
 International Journal of 

Molecular Sciences

Article

Fibroblast Growth Factor 21 Stimulates Pancreatic
Islet Autophagy via Inhibition
of AMPK-mTOR Signaling

Sam Tsz Wai Cheng, Stephen Yu Ting Li and Po Sing Leung *

School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China;
samsn_n@hotmail.com (S.T.W.C.); stephenliyuting_1992@yahoo.com.hk (S.Y.T.L.)
* Correspondence: psleung@cuhk.edu.hk; Tel.: +852-3943-6879

Received: 24 April 2019; Accepted: 21 May 2019; Published: 22 May 2019
����������
�������

Abstract: Background: Islet autophagy plays a role in glucose/lipid metabolism in type 2 diabetes
mellitus. Meanwhile, fibroblast growth factor 21 (FGF21) has been found to regulate insulin sensitivity
and glucose homeostasis. Whether FGF21 induces islet autophagy, remains to be elucidated. This study
aimed to explore the physiological roles and signaling pathways involved in FGF21-stimulated islet
autophagy under glucolipotoxic conditions. Methods: C57/BL6J mice were fed a standard diet or
high-fat diet (HFD) for 12 weeks, and islets were isolated from normal and FGF21 knockout (KO)
mice. Isolated islets and INS-1E cells were exposed to normal and high-concentration glucose and
palmitic acid with/without FGF21 or AMPK inhibitor compound C. Real-time PCR, Western blot
and immunohistochemistry/transmission electron microscopy were performed for the expression
of targeted genes/proteins. Results: HFD-treated mice showed increases in fasting plasma glucose,
body weight and impaired glucose tolerance; islet protein expression of FGF21 was induced after HFD
treatment. Protein expression levels of FGF21 and LC3-II (autophagy marker) were induced in mouse
islets treated with high concentrations of palmitic acid and glucose, while phosphorylation of AMPK
was reduced, compared with controls. In addition, induction of LC3-II protein expression was reduced
in islets isolated from FGF21 KO mice. Furthermore, exogenous administration of FGF21 diminished
phosphorylation of AMPK and stimulated protein expression of LC3-II. Consistently, compound C
significantly induced increased expression of LC3-II protein. Conclusions: Our data indicate that
glucolipotoxicity-induced FGF21 activation mediates islet autophagy via AMPK inhibition, and further
consolidate the evidence for the FGF21/analog being a pharmacotherapeutic target for obesity and its
related T2DM.
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1. Introduction

It is estimated over 400 million people are suffering from diabetes worldwide, with type 2 diabetes
mellitus (T2DM) being the predominant form, which accounts for >90% of all cases [1]. T2DM develops
when insulin resistance increases in insulin-target organs, followed by impaired insulin secretion and
reduced β-cell mass [2]. Obesity is a well-known risk factor for T2DM progression, and obesity-induced
glucolipotoxicity (i.e., hyperglycemia and hyperlipidemia) inflicts oxidative stress, thus leading to
impaired islet glucose-stimulated insulin secretion (GSIS) and apoptosis [3].

Fibroblast growth factor (FGF) 21 is a potent metabolic regulator, expressed predominantly in
the liver, but also in adipose tissue and the pancreas [4]. Pharmacological studies have demonstrated
that FGF21 improves insulin sensitivity, thereby countering the development of metabolic diseases,
including obesity and T2DM [4].
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Circulating FGF21 levels are elevated in rodents and humans with obesity and T2DM [5,6]. In fact,
FGF21 levels were found to correlate inversely with whole-body insulin sensitivity, and to correlate
directly with the hepatic insulin resistance index and glycemia [5]. In addition, exposure of islets and
INS-1E cell β-cells to diabetic conditions attenuates FGF21 responsivity, as evidenced by reductions in
extracellular mitogen-activated protein kinase 1 and 2 (ERK1/2) phosphorylation, Protein kinase B
(PKB) signaling, and FGF21 target gene expression [6,7]. Interestingly, people who are obese or diabetic
exhibit FGF21 resistance [6]. Moreover, high glucose conditions impaired FGF21’s action in mouse islets
via a suppression of β-klotho (KLB), which was ameliorated by rosiglitazone, an agonist for peroxisome
proliferator-activated receptor-γ [8]. Although extensive studies confirmed the beneficial role of FGF21
in insulin sensitivity and glucose homeostasis in liver and adipose tissues, less attention has been paid
to glucolipotoxicity-induced pancreatic β-cell dysfunction [7]. In this regard, FGF21 knockout (KO)
mice exhibited abnormal islet morphology, islet dysfunction, and impaired GSIS due to a dysregulation
of growth hormone signaling [9]. These findings point toward FGF21 being functional in islets in
addition to insulin-target organs.

