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Abstract

Identifying and predicting how species ranges will shift in response to climate change is par-

amount for conservation and restoration. Ecological niche models are the most common

method used to estimate potential distributions of species; however, they traditionally omit

knowledge of intraspecific variation that can allow populations to respond uniquely to

change. Here, we aim to test how population X environment relationships influence pre-

dicted suitable geographic distributions by comparing aggregated population-level models

with species-level model predictions of suitable habitat within population ranges and across

the species’ range. We also test the effect of two variable selection methods on these pre-

dictions–both addressing the possibility of local adaptation: Models were built with (a) a

common set, and number, of predictors and, (b) a unique combination and number of pre-

dictors specific to each group’s training extent. Our study addresses the overarching hypoth-

esis that populations have unique environmental niches, and specifically that (1) species-

level models predict more suitable habitat within the ranges of genetic populations than indi-

vidual models built from those groups, particularly when compared models are built with the

same set of environmental predictors; and (2) aggregated genetic population models predict

more suitable habitat across the species’ range than the species-level model, an = d this dif-

ference will increase when models are trained with individualized predictors. We found the

species models predicted more habitat within population ranges for two of three genetic

groups regardless of variable selection, and that aggregated population models predicted

more habitat than species’ models, but that individualized predictors increased this differ-

ence. Our study emphasizes the extent to which changes to model predictions depend on

the inclusion of genetic information and on the type and selection of predictors. Results from

these modeling decisions can have broad implications for predicting population-level eco-

logical and evolutionary responses to climate change.
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Introduction

Distribution models are a valuable tool for predicting species range dynamics in response to

environmental changes, but an overwhelming number of ecological niche models (ENMs)

ignore intraspecific variation [1–3]. This is highly problematic given the rate of climate change,

advances in eco-evolutionary theory, and the frequency of distribution model use in the litera-

ture [4, 5]. Consequently, models disregard the potential for key genotype-by-environment (G

x E) and biotic (G x G) interactions across landscapes (G x G x E) [6–8]. Researchers can incor-

porate intraspecific variation into distribution models with knowledge of phenotypic groups,

taxonomic units, genetic groups, or biogeographic regions [2, 9] and intraspecific models can

then be compared to each other and to species-wide models for a better understanding of line-

age-level differences in climatic-drivers of distribution and potential consequences of climate

change [2, 10]. With information from these types of model comparisons, however, we can

better identify where, and which, populations, communities, and ecosystems are most at risk

to climate change [11–13].

One way to consider intraspecific variation in spatial models is to incorporate underlying

genetic sub-structure when delineating the geographic areas to represent the range extent in

the models. Species are not uniform entities across their geographic distributions, with com-

mon examples of locally adapted populations spread across geographic ranges and environ-

mental gradients [14–16]. Accommodating this information in models is critical as locally

adapted populations are likely to respond differently to environmental change, which would

have implications for shifting species’ distributions and range limits [10, 12, 13, 17–19]. Differ-

ing responses of separate populations to environmental change thus violates the major

assumption of traditional ENMs that the niche of a species is also the niche of distinct popula-

tions [20]. Evidence to date suggests that including this information in ENMs can produce bet-

ter performing models [21–24], improved transferability of models [25], and broader [13, 19,

26] predictions of distributions in future climate scenarios [1, 2, 24, 27, 28]. On the other

hand, splitting occurrence data can often result in datasets that are too small to perform well,

suggesting this approach may be best taken only when researchers have a priori knowledge of

niche divergence or local adaptation [3, 29] and especially with knowledge of the genomic

basis of local adaptation [9]. Incorporating genetic structure into spatial models can help

address limitations of correlative models relating abiotic variables to species occurrences [27,

30, 31]. For instance, these traditional methods may perform well at predicting current distri-

butions [32] but provide little insight into the mechanisms underlying how and why species

are distributed across environments and how future distributions may change [27, 33, 34].

The choice of relevant environmental predictors is important for the utility of models, espe-

cially as genetically distinct populations may be locally adapted or have varying tolerances to

environmental stressors [2]. Assessments of environmental predictor choice in ENMs consis-

tently show differences in model performance or transferability to future climatic conditions

or different geographic regions. Predictor choice (e.g., bioclimatic variables vs. land-use vari-

ables) affects model performance and thereby confidence in future predictions [35]. Model

performance often improves with the inclusion of species-relevant predictors [36], species eco-

logical traits [37], or ecosystem functioning variables (“EFAs”) [38–40]. Nevertheless, most

models assume climate is the main driver of species distributions at a large scale and rely solely

on bioclimatic variables available from the Worldclim project [41, 42]. Though these variables

can typically describe a species’ current range [43], they may limit the accuracy of predictions

across space or time, whereas species-specific predictor variables may improve these predic-

tions [34, 40, 42, 43]. Though assumptions about local adaptation to environmental conditions

cannot be drawn simply by incorporating genetic structure into spatial models and examining
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important variables [2, 44, 45], it is still important to consider that different environmental

variables are likely to be relevant for genetically differentiated populations [46]. Variable selec-

tion is thus of utmost importance to predictions and conclusion made from these models [47].

