PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Jiang Y, Zhang C, Shen W, Li Y, Wang Y,
Han J, et al. (2021) |dentification of serum
prognostic marker miRNAs and construction of
microRNA-mRNA networks of esophageal cancer.
PLoS ONE 16(7): 0255479. https://doi.org/
10.1371/journal.pone.0255479

Editor: Suhwan Chang, University of Ulsan College
of Medicine, REPUBLIC OF KOREA

Received: February 7, 2021
Accepted: July 18, 2021
Published: July 30, 2021

Copyright: © 2021 Jiang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the manuscript and it’s S1 Checklist.

Funding: This study was supported by the Health
Commission of Mianyang City (grant number
201937).

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Identification of serum prognostic marker
MiRNAs and construction of microRNA-mRNA
networks of esophageal cancer

Yue Jiang'¥, Chengda Zhang?¥, Wenbin Shen?, Yiming Li2, Yun Wang?*, Jianjun Han?,
Tao Liu® Li Jia®, Fei Gao*, Xiaojun Liu*, Mi Chen®, Guangming Yi*, Hongchun Dai®,
Jun He*%*

1 Department of Clinical Medicine, Southwest Medical University, Luzhou, China, 2 Department of
Gastroenterology, The Third Hospital of Mian Yang (Sichuan Mental Health Center), Mianyang, China,

3 Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang,
China, 4 Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China,
5 The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China

1 YJ and CZ are co-first authors and contributed equally to this study.
* he-001jun@163.com

Abstract

Esophageal cancer is a common tumor of the digestive system with poor prognosis. This
study was to gain a better understanding of the mechanisms involved in esophageal cancer
and to identify new prognostic markers. We downloaded the esophageal cancer miRNA
expression profile microarray data (GSE113740, GSE112264, GSE122497, GSE113486,
and GSE106817) from the GEO database, extracted the esophageal cancer miRNA
sequencing data from The Cancer Genome Atlas (TCGA) database, and then used a bioin-
formatics approach to select common differentially expressed miRNAs (DEMs). Differen-
tially expressed genes (DEGs) were selected by predicting DEM target genes using the
miRWalk database and intersecting with differential genes obtained from TCGA database
for esophageal cancer. The STRING database was used to obtain protein—protein interac-
tion (PPI) relationships to construct the DEM-DEG network. Furthermore, we selected core
genes and core miRNAs associated with esophageal cancer prognosis by performing sur-
vival and univariate/multivariate COX analysis on DEMs and DEGs in the network and per-
formed GSEA analysis on core genes alone, and finally the expression of the markers was
verified by qPCR in esophageal cancer cell lines Eca109, SKGT-4 and normal esophageal
epithelial cells HEEC. Nine DEMs were obtained, of which three were upregulated and six
were downregulated, and 326 DEGs were obtained, of which 105 were upregulated and 221
were downregulated. Survival univariate/multivariate COX analysis revealed that five
genes, ZBTB16, AQP4, ADCYAP1R1, PDGFD, and VIPR2, and two microRNAs, miR-99a-
5p, and miR-508-5p, were related to esophageal cancer prognosis. GSEA analysis showed
that the following genes may be involved in esophageal cancer prognosis: ZBTB16 may
through the MTOR signaling pathway, AQP4 through the GNRH signaling pathway,
ADCYAP1R1 through the PPAR signaling pathway, VIPR2 through the P53 signaling path-
way and PDGFD through the PENTOSE-PHOSPHATE signaling pathway.
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Introduction