Macroautophagy (herein referred to as autophagy) is a regulated catabolic process used by
eukaryotic cells to degrade aggregated or damaged proteins and organelles [10,11]. Autophagy plays
a key role in nutrient sensing and cell growth [12]. The observation of impaired autophagy in
association with β-cell lipotoxicity and dysfunction suggests that autophagy may be critical for the
regulation of glucose and lipid homeostasis [13]. Autophagy may be particularly important in β-cells
because of their especially high protein (i.e., insulin) synthesis levels [14]. Increased β-cell autophagic
flux, as reflected by the formation of autophagosomes and the induction of autophagy-related genes
(e.g., LC3), has been observed in C57BL/6 mice fed a 60% high-fat diet (HFD) and in β-cells treated with
palmitate [14,15]. In addition, β-cell-specific autophagy-deficient mice could exhibit progressive β-cell
degeneration, hypoinsulinemia, and hyperglycemia [16]. The magnitude of β-cell degeneration in
these mice became more significant when they were fed an HFD, indicative of being hyper-susceptible
to lipotoxicity [17]. Observation of elevated serum levels of free fatty acids (FFAs) in association with
insulin resistance is consistent with the possibility that FFA-mediated induction of β-cell autophagy
may alter β-cell function in obesity-related diabetes [18–20]. If confirmed, β-cell survival and function
may be improved by pharmacological stimulation of autophagy [21,22]. The relationship between
pancreatic β-cells and autophagy remains to be fully clarified.

Autophagy is tightly regulated by two signaling molecules, namely mTOR (mechanistic target
of rapamycin) and AMPK (5’ AMP-activated protein kinase) [23]. The mTOR interacts with various
binding proteins to form at least two functionally distinct complexes, namely mTOR1 and 2 [23].
Any mTOR2 activity is suppressed under starvation or FFA exposure, a key trigger of autophagy
induction in eukaryotes [23,24]. Activation of AMPK requires kinase phosphorylation of a conserved
threonine residue (T172) in the activation loop of its catalytic α-subunit [25–27]. The roles of AMPK
as a major metabolic energy sensor and regulator are well known [25]. The anti-diabetic actions of
metformin have been shown to be AMPK-dependent [18]. Interestingly, administration of recombinant
FGF21 protein to alcohol-treated mice and HepG2 cells enhanced phosphorylated AMPK levels in both
the mouse liver cells and the in vitro liver cells [28]. Additionally, FGF21 treatment increased AMPK
phosphorylation in 3T3-L1 adipocytes, white adipose tissues and human differentiated adipocytes [29].
Conversely, chronic exposure of β-cells to palmitate has been shown to inhibit AMPKα activity,
consistent with mTOR inhibition by long-term FFA exposure [30–32]. These findings point to AMPK
and mTOR2 being able to interact in autophagic induction, perhaps through direct activation of
ULK1 [33]. On the other hand, it has been reported that adiponectin, a downstream effector of FGF21,
can stimulate autophagy, reduce oxidative stress in skeletal muscles and, ultimately, enhance insulin
sensitivity in mice fed an HFD [34]. Meanwhile, fenofibrate has been shown to increase cardiocyte
autophagy via the FGF21 pathway in T1DM mice [35]. Additionally, FGF21 itself has been reported
to promote the expression of several autophagy-related proteins in both obese mice and fat-loaded
hepatocytes, as well as to increase autophagosome and lysosome numbers in liver cells [36].
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The above discussed convergence of findings suggests that FGF21 plays a positive role in
activating autophagy in various cells and tissues. We thus hypothesize that FGF21 may have
a regulatory role in islet autophagy-mediated islet function and survival via AMPK-mTOR signaling,
that is protective against glucolipotoxicity-induced islet dysfunction in obesity-associated T2DM.
To test this hypothesis, we conducted a series of experiments to investigate the mechanism-of-action
involved in FGF21-stimulated autophagy in pancreatic islets isolated from HFD-induced diabetic
mice and FGF21 KO mice, as well as in isolated islets and insulinoma INS-1E cells subjected to
pharmacological manipulations.