Consistent with pervasive G x E interactions known to exist on the landscape [8, 48], this

study aims to test the degree of uncertainty in geographic predictions that may arise from

manipulating factors related to species’ genetic variation and environmental predictor vari-

ables in ENMs. Using known occurrences of genetically differentiated Populus angustifolia
populations across the species distribution and Maxent modeling algorithms [30], we compare

geographic and environmental niche overlap of ENMs. We manipulated two factors in models:

(1) the geographic training extent using knowledge of P. angustifolia genetic substructure, and

(2) variable selection method, providing models with either a unique set of variables selected

within the respective population’s geographic training extent, or a common set of variables

selected across all training extents (the species range). We expect this selection process will

matter greatly when making projections outside of a population’s geographic range. For exam-

ple, uniquely selecting predictor variables within a population extent may allow for the inclu-

sion of variables in population models that may have been omitted if selected at the species-

level.

We test the overarching hypothesis that populations have unique environmental niches,

and with our model manipulations, we make two hypotheses. First, (H1) we hypothesize that

traditional species models would predict more suitable habitat within the ranges of genetic

populations than individual models built from those groups, particularly when compared

models are built with the same set of environmental predictors. We expect this because a spe-

cies model is built on a range of environmental conditions that encapsulates tolerances of all

populations. As a corollary, (H2) we hypothesize that aggregated genetic population models

would predict more suitable habitat across the species’ range than the traditional species’

model, and that this difference would increase when individual population models were built

with unique sets of environmental predictors. We expect this because population models built

with unique environmental predictors may capture locally adapted population tolerances to

more extreme environmental variables on the edges of species ranges, thus widening potential

suitable habitat when aggregated with other population models and projected across the entire

species range.

Materials and methods

Species occurrence data

The dominant riparian tree, P. angustifolia James, is a model system for incorporating intra-

specific variation into ENMs: the species spans broad abiotic gradients and approximately

1700 km of latitude in the Western United States, across which at least three genetic popula-

tions exist [49–52]. As P. angustifolia is a riparian tree, it is important to include non-climatic

hydrological variables that are known to affect the evolution, ecology, and distribution of this

and other riparian species [53–56]. Further, the species has strong effects on community inter-

actions and ecosystem functions across its geographic range [8, 57], making it important to

understand the extent to which predictions differ with environment and genetic structure. The

occurrence dataset for P. angustifolia was collected May—June 2012 and in June 2021. Latitude

and longitude coordinates were collected for each sampled tree as decimal values using Oregon

500 Garmin GPS units with WGS 84 datum. Details of sampling from 2012 have been pub-

lished previously [58] but, in summary, occurred along elevational gradients of over 17 rivers

in the Western United States to span the range of three genetic populations, as determined pre-

viously by simple sequence repeat SSR loci [49]. These populations are differentiated around
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geographic features including the Great Basin, the Rocky Mountains, and the Mogollon Rim

[49, 50]. The sampling methods were designed to cover a range of broad environments as well

as many locations near the edge of the species’ geographical range. In contrast to random sam-

pling across a species range, these methods are thought to provide more resolved predictions

of range expansions and contractions expected with climate change [17, 27, 59, 60].

Before correcting for sample selection bias, the occurrence dataset included georeferenced

locations from 725 individual trees. Because Populus angustifolia is confined to narrow ripar-

ian habitats, 625 of these records were removed so there would be no pseudo-replication

within cells of environmental data at 4 km resolution (described below). This left 100 records

from which to build our models.

Environmental variable sources

We used environmental variables from two sources, all verified to be of the same extent (geo-

graphic bounds) and spatial resolution (4 km) and projected in the same coordinate system as

the species occurrence data (WGS84). First, we extracted bioclimatic variables from 1961–

1990 from the AdaptWest Project [v.7.21; 61] which uses data from PRISM and WorldClim to

develop informational resources to plan for climate adaptation in North America [61, 62]. Sec-

ond, we extracted hydrologic variables from the National Hydrography Dataset [NHDPlus; 63,

64], a companion to the Watershed Boundary Dataset that we used to delineate geographic

training extents. We used the “near’ function in ArcMap [65] to retrieve values from the near-

est stream feature. This second dataset describes river and stream attributes of the riparian

habitats of P. angustifolia. It is important to include these variables as stream properties affect

the ecology and evolution, including dispersal ability, of riparian plants like P. angustifolia [53,

54, 56]. Nine of the available bioclimatic variables were excluded based on knowledge of the

species natural history and preliminary model runs (degree days above and below 18 degrees

C, and below 0 degrees C; Julian day on which frost-free period begins and ends; extreme

30-year minimum and maximum temperatures; the frost free period; and mean annual solar

radiation) and stream velocity was excluded based on a lack of data at some of the nearest

stream features.

