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Cardiovascular disease is the leading cause of death worldwide. Endothelial dysfunction

of the arterial vasculature plays a pivotal role in cardiovascular pathogenesis.

Nicotine-induced endothelial dysfunction substantially contributes to the development

of arteriosclerotic cardiovascular disease. Nicotine promotes oxidative inflammation,

thrombosis, pathological angiogenesis, and vasoconstriction, and induces insulin

resistance. However, the exact mechanism through which nicotine induces endothelial

dysfunction remains unclear. Neuropeptide Y (NPY) is widely distributed in the central

nervous system and peripheral tissues, and it participates in the pathogenesis

of atherosclerosis by regulating vasoconstriction, energy metabolism, local plaque

inflammatory response, activation and aggregation of platelets, and stress and

anxiety-related emotion. Nicotine can increase the expression of NPY, suggesting that

NPY is involved in nicotine-induced endothelial dysfunction. Herein, we present an

updated review of the possible mechanisms of nicotine-induced atherosclerosis, with

a focus on endothelial cell dysfunction associated with nicotine and NPY.

Keywords: neuropeptide Y, nicotine, endothelial dysfunction, atherosclerosis, cardiovascular disease

INTRODUCTION

Smoking is a serious global public health problem and an independent risk factor for cardiovascular
disease. Nicotine is the main toxic substance in tobacco. Nicotine can induce endothelial
dysfunction, which may lead to pathophysiological states contributing to the development
of vascular disorders resulting from atherosclerosis (AS). Although nicotine-induced vascular
endothelial dysfunction has been characterized, the mechanism has not been fully elucidated
(1). Accumulated evidence has found that after nicotine exposure, the expression level of central
and peripheral neuropeptide Y (NPY) changes. For example, NPY mRNA expression increased
substantially in the hypothalamus of rodents administered the same dose of nicotine as that
consumed by ordinary smokers (2, 3). Nicotine-induced noradrenaline (NA) release in perfused
guinea pig hearts is accompanied by NPY overflow in the coronary venous system (4). The NPY
system is strongly associated with arteriosclerotic cardiovascular disease. The binding of NPY to
the Y1 receptor may be involved in the pathogenesis of chronic methamphetamine-induced AS
(5). Therefore, NPY regulation plays a decisive role in the development of cardiovascular disease.
There is increasing evidence that nicotine can cause disordered blood flow, which can induce
endothelial dysfunction. Moreover, NPY can induce blood flow disorders through a variety of
pathophysiological changes. NPY and nicotine may play a combined role in promoting endothelial
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dysfunction. The correlation between NPY and nicotine
exposure-associated endothelial dysfunction and the underlying
mechanisms are unknown. This review examines the role
of NPY in nicotine-induced endothelial dysfunction, with a
focus on the relationship between the nicotine/NPY system
and the occurrence and development of arteriosclerotic
cardiovascular disease.

VASCULAR ENDOTHELIAL FUNCTION

Endothelial cells (ECs) in the heart and vascular system, serve
as important barriers between the blood and vascular walls and
are innervated by sympathetic and parasympathetic nerves. In
addition to playing a vital role in normal angiogenesis, dynamic
balance, and vascular tone regulation, the endothelium is also an
important metabolic and secretory organ. Endothelial products,
including nitric oxide synthases (NOS), hydrogen sulfide,
prostacyclin, endothelins, and thromboxane A2 (TXA2), affect
the contraction and dilation of human blood vessels (6). NOS,
comprising endothelial NOS (eNOS), neuronal NOS (nNOS),
and inducible NOS (iNOS) are critical enzymes in nitric oxide
(NO) production (7). ECs prevent arteriosclerotic cardiovascular
disease by maintaining the delicate balance between hemorrhage
and thrombosis by inducing the expression of coagulation
factors and anticoagulants such as tissue factor (TF), von
Willebrand factor, and fibrinolytic components; enhancing
endogenous antioxidant capacity, especially the secretion of
eNOS; promoting angiogenesis by secreting angiogenic growth
factors, such as vascular endothelial growth factor (VEGF) and
fibroblast growth factor; organizing immune cell recruitment by
secreting chemokines and adhesion molecules; and transporting
nutrients and signals. The physiological function of the
circulatory system thus depends on the structural integrity of
the endothelium.