2. Results

2.1. FGF21 Analog CVX343 Improves Glucose Homeostasis and Body Weight in HFD-Induced T2DM Mice

Compared to control mice fed a standard diet, HFD feeding increased the body weight of mice
significantly; however, the HFD effect on weight gain was attenuated significantly by high-dose CVX343
(10 mg/kg body weight (BW)), while a nonsignificant attenuation trend was observed with low-dose
CVX343 (3 mg/kg BW) (Figure 1A). Meanwhile, both CVX343 treatments resulted in improved fasting
blood glucose levels (Figure 1B) as well as improved glucose intolerance (Figure 1C) in HFD-treated
mice relative to untreated controls, as evidenced by IPGTT results. In addition, high-dose CVX343
ameliorated insulin resistance significantly in HFD-treated mice, as evidenced by ITT results (Figure 1D).
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Figure 1. Effects of the fibroblast growth factor 21 (FGF21) analog CVX343 on body weight and glucose
homeostasis of mice with high-fat diet (HFD)-induced type 2 diabetes mellitus (T2DM). (A) Weekly
mean body weight (BW) of each group and comparison of BW group with AUCs. (B) Weekly fasting
blood glucose levels for each group and comparison of fasting blood glucose with AUCs. (C) Glucose
tolerance results measured at 15-min intervals over a 2-h IPGTT and comparison of group IPGTT with
areas under the curve (AUCs). (D) Blood glucose levels measured at 15-min intervals over a 2-h ITT and
comparison of group ITT with AUCs. Data are means ± SEMs; n = 5–10 per group; ns, non-significant;
* p < 0.05, ** p < 0.01, and *** p < 0.001.

2.2. In Vivo HFD-Induced T2DM and Ex Vivo High-Glucose/High-PA Treatment Upregulate Protein
Expression of FGF21 and LC3-II in Pancreatic Islets

HFD feeding for 12 weeks to induce diabetes increased islet protein expression of FGF21 (Figure 2A)
and the autophagy marker LC3-II (Figure 2B) relative to the chow diet, as demonstrated by Western
blot analysis. In addition, LC3-II expression was increased in a time-dependent manner in isolated
islets cultured ex vivo in high-glucose/high-PA conditions (Figure 2C), whereas protein levels of FGF21
were also increased significantly after 24-h exposure to high-glucose/high-PA conditions (Figure 2D)
relative to the control, as demonstrated by Western blot analysis.
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Figure 2. Effects of HFD feeding and high-glucose/high-PA conditions on the protein expression of
FGF21 and LC3-II in pancreatic islets. Western blot images and analyses for the expression of FGF21 (A)
and LC3-II (B) in islets isolated from mice fed with a HFD for 12 weeks. (C) Western blot analysis of
LC3-II expression in isolated islets during high-glucose/high-PA treatment. (D) Western blot analysis of
FGF21 expression in isolated islets after a 24-h high-glucose/high-PA treatment. Data are means ± SEMs;
n = 3–6 per group; * p < 0.05, and ** p < 0.01.

2.3. Pancreatic Islets Isolated from FGF21 KO Mice and INS-1E β-Cells with FGF21 Knockdown Display
Diminished Autophagy Induction

Real-time PCR and Western blot analyses showed that siRNA #3 down-regulated FGF21 in INS-1E
β-cells (Figure 3A,B). LC3-II expressions were also found in FGF21 knocked down INS-1E cells subjected
to exposure to high-glucose/high-PA conditions, as evidenced by Western blot analyses (Figure 3C).
RT-PCR showed that FGF21 gene in pancreatic islets from FGF21 KO mice was successfully knocked out
(Figure 3D). In corroboration with the INS-1E cell, when cultured in high-glucose/high-PA conditions,
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consistent results on FGF21 KO mouse islets had reduced LC3-II protein expression compared to islets
isolated from their respective WT mice (Figure 3E).
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Figure 3. Identification of LC3-II expression in FGF21 KO mice and INS-1E cells with FGF21 knockdown.
Comparison of knockdown efficiency achieved by three anti-FGF21 siRNAs in INS-1E cells (n = 6
replicates/group). The siRNA #3 proved to be the most effective tested siRNA for knocking down;
FGF21 mRNA transcription detected by real time PCR (A) and FGF21 protein expression detected by
Western blot (B) (n = 6 replicates/group). (C) Suppression of LC3-II protein expression (Western blot)
in anti-FGF21 siRNA #3 knocked down INS-1E β-cells, compared to cells exposed to control siRNA,
following a treatment with 24-h high-glucose/high-PA exposure (n = 6 colonies/group). (D) RT-PCR
analysis for the mRNA expression of FGF21 in pancreatic islets of FGF21 KO mouse. (E) Suppression of
LC3-II protein expression (Western blot) in FGF21 KO islets, compared to WT islets, following 24-h
high-glucose/high-PA treatment (n = 6 islets/group). # Also, * p < 0.05, ** p < 0.01 and ### p < 0.001.