Modeling approaches

Maximum entropy (Maxent) modeling. Maximum entropy (Maxent) is a high-perform-

ing modeling technique that approximates species niches using environmental parameters and

performs particularly well with presence-only occurrence data [30, 32]. We ran eight Maxent

(Version 3.4.1) computational experiments to address our hypotheses, manipulating the geo-

graphic training extent and variable selection method (4 geographic extents x 2 variable selec-

tion methods = 8 computational experiments). All experimental models were run with 5-fold

cross-validation.

Each Maxent model was formatted to run with logistic output to best conceptualize the out-

put as estimates of the probability of suitability between values of 0 (unlikely to be present) and

1 (likely to be present). The number of background sample points varied for each population

extent after buffering the species model training extent to have at least 10,000 background

points (exact = 10,031): The southern, central, and northern models had 22, 30, and 48 occur-

rence points respectively and were modeled with 4,112, 4,487, and 6,143 background points,

respectively–values that are proportional to the area of each population training extent (S1 Fig

in S1 File). We set the maximum number of iterations to 500, though increased this number if

all five cross validated replicates did not converge by 500. Finally, we applied a 10-percentile

training presence threshold rule to obtain binary output to test our hypotheses. This threshold
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rule is conservative and finds the suitability value at which 10% of the training presence points

are predicted absent (i.e., omission error) and uses it to reclassify pixels with suitability values

below that value as unsuitable (absent) and above as suitable (present). It should be noted that

we have different sample sizes for each population, which does introduce variability in sizes of

training and testing subsets.

Additionally, because many niche studies rely solely on bioclimatic variables [41, 42], we

include 8 additional computational experiments in the supplemental materials which repeat

the methods described in our main manuscript, but built with only bioclimatic variables (i.e.,

excluding the four NHDPlus hydrological variables; S2 Table in S1 File). This is included to

provide another dataset that makes comparisons between predictions based on solely biocli-

matic variables vs. ecosystem species-relevant variables.

Ensemble modeling. We considered how the results of this single-algorithm approach,

described above, compare to an ensemble (multiple-algorithm) approach. We built ensemble

models from model agreement with five additional modeling algorithms. Each model was

built using the training-testing occurrence data split from the respective Maxent “best” repli-

cate run. The five additional algorithms used are appropriate for presence-background data:

Bioclim [66], Domain [67], Mahalanobis Distance [68], Support Vector Machines [69–71] and

Random Forest [72].

All models were run in RStudio with the packages “dismo” [73], “raster” [74], “randomFor-

est” [75], and “kernlab” [76, 77]. As in Maxent, models were built with the same number of

background points in the same geographic extents and were transformed into binary output

using a 10% training sensitivity threshold. We maintained all models that performed with a

test AUC greater than 0.7 for the final ensembles, which were calculated based on model agree-

ment. In five of the sixteen cases, only one of these algorithms performed well-enough to keep.

In three of the sixteen cases, three algorithms were kept, and in eight of the sixteen cases, four

of the five algorithms were kept (details can be found in S4 Table in S2 File). We present results

from Maxent models, but comparisons of ensemble model results to Maxent model results are

presented for hypothesis 1 in S5 Table in S2 File and for hypothesis 2 in S6 Table in S2 File.

Geographic extents

For training models, we created four occurrence datasets based on different geographic extents

(regions): one was based on all occurrence points (“species”; N = 100) and three were based on

these 100 occurrence points split into three genetic populations (southern, N = 20; central,

N = 30; and northern, N = 48; Fig 1A, S1 Fig in S1 File). Based on assumptions about riparian

dispersal for P. angustifolia–riparian network connectivity is related to genetic connectivity of

P. angustifolia [55, 56]–we defined the exact extent of each training region by creating geo-

graphic bounds around occurrence points by mapping HUC (hydrologic unit code) level 8

from the USGS Watershed Boundary Dataset (https://water.usgs.gov/GIS/huc.html), which

allowed us to include all relevant occurrence data points within the lowest number of water

basins. The Watershed Boundary Dataset breaks hydrological regions into nested water basins

of successively smaller hydrological units–the HUC code describes the “size” of the watershed

designation with the largest level of classification having the United States divided into 21

major geographic regions. We accessed these data in RStudio [78] using the packages

“nhdplusTools” [79] and “nhdR” [80; USGS] with the functions “download_wbd” and

“get_huc8.” The combined HUC8 area of the species range was 94,543.22 square kilometers

and includes land area in the states of New Mexico, Colorado, Utah, Nevada, Arizona, Wyo-

ming, Idaho, and Montana. This total species’ range area split into 25,598.86 (southern),

32,087.01 (central), and 36,857.35 (northern) square kilometers areas for the genetic
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population ranges (Fig 1A, S1 Fig in S1 File). We added a geographic buffer to the HUC8

water basins to get final training extents. We did this in RStudio with the “buffer” function in

the package “raster” [74] set to add a 25 km geographic buffer around the water basins, chosen

so that no entire neighboring HUC8 regions would be included in the training region (this

buffer is slightly smaller than recommended [81]; S1 Fig in S1 File).