NICOTINE AND ENDOTHELIAL FUNCTION

Nicotine can increase the release of neurotransmitters,
particularly aminergic substances such as NA by stimulating
nicotinic acetylcholinergic receptors (nAChR) that mainly act on
chromaffin and nerve cells. The physiological form of nicotine
not only induces angiogenesis, mediated by nAChR effects on
ECs, but also promotes EC mitosis by inducing the secretion of
angiogenic factors (8, 9). Nicotine stimulates the production of
reactive oxygen species (ROS) that activate scavenger receptors,
and ultimately lead to leukocyte adhesion and increased cell
permeability. Nicotine does not merely reduce the secretion
and bioavailability of NO by promoting eNOS uncoupling
and changing the mitochondrial electron transport chain (10),
it also affects the secretion of insulin and glucagon, which

Abbreviations: NPY, Neuropeptide Y; AS, Atherosclerosis; ECs, Endothelial cells;
EC, Endothelial cell; TXA2, Thromboxane A2; NO, Nitric oxide; NOS, Nitric oxide
synthases; eNOS, Endothelial NOS; nNOS, Neuronal NOS; iNOS, Inducible NOS;
TF, Tissue factor; VEGF, Vascular endothelial growth factor; nAChR, Nicotinic
acetylcholinergic receptors; NA, Norepinephrine; ROS, Reactive oxygen species.

together lead to EC energy metabolism disruption. Besides
increasing vascular tension to change the inner radius of the
vessel, nicotine increases blood viscosity by increasing the
quantity of plasma components such as inflammatory factors,
leukocyte, and coagulation factor. Both the viscosity of blood
and the inner radius of vessel can change the magnitude of
shear stress, resulting in disturbed flow that induces endothelial
dysfunction (11, 12). In essence, nicotine is detrimental to overall
endothelial function.

NPY AND RECEPTORS

The 36-amino-acid polypeptide NPY, belongs to the same
neuroendocrine peptide NPY family as the pancreatic
polypeptide and peptide YY. NPY plays an important role
in appetite, anxiety state, angiogenesis, and vasoconstriction,
and is widely distributed in the central and peripheral nervous
systems, especially in the hypothalamus (13). The NPY-Y
receptor system belongs to the G-protein-coupled receptor
superfamily; there are at least four receptors in most mammals,
namely, Y1, Y2, Y4, and Y5 receptors, which have different
affinity and selectivity (14, 15). Although NPY is mainly secreted
by sympathetic nerve cells and pheochromaffin cells, it is also
present in peripheral nerve terminals, peripheral fat cells,
platelets, liver, and ECs (16). Central NPY can be jointly released
into the peripheral circulation (17), and is associated with food
intake (18, 19) and mood regulation (20). For example, NPY
induces an anxiety state through Y2R but alleviates anxiety by
binding to Y1R (21, 22). The central NPY system is also closely
associated with cardiovascular regulation. NPY has notably
emerged as an important transmitter that can bind to different
receptors, promote thrombosis, constrict blood vessels, and
regulate insulin secretion (23, 24). The characteristics of NPY
receptors are summarized in Table 1.

NPY AND ENDOTHELIAL FUNCTION

At least three receptors have been identified on ECs, namely,
Y1R, Y2R, and Y5R (Figure 1). NPY at the physiological
concentrations of eNOS and VEGF, stimulated endothelial
cell proliferation, germination, migration, and adhesion, and
induced ischemic angiogenesis and intimal thickening (43,
45), by binding to Y1R, Y2R, and Y5R (25, 46, 47). In AS,
abnormal neovascularization in plaques not only accelerates
plaque progression but also increases the risk of plaque rupture
and hemorrhage (48). Vasoconstriction and the discontinuity of
ECs might be caused by Y1R activation within the cardiovascular
system (49). Comparably, Y1R on macrophages is involved in
the inflammatory response, which may contribute to endothelial
dysfunction (50). Additionally, Y1R on ECs has a role in
the induction of thrombosis. Sympathetic excitement may be
associated with the platelet activation state. Endothelial damage
stimulates NPY secretion, which induces TXA2 release, and NPY
binds to Y1R on ECs, thereby promoting platelet aggregation
(41, 51). NPY is a powerful orexin that plays a crucial role in fat
storage (33) and is the main source of blood lipids. NPY not only

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 February 2021 | Volume 8 | Article 630968

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zheng et al. Neuropeptide Y in Endothelial Dysfunction

TABLE 1 | Characteristics of NPY receptors.