To further confirm the functional role of FGF21-mediated autophagy induction,
we performed immunocytochemistry and transmission electron microscopy (TEM) examinations.
Results from immunofluorescent labeling revealed decreased cytoplasmic LC3-II expression in
high-glucose/high-PA-treated INS-1E cells with FGF21 knockdown, compared to non-treated control
cells (Figure 4A). On the other hand, TEM revealed that autophagy induction was impaired in FGF21
KO islets under diabetic conditions (Figure 4B), as evidenced by the reduced formation of isolation
membranes (Figure 4C) and autophagosomes (Figure 4D), in relation to their respective control.
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high-glucose/high-PA conditions in INS-1E cells with FGF21 knockdown and isolated islets with
FGF21 KO mice. (A) Fluorescent immunohistochemistry showing decreased expression of cytoplasmic
LC3-II in high-glucose/high-PA-treated INS-1E cells compared to non-treated control cells. (B) TEM
images demonstrating reduced formation of isolation membranes (blue arrow) and autophagosomes
(red arrow) in FGF21 KO islets under diabetic conditions. The yellow square is the area that was
magnified. Quantitative summaries of these TEM observations of isolation membranes (C) and
autophagosomes (D). Data are means ± SEMs; n = 8–9; ## p < 0.01, and *** p < 0.001.
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2.4. In Vivo HFD, Ex Vivo High-Glucose/High-PA, and Exogenous Recombinant FGF21 Treatments Each
Reduced AMPK Phosphorylation in Pancreatic Islets

Immunoblot analysis revealed that the protein expression of AMPK phosphorylation was
suppressed in pancreatic islets isolated from mice fed a 12-week HFD (Figure 5A), relative to those from
mice fed a standard chow diet. Similarly, INS-1E β-cells exposed to high-glucose/high-PA conditions for
24 h was able to reduce AMPK phosphorylation (Figure 5B). Furthermore, exogenous administration
of FGF21 recombinant protein increased protein expression of islet FGF21 in a time-dependent manner
over respective time points (Figure 5C). Meanwhile, AMPK phosphorylation was suppressed transiently
in isolated islets treated with exogenous FGF21 recombinant protein (Figure 5D).
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Figure 5. Reduction of AMPK phosphorylation in isolated pancreatic islets and INS-1E cells by
HFD feeding and ex vivo high-glucose/high-PA treatment. (A) Western blot analysis of AMPK in
islets isolated from mice fed with a HFD or chow diet for 12 weeks. (B) Western blot analysis
of AMPK in isolated islets treated with the presence or absence of high-glucose/high PA for 24 h.
Increased FGF21 expression and reduced AMPK phosphorylation in isolated pancreatic islets by
exogenous administration of FGF21 recombinant protein. (C) Western blot analysis of FGF21 in islets
treated with FGF21 recombinant protein for indicated durations. (D) Western blot analysis of AMPK in
islets treated with FGF21 recombinant protein for indicated durations. All data are means ± SEMs;
n = 5–6 and * p < 0.05, ** p < 0.01.
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2.5. Compound C Suppressed mTOR Phosphorylation but Increased LC3-II Expression

To further explore the potential interaction between AMPK and mTOR-mediated autophagic
pathways, we sought to employ compound C, which is a potent AMPK blocker. Our results showed
that incubation with the potent AMPK blocker compound C (20 µM) reduced mTOR phosphorylation
significantly (Figure 6A,B), while increasing LC3-II protein expression significantly (Figure 6A,C)
in relation to the control, as evidenced by Western blot analysis.
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Figure 6. The AMPK blocker compound C reduced the phosphorylation of mTOR while increasing
the expression of LC3-II protein in isolated pancreatic islets. Western blots and quantitative analyses
for the protein levels of mTOR (A,B) and LC3-II (A,C) in isolated islets treated, or not, with 20 µM
compound C for 24 h. Data are means ± SEMs; n = 6 and * p < 0.05. vs. the non-treated control group.