Environmental variable selection

We compare predictions built from models that were trained on “unique” sets of predictor var-

iables to those built on a “common” set of predictor variables to understand the differences in

niche overlap and geographic predictions that arise from different variable selection methods–

both approaches allow population models to respond to environmental conditions differently

and thus address the possibility of local adaptation. In one approach (“common”), variables

are allowed to contribute differently to each model while in the other approach (“unique”) var-

iables are chosen that may singularly important in the respective region.

“Unique” variable combinations were chosen by initial runs of 5-fold cross-validation Max-

ent models within each training extent. From the initial pool of variables included in the mod-

els, we selected those which cumulatively contributed between 90–95% to the gain in model fit

of the five replicates for each group and removed any variables with high spatial correlation

(0.70 used as the threshold) within the respective training extent. The “common” set of vari-

ables was chosen using the R package “embarcadero” (Version 1.2.0.1003) with the function

“variable_step” [78, 83]. We specified the function to run 50 iterations of 10 trees (Bayesian

Additive Regression Trees) within each of the four geographic training extents. The function

Fig 1. Panel (a) Geographic training extents and occurrence points. Panel (b) Test area under the curve of the

receiver-operating characteristic values (AUC) +/- standard error for five cross-validated model replicates. Panel (c)

RDA (Redundancy Analysis) plot of environmental variables included in final computational experiments. Geographic

training extents are represented in white with corresponding occurrence records separated by color. The northern

population is represented in dark blue (N = 48 occurrence records), the central population in teal (N = 30), and the

southern population in green (N = 22). The background gradient represents the larger geographic space on which

models are projected in the Western United States. In panel (b), color represents geographic training extent of model

as in panel (a). Symbol (U or C) represents the variable selection method with “U” = unique predictor variable

selection within respective geographic training extents and “C” = a common set of variables provided to all models.

Details of “U” and “C” selection can be found in the methods. The background map of the United States represented in

this figure was accessed through the R package “maptools” [82]. Maps are projected in WGS84 (World Geodetic

System 1984) or EPSG 4326.

https://doi.org/10.1371/journal.pone.0274892.g001
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eliminates variables with the lowest importance before recommending models with the lowest

root mean square error (RMSE) [78, 83]. We combined the variables selected this way into a

common pool used to build models for each training extent. After variable selection for all

experimental models, each was run a final time again with 5-fold cross-validation.

Model evaluation

We evaluated model performance using Area under the curve (AUC) of the receiver-operating

characteristic, omission rate, and the Boyce Index. AUC is a commonly used threshold-inde-

pendent metric of discriminatory ability—i.e., how accurately individual occurrences were

predicted by the models. Higher values indicate lower type II error and values range from 0–1

with 0.5 representing random attribution of points [30]. To counter a known shortcoming

that AUC is dependent on species prevalence [84], we also calculated omission error, or false-

negative rates, that relies on user-specified thresholds which we specified as a 10% training

omission error, described above in the modeling approaches section [85]. This threshold was

used with training data to convert model suitability values to binary predictions. Finally, we

calculated the Boyce Index to evaluate model performance. Like AUC, the Boyce Index is a

threshold-independent metric. It is well suited for evaluating presence-only models that

describes how much the model predictions differ from a random distribution of known pres-

ences across prediction gradients [86, 87]. High positive values of the Boyce Index indicate

models with a stronger correlation between predicted:expected frequencies of test points with

landscape suitability values [86]. These values were calculated in RStudio using the function

“ecospat.boyce” from the R package “ecospat” (version 3.2) [78, 88].

Small sample sizes can affect the reliability of evaluation scores described above including

the commonly used test AUC [89]. To test whether our models were better than random, we

followed the approach of Bohl et al. 2019 [90]. This approach allows for comparison of the

“real” niche models evaluation metrics to a distribution of evaluation metrics derived from

null models. We compared each model’s test AUC to a null distribution of test AUC built

from 1000 null niche models that were built from random subsamples of the background data

used as calibration points. All null models were built with the same settings as the “real” Max-

ent models and were tested with the same evaluation occurrences used to test the “best-per-

forming” Maxent replicate.

Analyses

For all analyses and comparisons, we used the cross validation model replicate with the highest

AUC value and lowest omission rate for each computational experiment.

Model comparisons in environmental niche space. To test if environmental variables

used in models differed across the three genetically differentiated populations, we used redun-

dancy analysis (RDA) with the R package “vegan” [78, 91] with population as the constrained

axis. All variables were z-transformed prior to running models to reduce the effect of outliers

and non-linear combinations. Results from the RDA explain how much of the total environ-

mental variation can be attributed to population groupings–in other words, how different the

background environmental variation is across populations.