Esophageal cancer is a joint malignant tumor of the digestive system, primarily including two
types of squamous carcinoma and adenocarcinoma [1, 2]. Worldwide, approximately 500,000
patients are diagnosed with esophageal cancer each year, and their 5-year overall survival rate
is generally <15% [3, 4]. Although esophageal cancer treatment has greatly improved the prog-
nosis of patients, the prognosis of patients with esophageal cancer remains poor as endoscopic
diagnosis of early stage esophageal cancer is difficult and most patients with esophageal cancer
are already in the middle or advanced stages at the time of diagnosis [5-7]. MicroRNAs (miR-
NAs) are small noncoding RNAs that regulate gene expression and are implicated in the path-
ogenesis of several cancers [8-10]. It has been shown that measuring circulating miRNA levels
in patients’ serum may be a simple and non-invasive method for diagnosing certain early-
stage cancers [11-13]. In the present study, to explore the mechanism underlying esophageal
cancer development and provide novel targets and pathways for esophageal cancer diagnosis
and treatment, a bioinformatics approach was used to analyze the esophageal cancer data
derived from the public databases The Cancer Genome Atlas (TCGA) [14] and Gene Expres-
sion Omnibus (GEO) [15]. The differential genes and differential miRNAs of esophageal can-
cer were integrated and analyzed to construct a miRNA-mRNA network for esophageal
cancer, and survival analysis, univariate/multivariate COX analysis, and GSEA analysis were
conducted on the genes and miRNAs in the network to provide research directions for further
basic experiments.

Materials and methods
Data

The GEO (https://www.ncbi.nlm.nih.gov./geo/) [15] database and TCGA (https://portal.gdc.
cancer.gov/) [14] database provide a large amount of data on patients with esophageal cancer.
In the GEO search box, we entered “esophageal cancer serum” and “miRNA” and selected
human microarray data with sample size greater than 100 and then selected five datasets,
GSE113740 [16], GSE112264 [17], GSE122497 [18], GSE113486 [19], and GSE106817 [20],
from the same platform GPL21263 (3D-Gene Human miRNA V21_1.0.0), as shown in
Table 1, including the serum miRNA microarray data from a total of 5869 healthy controls
and 769 patients with esophageal cancer(Exclusion of large deviations from the data set
GSE124158). RNA sequencing data (miRNA and mRNA) derived from the tumor tissues of
patients with esophageal cancer and tissues of healthy controls were downloaded from TCGA
database, select TCGA-ESCA’s sequencing reads date, including the miRNA sequencing data
from 13 healthy tissues and 185 tumor tissues versus the mRNA sequencing data from 11
healthy tissues and 160 tumor tissues.

Human esophageal cancer SKGT-4 and ECA109 cells, human normal esophageal epithelial
cells (HEEC cells) were purchased from the Cell Bank of the Chinese Academy of Sciences;

Table 1. Grouping characteristics of each data set.

Date Set Contributors Samples of EC Samples of HC Submission date
GSE113740 [13] Yamamoto Y, et al 25 969 30-Jul-20
GSE112264 [14] Urabe F, et al 50 41 Mar 23,2018
GSE122497 [15] Sudo K, et al 566 2000 (Select the first two thousand) 13-Nov-18
GSE113486 [16] Usuba W, et al 40 100 20-Apr-18
GSE106817 [17] Yokoi A, et al 88 2759 13-Nov-17

EC: Esophageal Cancer; HC: healthy control.

https://doi.org/10.1371/journal.pone.0255479.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0255479  July 30, 2021 2/14


https://www.ncbi.nlm.nih.gov./geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://doi.org/10.1371/journal.pone.0255479.t001
https://doi.org/10.1371/journal.pone.0255479

PLOS ONE

Prognostic markers for esophageal cancer

fetal bovine serum and RPMI1640 cell culture medium were purchased from Hyclone; RNA
extraction kit, Trizol and protein extraction lysis solution were purchased from Biyuntian Bio-
technology Company Limited.