3. Discussion

In this study, we demonstrated that weight gain, glucose intolerance and insulin resistance in
HFD-fed mice could be reversed by an application of the FGF21 mimetic CVX343. This observation was
previously supported in diet-induced obese mice, showing that weekly doses of CVX343 were able to
lower body weight, blood glucose and lipids levels whereas, in db/db mice, CVX343 improved glucose
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intolerance and increased pancreatic β-cell mass [37]. Besides, FGF21 expression was upregulated in
pancreatic islets of HFD-fed mice, as well as in high-glucose/high-PA-treated isolated islets. Exposure to
high-glucose/high-PA conditions increased the expression of LC3-II, as well as the formation of
isolation membranes and autophagosome in islets isolated from WT mice; these demonstrated effects
were consistent with glucolipotoxicity-induced autophagy, but not in islets from FGF21 KO mice.
Exogenous recombinant FGF21 suppressed AMPK phosphorylation and increased LC3-II protein
expression, while AMPK inhibition attenuated mTOR phosphorylation and upregulated LC3-II protein
expression. All these data point to the idea that FGF21 activation under glucolipotoxicity may induce
autophagic flux via inhibition of AMPK-mTOR signaling in islets, and that FGF21 may be an important
mediator of islet β-cell functions and pathophysiology related to obesity and T2DM.

Our findings on exogenous FGF21 administration-induced enhanced expression of FGF21 in
a time-dependent manner indicate that our observation of increased FGF21 expression in islets from
HFD mice may be a result of increased circulating FGF21 levels under diabetic conditions.

Circulating FGF21 levels have been previously reported to be elevated in T2DM animal models
and in human patients [5,38,39]. Regardless, an increase in the plasma level of FGF21 may serve as
a potential biomarker for early-stage metabolic disorders. The question of whether such elevations in
FGF21 are due to a compensatory response remains to be further investigated [4].

Our in vivo data showing that CVX343 lowered body weight, improved islet function and
potentiated insulin secretion in response to a glucose challenge, as well as enhanced insulin sensitivity
in HFD group mice, are in corroboration with previously reported in vivo effects of recombinant FGF21
protein on diabetic monkeys and rodents [40–42]. If confirmed, CVX343 may act as a novel anti-diabetic
agent. Because our high-dose CVX343 group mice exhibited weight loss, it will be important to
determine whether such body weight loss is related to the promotion either by physiological processes
(e.g., reduced food intake or increased fat catabolism), or by toxicity.

The present study findings are complementary to prior work, showing that FGF21 administration
can improve glucose tolerance and insulin sensitivity in diabetic rodents [40–43] as well as a prior
study showing that transgenic overexpression of FGF21 is protective against HFD-induced obesity
in mice [3]. Moreover, mice lacking FGF21 or autophagy-related genes display impaired insulin
secretion, abnormal islet cell growth, and greater susceptibility to T2DM [9,18,44]. The association
of insulin resistance and islet autophagy with elevated serum levels of FFAs suggests that FFAs may
play a compensatory, protective role in islets against obesity-associated diabetes pathology [16–18].
Emerging studies have accumulated that FGF21 is involved in the induction of autophagy in heart, liver,
and skeletal muscle tissues [34–36]. As such, dysregulation of islet autophagy represents a plausible
mechanism of glucolipotoxicity-mediated islet dysfunction.

It is well known that AMPK plays important roles in the control of cell growth and metabolism
reprogramming, and AMPK was linked recently to cellular processes, such as autophagy [45]. FGF21 has
been shown to regulate AMPK phosphorylation in tissues other than pancreatic islets; for example,
FGF21 treatment reversed alcoholic fatty liver and hepatic steatosis via activation of the hepatic
AMPK-SIRT1 pathway [28,46]. Likewise, FGF21 regulates energy metabolism via activation of the
AMPK-SIRT1-PGC-1α pathway in adipocytes [29]. However, FGF21 had an opposite effect on AMPK
activities in our study, that is, FGF21 down-regulated AMPK phosphorylation in pancreatic islets.
Therefore, it is plausible to postulate that FGF21 may mediate a different metabolic role in islets than in
the liver and adipose, which are the primary targets of pancreatic hormones (insulin and glucagon) in
the control of blood glucose homeostasis. Since both HFD feeding and ex vivo high-glucose/high-PA
treatment induced FGF21 expression and suppressed AMPK phosphorylation, we deduce that islet
FGF21 may alter AMPK activities during the pathogenesis of T2DM.