We hypothesized that no single combination of environmental variables would be applied

to genetically distinct populations of P. angustifolia. If the niche was conserved across popula-

tions, we would expect to select the same predictor variables for each population with the

“unique” variable selection process, and/or that the “common” set of predictor variables would

contribute similarly to each population model.
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To compare the important variables for each genetic group we examined the percent con-

tribution of environmental variables to Maxent experiments, and to compare niche overlap

between models, we calculated Schoener’s D with ENMTools [33, 92, 93]. Schoener’s D pro-

vides a measure of niche overlap by comparing density distributions: The metric spans from

0–1 with values closer to zero indicating no overlap between models a value of 1 indicating full

overlap of models [33, 92]. This metric provides a value between 0–1, where values closer to

zero represent little overlap between modeled niches and a value of 1 representing full overlap

of modeled niches.

Model comparisons in geographic space within population ranges and across the spe-

cies’ range. To test our specific hypothesis that traditionally built species models would pre-

dict more suitable habitat within the ranges of genetic populations than individual models

built from those groups, we cropped the species’ model predictions to each population’s train-

ing extent and compared the amount (%) of model agreement and disagreement in geographic

space.

To test our hypotheses that genetic population models would predict more suitable habitat

than species models across the Western United States, we projected all models across a larger

region of the Western United States designated with water basins of the HUC4 level of the

Watershed Boundary Dataset (USGS; described above). This region encompassed all training

water basins (HUC8) across a continuous geographic region (region represented behind train-

ing regions as a background layer in Fig 1A; S1 Fig in S1 File). We merged all three population

models into an “aggregated population model” and calculated the percentage of the landscape

(the continuous HUC4-level geographic region) that was predicted suitable by any one, two,

or three population models. This was compared to the species-level predictions to calculate the

amount (%) of model agreement and disagreement in geographic space.

Results

Model evaluation

The test AUC of the best-performing cross validated replicates ranged from 0.66 (central com-

mon model) to 0.91 (southern unique model; Table 1, S5 Fig in S1 File). All models aside from

the two central models had a test AUC> 0.8, indicating good discriminatory ability [94], and

all models had average omission rates between 0.18 and 0.38 (Table 1, S5 Fig in S1 File). The

Boyce Index for all models was positive, ranging from 0.688 to 0.919 (Table 1). Null distribu-

tions for all models can be found in S7-S10 Figs in S3 File.

Table 1. Description of cross-validated Maxent modeling experiments.

Description of Cross-Validated Maxent Modeling Experiments: Building, Evaluating, Performance

Training Extent Avg. N train(test) Avg. AUCtrain Avg. AUCtest Max. AUCtest Avg. Omission Boyce Index

+/- Std. Dev.

unique (U) Species 80(20) 0.81 0.76 +/- 0.04 0.82 0.18 0.907

predictor variables unique to each group Southern 17.6(4.4) 0.94 0.86 +/- 0.06 0.91 0.23 0.735

Central 24(6) 0.78 0.66 +/- 0.10 0.67 0.20 0.871

Northern 38.4(9.6) 0.88 0.76 +/- 0.06 0.86 0.29 0.869

common (C) Species 80(20) 0.85 0.77 +/- 0.04 0.82 0.23 0.688

predictor variables common across groups Southern 17.6(4.4) 0.95 0.86 +/- 0.05 0.89 0.36 0.919

Central 24(6) 0.79 0.66 +/- 0.09 0.66 0.23 0.815

Northern 38.4(9.6) 0.89 0.75 +/- 0.06 0.85 0.38 0.879

Description of Modeling Experiments includes sample size of training and testing data, average training AUC (Avg. AUCtrain), average test AUC +/- standard deviation

(AUCtest +/- St. Dev.), test AUC of the highest performing model replicate (Max. AUCtest), average omission rate of the five cross-validated replicates, and Boyce Index.

https://doi.org/10.1371/journal.pone.0274892.t001
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Environmental niches of P. angustifolia vary across populations

We show that environmental variables vary on the landscape across the three genetically dis-

tinct populations of P. angustifolia with a redundancy analysis [78, 91]. This analysis revealed

that 14% percent of the variance in all environmental response variables could be explained by

the geographic extent of genetic population (p<0.001; Fig 1C). We ran two additional RDAs

splitting the environmental data (all environmental variables included in models are in

Table 2) into two predictor datasets: climate-only (ClimateNA variables) and hydrology-only

(NHDPlusV2 variables). Genetic population extent explained 19.2% of the variance in the “cli-

mate-only” predictors (p<0.001) and only 2.3% of the variance in the “hydrology-only” pre-

dictor variables (p = 0.33).

Blank cells indicate that the variable was not included in the model, while zeros indicate

that the variable was included but contributed little to the final models. The top contributing

variables for each model are bolded.