Species Location NPY receptor Functional effect References

Animal Aortic endothelial cell (rat) Y1R, Y2R, Y5R Stimulates migration, proliferation, and tube formation (25)

Hypothalamus (rat) Y5R Induces adipocyte insulin resistance (26)

Coronary microvessels (canine) Unknown Stimulates vasoconstriction (27)

Ischemic tissue, carotid artery,

platelet (mice)

Y1R, Y2R, Y5R Induces ischemia, angiogenesis, neointima, vascular

obstruction, atherosclerotic lesion burden, and

structural vulnerability

(28–30)

Hypothalamus (rat) Y2R Induces anxiety state (31, 32)

Coronary artery (porcine) Y1R Stimulates release of TXA2 (33)

Ventricle, Islet (mice) Y1R Inhibits insulin secretion (34)

Central nervous system (rat) Y1R Stimulates appetite (35, 36)

Brain (rat) Y1R, Y5R Modulates triglyceride secretion (37)

Brain (rat) Y1R Attenuates somatic nicotine withdrawal signs (38)

Human Peripheral vessels Y1R Stimulates vasoconstriction (39, 40)

Sympathetic nerve cells,

saphenous vein

Unknown Activates platelets and promotes coagulation (41, 42)

Blood vessel Y1R, Y2R (mainly) Stimulates sprouting and adhesion, migration,

proliferation, angiogenesis

(43)

Allelotype Y2R Reinforces nicotine dependence (44)

FIGURE 1 | NPY is directly involved in nicotine-induced endothelial dysfunction. Nicotine exposure promotes the expression of NPY in central and peripheral neuronal

pathways. NPY not only promotes vasoconstriction and increases intercellular space, resulting in the deposition of lipid in the intima, but it also promotes platelet

aggregation and thrombosis via Y1R on EC. NPY further affects the mitotic process, endothelial cell proliferation, and angiogenesis, primarily by binding to Y1R, Y2R,

and Y5R. NPY also reduces the secretion of eNOS from endothelial cells, by binding to Y2R and Y5R. Y5R plays the role of enhancer for Y1R and Y2R. These

pathological processes affect the normal function of endothelial cells. NPY, neuropeptide Y; Y1R/Y2R/Y5R, Y1/Y2/Y5 receptor; eNOS, endothelial nitric oxide

synthase; EC, endothelial cell.

modulates insulin secretion (35, 52), but substantially induces
insulin resistance in hepatocytes and adipocytes through Y1R and
Y5R (26, 53, 54). Endothelial dysfunction induced by NPY may
be reduced NO bioavailability, partly due to Y2R-induced anxiety
(55, 56). The Y2R also calibrates peripheral NA secretion (57).
Compared to other NPY receptors, the role of Y5R is unclear. A
recent study reports that Y5R activity potentiates the function of
Y1R and Y2R to promote endothelial cell proliferation (58).

NPY AND NICOTINE-INDUCED
ENDOTHELIAL DYSFUNCTION

Nicotine is widely believed to be involved in various
pathophysiological processes that induce endothelial dysfunction
in a dose and time-dependent manner, such as promoting
vasoconstriction, inducing insulin resistance, stimulating
oxidative stress, and disrupting anticoagulant and procoagulant
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FIGURE 2 | Potential mechanism of nicotine-promoting NPY expression.

Nicotine promotes the synthesis and release of NPY. In the central nervous

system, nicotine up-regulates the expression of the NPY gene. In the

peripheral nervous system, nicotine promotes NPY release by stimulating

nAChR on sympathetic nerve and chromaffin cells. Nicotine also can activate

calcium channels on the cell membrane and promote the co-release of NPY

with NA. Increased NPY can affect nicotine intake. NPY, Neuropeptide Y;

nAChR, nicotinic acetylcholinergic receptor; NA, norepinephrine.

systems. Administering nicotine during postnatal days 1–8
upregulates mRNA expression of NPY in the hypothalamus
of neonatal rat pups (59). In the central, nicotine promotes
the expression of NPY in the hypothalamus by up-regulating
the NPY gene in the rat. In the peripheral, nicotine probably
promotes the release of NPY from the rat heart and adrenal
gland by regulating calcium channels. Besides, nicotine can
promote the co-release of NPY and NA, by directly stimulating
the sympathetic nerve, as is shown in Figure 2. Similar to its
effects in animals, nicotine also increased the release of NPY
in human adrenal chromaffin cells (60–62). Table 2 shows that
nicotine promotes NPY expression, which in turn induces
endothelial dysfunction. Herein, we critically reviewed the
relationship between nicotine and the NPY system to provide
a broad understanding of the pathophysiological mechanisms
of nicotine-induced endothelial dysfunction, especially in AS
(Figure 3).