Given mTOR reduction in the induction of autophagy [24], it is noteworthy that AMPK inhibition
by high fat treatment or compound C in this study decreased mTOR phosphorylation and induced
signs of autophagy in pancreatic islets. The result was supported by a previous finding that compound
C induces autophagy in cancer cells through blockade of mTOR pathways [47]. Our study is the first
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to report that FGF21 may regulate mTOR activity and, in turn, autophagy, via the inhibition of AMPK
phosphorylation. Our data are in agreement with a prior study showing that hyperactivation of mTOR
led to autophagy impairment in β-cells, thus subsequently contributing to β-cell failure [48].

Although considerable research has pointed to beneficial effects of autophagy on promoting β-cell
survival in T2DM, it is possible that activation of autophagy may, in some circumstances, lead to
β-cell death [49]. Indeed, down-regulation of pdx1 in mice within MIN6 β-cells can also trigger islet
autophagy and cell death, whereas pharmacological inhibition of autophagy prevents autophagic
cell death [50]. Moreover, several components of the extrinsic apoptotic pathway, such as tumor
necrosis factor and ceramide, have been reported to induce autophagy [51]. Given that autophagy can
either protect cells or promote cell death, depending on the cellular and environmental context [52],
further investigation is warranted to elucidate the connection between cell survival and apoptosis in
pancreatic β-cells undergoing autophagy.

4. Materials and Methods

4.1. Animal Models

Male C57BL/6J mice (6 weeks of age) were supplied by the Laboratory Animal Service Center
of the Chinese University of Hong Kong. Prior to this study, the mice had been housed at 22 ± 2 ◦C
with a 12-h light/dark cycle and provided with an ad labitum rodent chow diet. From 6 weeks old
onwards, they received either standard rodent chow or a high-fat diet (HFD) (60% kCal from fat; Teklad,
Harlan Laboratories, Madison, WI, USA) for 12 weeks to establish an HFD-induced type 2 diabetes
mellitus (T2DM) model. Male fibroblast growth factor 21 (FGF21)-knockout (KO) and wild-type
(WT) mice of C57BL/6J origin were employed as we described previously [9]. All experimental
procedures were approved by the Animal Experimentation Ethics Committee of the Chinese University
of Hong Kong (Ref. # 15/054/GRF/4-A, 10/03/2015).

4.2. FGF21 Analog Supplementation

Male C57BL/6J mice were assigned randomly to one of the following groups: Low-dose CVX343
(3 mg/kg body weight (BW)); high-dose CVX343 (10 mg/kg BW); or non-CVX343 treated control (200 µl
of saline). After 6 weeks of HFD feeding (week 7–12), the FGF21 analog CVX343 (PF-05231023, a gift
from Pfizer) was administered weekly for 6 weeks by intraperitoneal injection.

4.3. Body Weight and In Vivo Glucose Homeostasis

Once a week during the CVX343 treatment period, the mice were weighed, and their fasting
blood glucose levels (after 6-h fasting) were measured in blood samples drawn from the tail vein
by a glucometer (Bayer Corporation, Leverkusen, Germany). Intraperitoneal glucose tolerance tests
(IPGTTs) were administered after a 6-h fast and subsequent glucose challenge (1 g/kg BW); blood glucose
was measured 0, 15, 30, 60, 90, and 120 min thereafter. For insulin tolerance tests (ITTs), mice were
injected with insulin (0.5 U/kg BW; Eli Lilly and Company, Indianapolis, IN, USA) after a 4-h fasting;
blood glucose levels were subsequently measured. Areas under the curve (AUCs) for BW and blood
glucose levels were calculated.