Significant environmental variation across the range of P. angustifolia (Fig 1C and S2 Fig in

S1 File) provides an additional reason to examine environmental niches at the intraspecific

level, and to carefully consider the types of environmental predictor variables included in

models. We found no single combination of environmental variables that could be applied to

genetically distinct populations of P. angustifolia (Table 2; i.e., through the “unique” selection

process). Closer examination of important niche variables for the species and population mod-

els reveals how the environmental niches differ between groups. The result of the unique spe-

cies model indicates that the niche of P. angustifolia is described largely by mean annual

temperature (31.8%), Hargreave’s reference evaporation (26.3%) and mean annual stream

flow (23%; Table 2). Mean annual stream flow is important to, or at least included in, all 7

models except the unique southern population model. The lowest contribution of mean

annual stream flow was 0.9% in the common southern model (Table 2). Instead, for the south-

ern-unique model, the hydrological variables combined contributed just about 7% (Table 2).

The southern-unique niche was most well-described by annual heat moisture index (30.9%),

mean temperature of the coldest month (24.2%), and continentality (the difference between

mean temperature of the coldest month and the warmest month; 24.1%; Table 2). Precipitation

as snow contributed largely to the unique central population model (46.9%). Mean summer

precipitation (49.1%) and Hargreave’s reference evaporation (23.9%) contributed highly to the

unique northern model (Table 2).

Table 2. Percent (%) contribution of environmental variables to ENMs.

unique: predictor variables unique to each group common: predictor variables common across

groups

Species Southern Central Northern Species Southern Central Northern

EREF: Hargreave’s reference evaporation 26.3 - - 23.9 1.7 7.9 0.02 0.08

MAT: mean annual temperature (˚C) 31.8 - - - 5.7 0 0 0.8

TD: continentality (˚C) MCMT -MWMT 13.1 24.1 - 4.7 8.4 17.8 0.4 3.8

AHM: annual heat moisture index (MAT+10)/(MAP/1000) - 30.9 - - 13.6 9.2 6.0 1.2

MCMT: mean temperature of the coldest month (˚C) - 24.2 4.1 - - - - -

RH: mean annual relative humidity (%) - 13.8 1.8 3.1 1.0 6.1 10.0 2.6

PAS: precipitation as snow (mm) - - 46.9 - 27.3 52.5 32.2 0.2

MSP: mean summer (May to Sep) precipitation (mm) - - - 49.1 3.3 0.07 17.9 21.6

CMD: Hargreave’s climatic moisture index - - - - 21.6 0 0 42.5

NEAR: distance to stream 5.8 5.8 - - 3.1 5.3 1.2 8.8

Q: mean annual stream flow 23.0 - 33.0 12.0 13.6 0.9 11.6 13.6

SO: Stream Order - 1.1 14.2 7.2 0.9 0.1 20.6 4.7

https://doi.org/10.1371/journal.pone.0274892.t002
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When a “common” set of variables was provided to models, the percent contribution of

predictors varied greatly across models (Table 2). For instance, precipitation as snow (27.3%)

contributed most to the species-common model with all other variables contributing between

0.9–21.6% (Table 2). Precipitation as snow also contributed highly 52.5% to the southern-com-

mon model, and Hargreave’s climatic moisture index contributed 42.5% to the northern-com-

mon model. Variable contributions were distributed from 0–32.2% to the central-common

model (Table 2).

The methodology of uniquely selecting environmental variables within populations com-

pared to a common suite of selected variables did change predictions (Figs 2 and 3) and values

of niche overlap (Schoener’s D; Table 3). The highest value of niche overlap was between the

northern and species models and niche overlap was higher between these two models when

built with common variables (0.910) than with unique variables (0.873; Table 3). Interestingly,

the lowest value of niche overlap was between the southern and central populations for both

variable selection types (Table 3).

Because many niche studies rely solely on bioclimatic variables [41, 42], we included 8 addi-

tional Maxent computational experiments in the supplemental materials built only with

Fig 2. Geographic overlap of species predictions and population model predictions within the population

geographic ranges. Panel (a) represents model comparisons built from “unique” variable sets and panel (b) represents

model comparisons built from a “common” variable set. Inset stacked bar plots represent the percentage of the

landscape within each population’s geographic range that was predicted as suitable habitat by the species model and

each population model. Agreement between the model pairs on suitable habitat is represented in light grey on maps

and bar plots. Though visualized together, calculations of overlap were calculated within each population extent: see S1

Fig in S1 File.

https://doi.org/10.1371/journal.pone.0274892.g002

PLOS ONE Population models predict more suitable habitat

PLOS ONE | https://doi.org/10.1371/journal.pone.0274892 September 19, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0274892.g002
https://doi.org/10.1371/journal.pone.0274892


bioclimatic variables (i.e., excluding the four NHDPlus hydrological variables; S2 Table in S1

File) to compare to the model predictions from the eight models presented in the main manu-

script. This additional comparison revealed that predictions can differ greatly (S6 Fig in S1

File) when these “species-specific” predictors are not included.