Difference analysis

The data in the five datasets were divided into cancer and healthy control groups, and the
results were analyzed differentially and visualized using the GEO2R tool based on the limma.R
package (https://www.ncbi.nlm.nih.gov./geo/geo2r/) [21], setting padj = 0.05 and log2FC = 1.
The results were incorporated using the RobustRankAggreg.R [22] package, and an R package
for the meta-analysis of multiple sets of GSE data was used to integrate the differential results
and select differentially expressed miRNAs with p < 0.05 (DEMsl). Differential analysis of
data obtained from TCGA database was performed using the Edge.R [23] package, and to
ensure the accuracy of the results, read counts were transformed into counts per million index
to eliminate the effect of sequencing depth. Differential miRNAs with Q values < 0.05,
log2FC > 1 were selected as DEMs2 and Q values < 0.05, log2FC > 2 were used as initial dif-
ferentially expressed genes (DEGs). DEMs1 and DEMs2 were selected for intersection to
obtain differentially expressed miRNAs (DEMs).

miRNA-mRNA and PPI network analysis

The miRWalk database [24] and the STRING database [25] were used for the construction of
the miRNA-mRNA network in esophageal cancer. A total of 326 DEGs were obtained by pre-
dicting the target genes of DEMs using the miRWalk website and taking intersections with the
abovementioned DEGs. The STRING database contains several protein—protein interaction
relationships, and the protein—protein association (PPI) of 326 DEGs was analyzed using the
STRING database. The DEGs with a combined score > 0.7 (139 genes in total) were selected
and outlined with their upstream miRNAs to create an esophageal cancer miRNA-mRNA net-
work using the Cytoscape [26] software to visualize the results.

Univariate/Multivariate COX analysis

Univariate / Multivariate COX analysis and survival analysis often establishes a link with dis-
ease prognosis and is widely used in oncology research. We used genome-wide clinical data
downloaded from TCGA for 160 patients with esophageal cancer to initially screen 139 genes
in the network using univariate COX analysis, before further screening esophageal cancer
prognostic association DGEs using multivariate COX analysis and constructing a prognostic
model for esophageal cancer to test the prognostic model effect using survival curves and ROC
curves. Only DEGs that met p<0.05 for both univariate COX and multivariate COX analyses
could be considered as prognostic-associated DEGs for esophageal cancer. Multivariate COX
analysis was performed online for DEMs using the OncomiR database [27], and then p<0.05
Kaplan-Meier survival curves were plotted for DEMs based on the high and low risk values
obtained from the COX analysis.

GSEA analysis of core genes

Gene set enrichment analysis (GSEA) analysis can be used for the pathway enrichment analy-
sis of individual genes, which can better reveal the upregulation and downregulation relation-
ships of individual gene-enriched pathways in disease compared with the common KEGG
analysis. The 160 esophageal cancer samples were divided into gene-high and gene-low expres-
sion groups, and all esophageal cancer genes were analyzed for enrichment in GSEA software
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[28], and some pathways with p-values <0.05 were selected for visualisation. The pathways
that were predominantly enriched for genes were examined in preparation for the subsequent
basic experiments.

Cell culture and qPCR

Human esophageal cancer SKGT-4, ECA109 cell lines and HEEC cell lines were cultured in
sterile RPMI1640 medium containing 10% fetal bovine serum and 1% antibacterial drugs
(penicillin, streptomycin) in a sterile cell culture incubator at 37°C and 5% CO2.

RT-qPCR is a sensitive technique for quantifying specific RNA targets. Human esophageal
cancer SKGT-4 and ECA109 cells at logarithmic growth stage were collected, with HEEC cells
as control. RNA was extracted using the RNA extraction kit, strictly according to the instruc-
tions. RNA concentration was detected by qPCR. cDNA was synthesized by reverse transcrip-
tion and PCR reactions (PCR reaction conditions: 95°C30s,95°C10s,60°C30s) were performed
to detect the expression levels of miR-99a-5p, miR-508-5p, ZBTB16, AQP4, ADCYAPIRI,
PDGFD and VIPR2. The relative expression levels of the genes were calculated as 24",

Results and discussion
Differentially expressed miRNAs (DEMs)