4.4. Pancreatic Islet Isolation and Treatments

Collagenase P (Roche, Mannheim, Germany) was injected intraductally into harvested pancreata
in order to isolate intact pancreatic islets as described previously [8,9]. Isolated pancreatic islets were
incubated overnight before treatment with 5.6 or 28 mM d-glucose (Sigma-Aldrich, St. Loise, MO, USA)
and 0 or 0.5 mM palmitic acid (PA) in the presence of 100 nM FGF21 recombinant protein (AIS, HKU)
and/or 20 µM AMPK blocker Compound C (Sigma-Aldrich) for the designated time periods.
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4.5. INS-1E Cell Culture and Treatments

Rat insulinoma INS-1E cells, which is a gift from Dr. Pierre Maechler, [53] were cultured in
a humidified chamber with 5% CO2 in RPMI 1640 medium (11.2 mM glucose), supplemented with
10% fetal bovine serum, 1 mM sodium pyruvate, 50 µM 2-mercaptoethanol, 10 mM HEPES, 100 U/mL
penicillin, and 100 µg/mL streptomycin (all from Invitrogen, Waltham, MA, USA). Cultures were
passaged once a week by gentle trypsinization. INS-1E cells were treated with glucose (11.2 or 28 mM),
PA (0 or 0.5 mM), and FGF21 recombinant protein (100 nM) for the indicated time.

4.6. Knockdown of FGF21 Transcription

Gene expression of FGF21 was suppressed with small interfering RNAs (siRNAs) for rat Fgf21
(constructed by Life Technologies, Hong Kong, China). The siRNA negative control oligonucleotides
(siRNA-NC) or siRNA-FGF21 oligonucleotides (sequences in Table 1) were transfected into INS-1E
cells, by lipofectamine RNAi Max transfection reagent (Invitrogen) for 48 h, according to the
manufacturer’s protocols.

Table 1. Real-time PCR primer sequences and siRNA sequences.

Gene Forward (5′ → 3′) Reverse (5′ → 3′)

Mouse GAPDH GCACAGTCAAGGCCGAGAAT GCCTTCTCCATGGTGGTGAA
Mouse FGF21 CQTCTGCCTCAGAAGGACTC AAGGCTCTACCATGCTCAGG

Rat β-actin TTTAATGTCACGCACGATTTC CCCATCTATGAGGGTTACGC
Rat FGF21 AGATCAGGGAGGACGGAACA TCAGGATCAAAGTGAGGCGAT

Negative control siRNA UUCUCCGAACGUGUCACGUTT;
ACGUGACACGUUCGGAGAATT

Rat siRNA-FGF21 (#1) CAACCAGAUGGAACUCUCUAUGGAU;
AUCCAUAGAGAGUUCCAUCUGGUUG

Rat siRNA-FGF21 (#2) GCAGUUUCAGAGAGCUGCUGCUUAA;
UUAAGCAGCAGCUCUCUGAAACUGC

Rat siRNA-FGF21 (#3) CCCUGAGCAUGGUAGAGCCUUUGCA;
UGCAAAGGCUCUACCAUGCUCAGGG

4.7. Reverse Transcriptase (RT)-PCR and Real-Time PCR Analysis

Total RNA from pancreatic islets and INS-1E cells was extracted by TRIzol reagent (Invitrogen),
according to the manufacturer’s instructions. Reverse transcription of first-strand cDNA was
performed with a PrimeScript reverse transcriptase master mix kit (Takara Bio Inc., Kusatsu, Japan).
Gene expression was measured by conventional PCR or real-time PCR, wherein cDNA samples were
mixed with SYBRgreen QPCR master mix (Applied Biosystems, Waltham, MA, USA) and specific
primers (Table 1). The fold change of mRNA expression relative to the control group was obtained
using the 2−∆∆Ct method, and normalized to glyceraldehyde-3-hosphate dehydrogenase (GAPDH;
in mouse pancreatic islets) or β-actin (in rat INS-1E cells).