Whether species-level model predicts more suitable habitat is region-

specific

Within the geographic ranges of each genetically distinct population, species models predicted

more suitable habitat than the respective population models in both the southern and northern

extents, regardless of the variables used to build the models (common or unique; Fig 2). In the

northern population extent, the two models agreed that 27% of the landscape was suitable and

49% was not when built with unique variables (Fig 2). Of the remaining percentage of the

Fig 3. Maps representing the geographic overlap of aggregated population models with species models across the

Western United States. Panel (A) uses models built with unique sets of predictor variables and panel (B) uses models

built with a common set of predictor variables. Black regions represent suitable habitat predicted only by the species

model, dark teal regions represent regions of model overlap or agreement on suitable habitat between the species

model and the aggregated population models, and light blue represents regions predicted as suitable by the aggregated

population model (at least 1 individual population model predicts suitable landscape in those locations). White regions

are areas predicted unsuitable by all models. Maps are projected in WGS84 (World Geodetic System 1984) or EPSG

4326. The background map of the United States represented in this figure was downloaded from the U.S. Census

(Cartographic Boundary Files (census.gov)).

https://doi.org/10.1371/journal.pone.0274892.g003

Table 3. Niche overlap measured using Schoener’s D.

Northern Central Southern

unique (U) predictor variables unique to each group Species 0.873 0.865 0.764

Northern 1 0.805 0.840

Central 1 0.697

Southern 1

common (C) predictor variables common across groups Species 0.910 0.864 0.793

Northern 1 0.834 0.838

Central 1 0.752

Southern 1

Values fall between 0 and 1, with values closer to zero representing no overlap between models while a value of 1 indicates full overlap of models.

https://doi.org/10.1371/journal.pone.0274892.t003
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landscape, the species-model predicted 14.7% more suitable area (Fig 2). Though this overall

pattern remained for the common variable comparison, the difference in predictions was just

7.4%. Overall, 6.6% less of the landscape was suitable to either model with shared “common”

predictor variables. This geographic result also holds in environmental space where the niche

overlap (Schoener’s D) is higher between the northern-species models when they are built

with common variables than when they are not (Table 3).

The species model also predicted more suitable habitat within the southern population

extent compared to the population model (Fig 2) and notably the smallest percentage of habi-

tat was predicted to be suitable by either model in this region compared to others– 62.9% was

unsuitable with the unique model comparison and 65.2% was unsuitable with the common

model comparison (Fig 2).

In contrast to the southern and northern regions, within the central region, the population

model predicted 15.5% more suitable habitat than the species model when both were built

with unique sets of variables and 10.1% more suitable habitat when built with the set of com-

mon variables (Fig 2). Overall, this region had the least unsuitable habitat predicted (Fig 2).

Geographic overlap across the species range

We found support for our hypothesis that the aggregated population models, regardless of pre-

dictor variable training sets, would predict more suitable habitat across the species’ range com-

pared to the species-level model (Fig 3). With unique sets of predictor variables, the aggregated

population model predicted 16.6% more of the landscape as suitable than the unique species-

level model (Fig 3). The species model predicted suitable landscape on 32.9% of the landscape

and the aggregated population model predicted suitable landscape on 49.5% of the landscape

with predictions overlapping on 27.5% of the landscape. Models agreed that 45.2% of the land-

scape was unsuitable for P. angustifolia. This pattern of geographic overlap was similar with

the common set of predictor variables, though overall 5.0% less habitat was predicted as suit-

able by either model type (species or aggregate population models; Fig 3) than with the unique

models. The difference between model predictions of suitable habitat was 15.2% with the set of

common predictor variables (Fig 3).

The aggregate unique population model predicted 6% more suitable habitat than the aggre-

gate common population model, and the unique species model predicted 5.2% more suitable

habitat than the common species model (Fig 3).

Discussion

Significant environmental variation across species’ ranges begs a more deliberate identification

of bioclimatic and ecological niches and a better understanding how, why, and when to include

different types of variables in models. These results have broad implications for predicting pop-

ulation-level ecological and evolutionary responses to climate change. For example, the models

presented in this study make different geographic predictions of suitable landscape when built

with unique sets of variables selected at a population-level compared to when built with com-

mon sets of variables selected at the species-level. Importantly, this emphasizes the need to con-

tinue challenging the assumption of distribution modeling that a species is a uniform unit

across its’ geographic range–in other words, ignoring the fact that populations are likely locally

adapted to unique environmental conditions. Additionally, we show the importance of includ-

ing species-specific predictor variables in addition to bioclimatic predictors–in the case of our

riparian study species, predictions of suitable habitat should be confined to riparian zones.

Overall, our study adds to accumulating evidence [10, 12, 13, 19] that building ENMs at the

species-level can lead to misleading predictions for certain populations and genetic
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populations in the face of climate change. The lack of a “single niche” for the species empha-

sizes the large extent to which improvements depend not only on the inclusion of genetic

information but also on the type and selection of predictor variables that interact with that

genetic information. Many recent models attempt to assess whether including genetic infor-

mation into distribution or niche models increases model accuracy [52], but this is a difficult

methodological question to assess when models are built in different geographic areas, with

different numbers of occurrences, and with different numbers of predictor variables–for exam-

ple, range size, sample size, and the number of predictor variables can affect model accuracy,

namely AUC values [95, 96].