To obtain differential miRNAs for esophageal cancer, we conducted the differential analysis of
sequencing data using the GEO2R tool to obtain differential volcano plots (Fig 1A-1E). The
results of all differential analyses were analyzed using the RobustRankAggreg.R package, and
miRNAs with p values < 0.05 were selected as DEMs1, after which the results were visualized
(Fig 1F). Differential analysis of miRNA sequencing data derived from 13 healthy tissues and
185 tumor tissues in TCGA database was performed using the Edge.R package, and a differen-
tial volcano plot was obtained (Fig 2A). The differential miRNAs with p < 0.05 and

log2FC > 1 were selected as DEMs2, and the final DEMs were obtained by taking the intersec-
tion of DEMs1 and DEMs2 (Fig 2B and 2C). A total of 169 DEMs1 and 141 DEMs2 were
obtained, resulting in 9 DEMs, of which 3 were upregulated and 6 were downregulated.

Differentially expressed genes (DEGs)

To obtain differential genes for esophageal cancer, we used the Edge.R package to perform the
differential analysis of mRNA sequencing data derived from 11 healthy and 160 tumor tissues
downloaded from TCGA database to obtain a differential volcano plot (Fig 2D), and the gene
with p < 0.05 and log2FC > 2 was selected as the initial differential gene (DEGs1). The miR-
Walk database was used to predict the target genes of DEMs, all possible target genes were
obtained, and the final DEGs were obtained by intersecting DEGs1 with the target genes (Fig
2E and 2F). A total of 326 DEGs were obtained, of which 105 were upregulated and 221 were
downregulated.

miRNA-mRNA and PPI networks

To construct the miRNA-mRNA network for esophageal cancer and discover key markers of
esophageal cancer from multiple perspectives, we submitted the DEGs to the STRING data-
base for protein—protein interaction (PPI) analysis, identified the gene associations from the
protein level, selected genes with stronger associations, and visualized them using the Cytos-
cape software (Fig 3).

PLOS ONE | https://doi.org/10.1371/journal.pone.0255479  July 30, 2021 4/14


https://doi.org/10.1371/journal.pone.0255479

PLOS ONE

Prognostic markers for esophageal cancer

GSE106817: N vs CA

-log10(Pvalue)
100
1

+ down
o *u

Padj<0.05| *

T
-6

log2(fold change)

GSE113740: Nvs CA

50
1

-log10(Pvalue)
30
1

log2(fold change)

GSE122497: N vs CA

-4
o
8 4
8
o
24
o~
_—
3 8
s
& o
e 9 1
°
K]
)
8 -
3 -{Padj<0.05
+ down
o *u
T
-6 -4

log2(fold change)

-log10(Pvalue)

15 20 25 30 35

10

Padj<0.05
+ down
. up

GSE112264: Nvs CA

-log10(Pvalue)

50

40

30

20

10

GSE113486: Nvs CA

Padj<0.05| ~
* down
4 *up

T
-6

9]
%]
m
o
(=]
o2}
o]
=
N
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represents upregulated genes. The vertical coordinate represents -logl0 (p value). N is the normal control group; CA is the cancer group. (F) shows
the log2FC heat map of GSE113740, GSE112264, GSE122497, GSE113486, and GSE10681. The numbers in the plot show the log2FC for each
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https://doi.org/10.1371/journal.pone.0255479.9001
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https://doi.org/10.1371/journal.pone.0255479.9002