4.8. Western Blot Analysis

Islet and cell proteins were extracted with CytoBuster Protein Extraction Reagent (Novagen,
Darmstadt, Germany). Extracted proteins were separated by 8–12% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis, and transferred to nitrocellulose membranes (Bio-rad,
Heidemannstraße, Germany), which were blocked with 5% milk and then probed overnight with
anti-FGF21 (Abcam, Cambridge, UK), anti-LC3 (Novus, St. Charles, MO, USA), anti-phospho-AMPKα,
anti-AMPKα, anti-phospho-ERK1/2, anti-ERK1/2, anti-phosphomTOR, anti-mTOR (Cell Signaling
Technology, Boston, MA, USA), or anti-β-actin (Santa Cruz Biotechnology, Santa Cruz, CA, USA)
primary antibodies at room temperature. Horseradish peroxide-conjugated secondary antibodies
were incubated at RT with the membranes for 2 h after washing with Phosphate buffered saline
with Tween-20. Labeled protein bands were visualized on autoradiography films (Fuji Film, Tokyo,
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Japan) following application of ECL detection reagent (GE Healthcare, Chicago, IL, USA). The protein
bands were quantitated in ImageJ software (National Institutes of Health, Bethesda, MD, USA) and
normalized to β-actin. The primary and secondary antibodies used are listed in Table 2.

Table 2. Antibodies used in Western blotting and immunohistochemistry.

Antibody Dilution Host Species Supplier

FGF21 1:1000 Rabbit Abcam
LC3 1:1000 Rabbit Novus

p-AMPK 1:1000 Rabbit Cell Signaling
t-AMPK 1:1000 Rabbit Cell Signaling
β-actin 1:1000 Mouse Santa Cruz

p-mTOR 1:1000 Rabbit Cell Signaling
t-mTOR 1:1000 Rabbit Cell Signaling

HRP-anti-rabbit IgG 1:1000 Donkey Amersham
HRP-anti-mouse IgG 1:1000 Sheep GE Healthcare

Alexa Fluor® 568 anti-rabbit IgG 1:2000 Donkey Life Technologies

4.9. Immunohistochemistry

Pancreatic islets and rat insulinoma INS-1E β-cells were embedded in O.C.T. compound (Sakura,
Tokyo, Japan) and frozen. Cryostat sections (6 µm thick) were cut, mounted, and blocked in 2% bovine
serum albumin (Sigma-Aldrich,) with 0.1% Triton X-100 (Sigma-Aldrich) for 30 min at RT. For the
autophagy analyses, sections were probed with polyclonal rabbit anti-LC3 antibody (Novus) and
guinea pig polyclonal anti-insulin antibody (Life Technologies, Carlsbad, CA, USA) and then incubated
for 1 h at RT with Alexa Fluor® 568 donkey anti-rabbit antibody and Alexa Fluor® 488 goat anti-guinea
pig (both from Life Technologies). DAPI nuclear counterstain was applied, and then the sections were
washed three times with phosphate buffer saline, mounted with VectaShield mounting medium (Vector
Laboratories, Burlingame, CA, USA), and observed under a fluorescent microscope (Olympus FV1200
Confocal system with a motorized stage and SIM scanner). Antibodies and dilutions used are listed
in Table 2.

4.10. Detection of Autophagosome Formation

Mouse islets were rinsed with 0.1 M Sorensen phosphate buffer (pH 7.2) after being cultured.
Specimens were then fixed in 2.5% glutaraldehyde for 30 minutes, washed in Sorensen’s phosphate
buffer, and then submitted to secondary fixation in 1–2% osmium tetroxide for 1 h. The fixed specimens
were dehydrated in graded ethyl alcohols, and then embedded in molds by infiltration of graded
embedding medium in propylene oxide. The hardened specimens were cut into ultra-thin sections
(60–90 nM) with a UCT7 ultratome (Leica, Wetzlar, Germany). The ultra-thin sections were stained
with uranyl acetate and lead citrate. Isolation membrane and autophagosome formation were observed
by transmission electron microscopy (TEM) under an H-7700 microscope (Hitachi, Tokyo, Japan).

4.11. Data Analysis

Group data are displayed as means ± standard errors of the mean (SEMs). Differences between
groups were calculated by Student’s unpaired two-tailed t-tests or one-way analyses of variances
(ANOVAs) followed by Tukey’s post hoc tests. A p < 0.05 was considered statistically significant.

5. Conclusions

In conclusion, we reported herein for the first time that FGF21 regulates pancreatic islet autophagy
through a mechanism, probably involving the suppression of AMPK-mTOR signaling. The present
study provides new insight into the protective mechanism of FGF21 against glucolipotoxicity-induced
islet dysfunction in obesity-associated T2DM. In addition to providing empirical evidence supporting
the novel, physiological roles of FGF21 in pancreatic islets, this study posits that FGF21 may act as an
efficacious anti-diabetic agent in clinical settings.
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