NPY, Nicotine, and Vasoconstriction
It is generally accepted that nicotine enhances vasoconstriction
by disrupting the balance between vasoconstrictors (such as NA)
and vasodilators (such as NO), especially in coronary arteries
with endothelial damage (63). As demonstrated, nicotine elevates
the level of plasma NPY, both NPY and NA are powerful
vasoconstrictors (64–67). There seems to be a consensus that
NPY and NA are stored together in presynaptic vesicles and in
large, dense-core vesicles. In addition, NPY and NA appear to
be released together, although there is no conclusive evidence
describing this phenomenon (68). Low concentrations of NPY
directly affect vasoconstrictors in coronary arterial microvessels
(69). Electrically evoking NPY release from the perivascular
nerve terminals of breast vascular and radial artery biopsies
showed that NPY performed synergistically with NA to modulate
vascular tone and potentiated NA-mediated vasoconstriction (27,
39). This phenomenon may be precipitated by changes in NA
levels mediated by NPY-induced sympathetic excitation (70, 71).

TABLE 2 | Relationship between NPY and nicotine.

Nicotine

administration

Location Role References

4 mg/kg/days, 14 d Hypothalamus

(rat)

Enhances NPY

expression and

promotes food intake

(2)

6 mg/kg/days, 14 d Hypothalamus

(adult rat

progeny)

Changes hypothalamic

neuropeptides in the

adult progeny

(3)

10 µmM/l, 10min Coronary venous

(guinea pig)

Induces NA release and

promotes NPY overflow

(4)

0.25, 1.5, and 3 mg/kg,

twice daily, 8 days

Arcuate nucleus

(neonatal rat

pups)

Increases expression of

NPY

(60)

100µM, 10min Adrenal

chromaffin cells

(human)

Elicits a rapid increase

in the release of NPY

(62)

5 mg/kg, 6 h Adrenal (rat) Upregulates

neuropeptide synthesis

(63)

In particular, NPY-induced TXA2 release may have a strong
effect on NA-mediated vasoconstriction, further confirmed
by studies inhibiting NPY spontaneous vasoconstriction with
TXA2 synthase inhibitors (72). NPY evokes potent, long-lasting
vasoconstriction by binding to Y1R on ECs and smooth muscle
cells (40, 42) induced by sympathetic stimulation, but not NA
(73). Long-term incubation with NPY decreases the expression
of eNOS mRNA and eNOS protein levels in human umbilical
vein endothelial cells (74). There is correlation between gender
and NPY-induced vasoconstriction; the latter is reduced in the
presence of female sex hormones (75). Therefore, we speculate
that nicotine-induced elevated NPY disrupts the bioavailability
of NO. Nicotine induces several cardiovascular effects, from
increasing myocardial contractility and blood pressure to
increasing cardiac load and blood flow resistance. The potential
mechanism for this is nicotine stimulating the release of NPY and
NA by activating nAChR localized on peripheral postganglionic
sympathetic nerve endings and the adrenal medulla.

NPY, Nicotine, and Angiogenesis
Angiogenesis is a vital pathophysiological process that includes
the proliferation and migration of ECs and it is regulated by
a series of stimuli (76–78). Indeed, abnormal angiogenesis can
induce or augment pathological conditions. Nicotine plays a
substantial role in the proliferation of vascular ECs and in
pathological angiogenesis in ischemia (79, 80). Analogous to
the effects of nicotine, NPY can promote EC proliferation
and angiogenesis in atherosclerotic arteries (28, 81), which can
increase the risk of AS. Platelet NPY stimulates EC mitosis
through Y1R, and stimulates EC proliferation through Y2R
and Y5R, thereby promoting plaque neovascularization (82).
Besides, plaque neovascularization notably destabilizes plaque
and increases risk of bleeding. Intimal thickening and plaque
formation induced by nicotine leads to disturbances in blood
flow patterns, with lowered net forward flow and shear stress.
In contrast, NPY increases risk of re-infarction after angioplasty,
and is an important contributor to ischemic tissue after
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FIGURE 3 | NPY is indirectly involved in nicotine-induced endothelial dysfunction. NPY can promote insulin resistance, food intake, and fat storage, as well as

enhance macrophage-mediated inflammatory responses. NPY can also increase the body’s dependence on nicotine, which indirectly aggravates endothelial

dysfunction. These pathological processes can promote oxidative stress, inflammatory responses, blood flow disorders, and reduce the bioavailability of NO,

ultimately inducing endothelial dysfunction. NPY, Neuropeptide Y; NO, nitric oxide.