There is no single species-level niche that can be applied to populations

As expected, the southern population showed the lowest environmental niche overlap with the

species-wide model (Table 3). The species-level models predicted more suitable habitat within

population ranges for two of the three genetic groups regardless of variable selection method, but

it was within the “central” population extent where this was not the case. This could be because

this region captures either a larger range of environmental conditions in the core of the species’

range and/or less extreme environmental conditions than the other two regions (S2 Fig in S1 File).

We cannot conclude that genetic population ENMs trained on a unique set of environmen-

tal variables (selected within each population’s geographic bounds) performed better than

ENMs were provided with the common set of predictor variables because the “common” mod-

els included a higher number of predictor variables which inherently can increase model per-

formance metrics (Table 1). However, model performance was good overall across models

(Table 1, S7-S10 Figs in S3 File), suggesting that it may instead be important to consider in

which scenarios different variable selection methods may be more useful. For example, it may

be more useful to select unique variable sets at the genetic population level when projecting

models across space or time, given that the identity and contributions of variables differed con-

siderably from the common selection and across genetic groups (Table 2) as these differences

may better reflect variation in population tolerances to environmental conditions. This idea is

also reflected in the result that aggregate unique population model predicted more suitable

habitat than the aggregate common population model, and the unique species model predicted

more suitable habitat than the common species model (Fig 3; S4 Fig in S1 File).

Our study also stresses the importance of considering “species-relevant” predictor variables

[36]. While again we hesitate to make conclusions about these variables improving model perfor-

mance (e.g., conclusions that are often inaccurately draw from figures like S5 Fig in S1 File), we do

stress that including these variables make very different predictions of suitable habitat on the land-

scape (S6 Fig in S1 File). This is a critical as most models assume that climate is the main driver of

species distributions at a large scale [41, 42]. Though climate variables can typically describe a spe-

cies’ current range [43], they may limit the accuracy of predictions across space or time, where spe-

cies-specific predictor variables may improve these predictions [34, 40, 42, 43]. Though the

redundancy analysis split by variable type showed that hydrological “species-specific” predictors

explain less variation than climate predictors across the genetic population ranges, the difference

in predictions (S6 Fig in S1 File) seem particularly important for a riparian species where proxim-

ity to stream water may offset some climate stress associated with heat or precipitation.

Species-level models do not always predict broader suitable habitat within

population regions

Overall, species-range ENMs did not always predict more suitable habitat within the geo-

graphic ranges of genetic populations (Fig 2). We hypothesized this because the species models
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would be trained on a larger range of environmental conditions than the population models.

More broad predictions were expected from range-wide models as a species’ range spans

broader environmental gradients and larger areas than intraspecific delineations [2, 27]–espe-

cially when the common suite of environmental predictor variables were used to build models.

However, it was only in the “central” population range where the species model did not predict

more suitable habitat. The species model did predict more suitable habitat in the southern and

northern population ranges and the exact amount increased when the models were built with

a common set of variables. This suggests that the more “extreme” ends of the range are influ-

encing species’ model predictions at the opposite “extreme” or “edges” of the range. We pre-

dicted this would be the case because a species-model captures a larger range of environmental

conditions that are tolerated by all populations. These results indicate that niches defined at a

population-level may indeed better capture local adaptation to environmental conditions. If

species models regularly over-predict suitable geographic distributions, then ENMs may be

less likely to predict risk or response of populations to global change factors.

Aggregated population models predict more suitable habitat across the

species’ range

When combined into a single output, the aggregated genetic population models predicted

broader suitable distribution over the entire species’ range than the species’ models regardless

of variable selection method (Fig 3). This suggests that niche variables defined at the popula-

tion-level may capture local adaptation to environmental conditions and allow for more

refined predictions of population responses to environmental change. This supports recent

findings that lineage-level predictions predict broader suitable habitat than species-level pre-

dictions [13].

Conclusions

Incorporating intraspecific variation into ecological niche models (ENMs) has been hypothe-

sized to increase model accuracy, change estimates of risk of species-level declines, and reveal

differential responses of intraspecific groups to climate change depending on range-position

(e.g., edge vs. central lineages) and/or performance-climate relationships (e.g., warm-adapted

lineages). Overall, this study emphasizes the need to consider how and why environmental var-

iables are selected for ENMs, especially when including genetic substructure within a species.

More nuanced ENMs should allow for a more refined understanding of species and popula-

tion-level risks in the face of climate change. Our findings also advance current understanding

of how distribution models should be interpreted and used. For instance, these results add to

accumulating evidence that a major assumption made by traditional species distribution (or

ecological niche) models that populations will all respond similarly to climate change is often

violated. This advance in our understanding of these models should be useful to conservation

managers who need accurate predictions to better identify where, and which, populations,

communities and ecosystems are most at risk due to climate change. Decisions should not

depend on models built solely from species-wide ranges.
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