5p and miR-508-5p. (A)

and (B) indicate the survival curves of miR-99a-5p and miR-508-5p, respectively. The higher the expression of miR-99a-5p and miR-508-5p in

esophageal cancer, the better the prognosis of patients. (C-F) indicate the cvfit plot, lambda plot, survival curve and ROC curve of the LASSO

regression of the genetic prognostic model, respectively.

https://doi.org/10.1371/journal.pone.0255479.g004
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[29–31]. Bioinformatics can use an existing massive database to make predictions about

unknown problems, which is a good solution to the challenge of how to screen out the core

genes that are closely associated with diseases from a large number of genes. Esophageal cancer

is one of the common tumors with poor prognosis, and according to current statistical results,

China has the highest incidence of esophageal cancer in the world [32, 33]. To better screen

people at high risk of esophageal cancer at an early stage, to improve the prognosis of esoph-

ageal cancer and to provide new directions for research on esophageal cancer, in the present

study, we used data from the GEO database and TCGA database to analyze differentially

Fig 5. GSEA enrichment curves for ZBTB16, AQP4, ADCYAP1R1, PDGFD and VIPR2. (A-E) GSEA enrichment curves for AQP4, ZBTB16, VIPR2,

PDGFD and ADCYAP1R1 based on gene-high and low expression groups using GSEA software, respectively. Where ES denotes Enrichment Score and

p denotes Nominal p-value. (A) AQP4 probably through the GNRH signaling pathway, (B) ZBTB16 probably through the MTOR signaling pathway,

(C) VIPR2 probably through the P53 signaling pathway, (D) PDGFD probably through the PENTOSE- PHOSPHATE signaling pathway and (E)

ADCYAP1R1 may play a role in the prognosis of esophageal cancer through the PPAR signaling pathway.

https://doi.org/10.1371/journal.pone.0255479.g005

PLOS ONE Prognostic markers for esophageal cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0255479 July 30, 2021 9 / 14

https://doi.org/10.1371/journal.pone.0255479.g005
https://doi.org/10.1371/journal.pone.0255479


expressed miRNAs in esophageal cancer and obtained a total of nine DEMs, of which three

were upregulated and six were downregulated. We used sequencing data obtained from

TCGA database to analyze DEGs in esophageal cancer and combined them with DEMs. The

miRNA-mRNA network of esophageal cancer was constructed by combining the sequencing

data with DEMs, which provides a new direction for research on esophageal cancer. To further

understand the new biomarkers that are closely related to esophageal cancer prognosis, we

also performed the univariate/multivariate COX analysis of miRNAs and mRNAs in the net-

work and found five core genes, ZBTB16, AQP4, ADCYAP1R1, PDGFD and VIPR2, that may

be associated with esophageal cancer prognosis and two core miRNAs, miR-99a-5p, and miR-

508-5p. Finally, we conducted KEGG enrichment analysis on each of the five core genes using

data obtained from TCGA database and GSEA software, expecting to identify the pathways

acted upon by the core genes for subsequent basic experiments.

Zinc Finger And BTB Domain Containing 16 (ZBTB16) is a member of the Krueppel

C2H2 type zinc finger protein family, which is associated with skeletal defects, genital hypopla-

sia, mental retardation and acute promyelocytic leukaemia [34–36]. Recent studies have dem-

onstrated that ZBTB16 can act as an oncogene in breast cancer by upregulating ZBTB28 and

antagonizing BCL6 [37]. Aquaporin 4 (AQP4), a member of the family of membrane protein

water channel proteins, has been suggested to promote tumor progression, invasion and

metastasis [38, 39] and is a promising target in oncology research. In lung squamous cell carci-

noma, AQP4 is transcribed at low levels [40]. However, the role and mechanisms of ZBTB16

and AQP4 in esophageal cancer have not yet been investigated. Adenylate Cyclase Activating

Polypeptide 1 (Pituitary) Receptor Type I (ADCYAP1R1) encodes a type I adenylate cyclase

activating polypeptide receptor, which is associated with diseases such as post-traumatic stress

disorder and regulatory spasticity [14, 15]. ADCYAP1R1 is differentially expressed in a variety

Fig 6. Relative expression of markers. (A-G) denote the expression of miR-99a-5p, miR-508-5p, ZBTB16, AQP4, PDGFD, ADCYAP1R1 and VIPR2,

respectively. qPCR results showed that: (A) miR-99a-5p was significantly down-regulated in human esophageal cancer SKGT-4 cells compared with

HEEC cells, and the difference was statistically significant. The differences were statistically significant. (B) The relative expression levels of miR-508-5p

were significantly up-regulated in human esophageal cancer ECA109 cells compared with HEEC cells, and the differences were statistically significant.

The relative expression levels of AQP4, ADCYAP1R1 and VIPR2 were significantly upregulated in human esophageal cancer SKGT-4 and ECA109

cells, and the differences were statistically significant.

https://doi.org/10.1371/journal.pone.0255479.g006
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of tumors, such as gliomas, breast and prostate cancers, and gastric cancer [41–43]. This also

includes esophageal cancer, where Zhang, Yuefeng et al. found low expression of

ADCYAP1R1 in esophageal cancer by bioinformatics analysis consistent with our experimen-

tal results [44], but the exact prognostic mechanism of ADCYAP1R1 affecting esophageal can-

cer has not been investigated. PDGFD (platelet-derived growth factor D) is a protein-coding

gene, Yang, Xiao et al. demonstrated through bioinformatics that PDGFD is associated with

ovarian cancer [45]. Although PDGFD has not been shown to be associated with prognosis in

esophageal cancer, the association between platelet-derived growth factor-BB expression and

prognosis in human esophageal squamous cell carcinoma has been studied [46]. VIPR2

encodes the receptor for vasoactive intestinal peptide (a small neuropeptide), which has been

associated with diseases such as schizophrenia [47]. VIPR2 is under-expressed in ESCC, which

is consistent with our experimental results [48].

Conclusion

In conclusion, our study screened prognostic markers for esophageal cancer, constructed a

miRNA-mRNA network for esophageal cancer, and predicted possible convergence pathways

for core genes, laying the foundation for subsequent basic research on esophageal cancer.

However, there are still shortcomings and limitations in our study. 1) We cross-analyzed the

obtained serum differential DEMs with the tumor tissue DEMs in the TCGA database, which

is a case of excluding miRNAs secreted by tumor tissue into serum, which may lead to the

omission of some key miRNAs. To facilitate peer research on circulating miRNAs in esoph-

ageal cancer serum, we have published the results of the GEO analysis as a supplementary

paper. (2) Our proposal of circulating miRNAs in serum as a possible new diagnostic marker

is based on speculation from previous studies and theories, and the exact method of how to

extract the corresponding miRNAs from serum needs to continue to be investigated. (3) Our

experiments were validated using only one experimental method, qPRC, and two esophageal

cancer cell lines, which likely led to biased results. The expression of each gene also appeared

to be overexpressed. (4) The pathways and miRNA-mRNA networks were obtained by bioin-

formatics analysis and should be further validated by experiments.
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