Univariate / Multivariate COX analysis

To obtain further core genes and core miRNAs associated with the prognosis of esophageal
cancer, this study used clinical data from 11 healthy patients and 160 esophageal cancer
patients in the TCGA database to perform univariate/multivariate COX analysis on 139 DEGs
in the network, and univariate COX analysis yielded 22 prognosis-associated genes. Multivari-
ate COX analysis yielded SIX2, ADIPOQ, ZBTB16, AQP4, ADCYAPI1R1, PDGFD and VIPR2
seven (of which p<0.05 for a total of five genes ZBTB16, AQP4, ADCYAP1R1, PDGFD and
VIPR2) genes associated with prognosis in esophageal cancer, seven-gene prognostic model
survival p = 0.01252, area under the ROC curve AUC = 0.634 (Fig 4C-4F). OncomiR, a power-
ful database for studying cancer miRNAs online, was used to perform multivariate COX sur-
vival analysis of DEMs using 184 esophageal cancer clinical data in OncomiR, and miRNAs
with p<0.05 were selected as the last associated with esophageal cancer prognosis of de novo
markers (Fig 4A and 4B).
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Fig 3. Diagram of miRNA-mRNA network in esophageal cancer and PPI network of DEGs. The above miRNA-mRNA network is based on the
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https:/doi.org/10.1371/journal.pone.0255479.g003

GSEA analysis of core genes

The expression values of five genes, ZBTB16, AQP4, ADCYAPIRI1, PDGFD and VIPR2, were
sorted and divided into gene-high and low expression groups for patients with esophageal
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cancer, and then the core genes were sequenced using the esophageal cancer RNA downloaded
from the TCGA database, and after counts per million (CPM) quantification, the GSEA soft-
ware was used to The high- and low-expression groups were subjected to GSEA pathway
enrichment analysis, and the top-ranked pathways with p value < 0.05 were selected for visual-
ization, respectively (Fig 5A-5E).

qPCR

The results showed that the relative expression levels of miR-508-5p, AQP4, ADCYAP1R1 and
VIPR2 were significantly up-regulated in human esophageal cancer SKGT-4 and ECA109 cells
compared with HEEC cells, and the differences were all statistically significant (Fig 6B, 6D, 6F
and 6G). The relative expression levels of miR-99a-5p were significantly down-regulated in
human esophageal cancer SKGT-4 cells compared with HEEC cells, and the differences were

statistically significant (Fig 6A).

Significance and impacts

The method of analyzing sequencing and microarray data through bioinformatics approaches
is widely applied in the medical field, including the field of research on tumor mechanisms
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https://doi.org/10.1371/journal.pone.0255479.9005

[29-31]. Bioinformatics can use an existing massive database to make predictions about
unknown problems, which is a good solution to the challenge of how to screen out the core
genes that are closely associated with diseases from a large number of genes. Esophageal cancer
is one of the common tumors with poor prognosis, and according to current statistical results,
China has the highest incidence of esophageal cancer in the world [32, 33]. To better screen
people at high risk of esophageal cancer at an early stage, to improve the prognosis of esoph-
ageal cancer and to provide new directions for research on esophageal cancer, in the present
study, we used data from the GEO database and TCGA database to analyze differentially
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Fig 6. Relative expression of markers. (A-G) denote the expression of miR-99a-5p, miR-508-5p, ZBTB16, AQP4, PDGFD, ADCYAPIRI and VIPR2,
respectively. qPCR results showed that: (A) miR-99a-5p was significantly down-regulated in human esophageal cancer SKGT-4 cells compared with
HEEC cells, and the difference was statistically significant. The differences were statistically significant. (B) The relative expression levels of miR-508-5p
were significantly up-regulated in human esophageal cancer ECA109 cells compared with HEEC cells, and the differences were statistically significant.
The relative expression levels of AQP4, ADCYAP1RI1 and VIPR2 were significantly upregulated in human esophageal cancer SKGT-4 and ECA109
cells, and the differences were statistically significant.

https://doi.org/10.1371/journal.pone.0255479.9006

expressed miRNAs in esophageal cancer and obtained a total of nine DEMs, of which three
were upregulated and six were downregulated. We used sequencing data obtained from
TCGA database to analyze DEGs in esophageal cancer and combined them with DEMs. The
miRNA-mRNA network of esophageal cancer was constructed by combining the sequencing
data with DEMs, which provides a new direction for research on esophageal cancer. To further
understand the new biomarkers that are closely related to esophageal cancer prognosis, we
also performed the univariate/multivariate COX analysis of miRNAs and mRNAs in the net-
work and found five core genes, ZBTB16, AQP4, ADCYAPIR1, PDGFD and VIPR?2, that may
be associated with esophageal cancer prognosis and two core miRNAs, miR-99a-5p, and miR-
508-5p. Finally, we conducted KEGG enrichment analysis on each of the five core genes using
data obtained from TCGA database and GSEA software, expecting to identify the pathways
acted upon by the core genes for subsequent basic experiments.

Zinc Finger And BTB Domain Containing 16 (ZBTB16) is a member of the Krueppel
C2H2 type zinc finger protein family, which is associated with skeletal defects, genital hypopla-
sia, mental retardation and acute promyelocytic leukaemia [34-36]. Recent studies have dem-
onstrated that ZBTB16 can act as an oncogene in breast cancer by upregulating ZBTB28 and
antagonizing BCL6 [37]. Aquaporin 4 (AQP4), a member of the family of membrane protein
water channel proteins, has been suggested to promote tumor progression, invasion and
metastasis [38, 39] and is a promising target in oncology research. In lung squamous cell carci-
noma, AQP4 is transcribed at low levels [40]. However, the role and mechanisms of ZBTB16
and AQP4 in esophageal cancer have not yet been investigated. Adenylate Cyclase Activating
Polypeptide 1 (Pituitary) Receptor Type I (ADCYAP1R1) encodes a type I adenylate cyclase
activating polypeptide receptor, which is associated with diseases such as post-traumatic stress
disorder and regulatory spasticity [14, 15]. ADCYAPIRI is differentially expressed in a variety
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of tumors, such as gliomas, breast and prostate cancers, and gastric cancer [41-43]. This also
includes esophageal cancer, where Zhang, Yuefeng et al. found low expression of
ADCYAPIRI in esophageal cancer by bioinformatics analysis consistent with our experimen-
tal results [44], but the exact prognostic mechanism of ADCYAP1RI affecting esophageal can-
cer has not been investigated. PDGFD (platelet-derived growth factor D) is a protein-coding
gene, Yang, Xiao et al. demonstrated through bioinformatics that PDGFD is associated with
ovarian cancer [45]. Although PDGFED has not been shown to be associated with prognosis in
esophageal cancer, the association between platelet-derived growth factor-BB expression and
prognosis in human esophageal squamous cell carcinoma has been studied [46]. VIPR2
encodes the receptor for vasoactive intestinal peptide (a small neuropeptide), which has been
associated with diseases such as schizophrenia [47]. VIPR2 is under-expressed in ESCC, which
is consistent with our experimental results [48].

Conclusion

In conclusion, our study screened prognostic markers for esophageal cancer, constructed a
miRNA-mRNA network for esophageal cancer, and predicted possible convergence pathways
for core genes, laying the foundation for subsequent basic research on esophageal cancer.
However, there are still shortcomings and limitations in our study. 1) We cross-analyzed the
obtained serum differential DEMs with the tumor tissue DEMs in the TCGA database, which
is a case of excluding miRNAs secreted by tumor tissue into serum, which may lead to the
omission of some key miRNAs. To facilitate peer research on circulating miRNAs in esoph-
ageal cancer serum, we have published the results of the GEO analysis as a supplementary
paper. (2) Our proposal of circulating miRNAs in serum as a possible new diagnostic marker
is based on speculation from previous studies and theories, and the exact method of how to
extract the corresponding miRNAs from serum needs to continue to be investigated. (3) Our
experiments were validated using only one experimental method, qPRC, and two esophageal
cancer cell lines, which likely led to biased results. The expression of each gene also appeared
to be overexpressed. (4) The pathways and miRNA-mRNA networks were obtained by bioin-
formatics analysis and should be further validated by experiments.
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