angioplasty, as it promotes neointima, thrombosis, and vascular
obstruction by activating Y1R and Y5R (29). Furthermore,
Y1 and Y5 receptor inhibitors can reduce these pathological
processes and suggest a potential target for the treatment and
prevention of vascular plasticization-related complications (83).
NPY increases angiogenesis and arteriogenesis, but does not
increase blood flow to the ischemic myocardium (30). Therefore,
we speculate that NPY directly correlates with nicotine-induced
pathological EC proliferation and angiogenesis. However, the
specific mechanism needs further study. Nicotine affects the
secretion function of ECs, leading to platelet adhesion and
aggregation, by increasing TF and TXA2 expression, reducing
prostaglandin I-2 expression, and NPY combined with those
to promote thrombosis. NPY not only directly stimulates
vasoconstriction associated with platelet aggregation to promote
thrombosis (84, 85), but also induces anxiety (31, 86), which
contributes substantially to platelet activation (32) by activating
Y2R in the hypothalamus and striatum. Therefore, nicotine
and NPY play a combined role in promoting pathological
angiogenesis and thrombosis.

NPY, Nicotine, and Energy Metabolism
Smoking has been well-established as an independent risk
factor for AS. Nicotine exposure can cause a variety of
pathological effects on ECs, among which the disturbance of
energy metabolisms of ECs is particularly destructive (87).
Chronic nicotine consumption promotes the expression of NPY
(88), which is involved in the regulation of energy metabolism
(36, 89–91), and shows a gender-dependent difference in the
hypothalamus (92). NPY is a powerful appetite peptide (93,
94). Elevated NPY levels in the hypothalamic arcuate nucleus
lead to hyperphagia and significant body weight gain. It is

also known that excess energy can result in hyperlipidemia
and hyperglycemia, the latter of which can directly destroy
protein structures, damaging blood vessels. Hyperlipidemia and
hyperglycemia can both increase the production of inflammatory
cytokines, which can prompt foam cell formation and induce
endothelial dysfunction. However, nicotine can inhibit weight
gain by increasing leptin expression in the hypothalamus of
food-deprived rats (95). Evidence supports the notion that NPY
plays an important role in inhibiting insulin secretion, causing
hyperglycemia in mice (96). NPY binding to Y1R on islet cells
induces insulin resistance and enhances beta-cell replication
by regulating the extracellular signal activity (34). Moreover,
hyperglycemia, caused by insulin resistance and abnormal insulin
secretion, can lead to ROS accumulation and decreased NO
bioavailability, thus promoting endothelial dysfunction (97–100).

NPY, Nicotine, and Oxidative Stress
Nicotine is a powerful oxidant that increases ROS production
in plasma and induces leukocyte adhesion. Both of these
effects, if left uncontrolled, will lead to expanded intercellular
space of ECs and endothelial dysfunction (101). Furthermore,
nicotine not only destroys lipid homeostasis but also oxidizes
blood lipids to lipoproteins of different densities via ROS, thus
promoting leukocyte phagocytosis of lipoproteins and forming
foam cells, which is the key pathogenesis of AS (102, 103). NPY
promotes the storage of fats such as triglycerides and cholesterol
and increases the source of lipoproteins, leading to oxidative
stress and endothelial dysfunction (104). NPY and endothelial
dysfunction can reinforce each other. Endothelial dysfunction
can stimulate the secretion of NPY and promote leukocyte
chemotaxis, thus expanding vascular inflammation (37, 105–
107). NPY also directly regulates inflammation in human ECs
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(108, 109). In addition, inflammation stress plays a role in
obesity-related cognitive impairment (110, 111). Lipid deposition
induced by NPY and an increase in oxidative substances induced
by nicotine can not only increase blood viscosity, but also
promote the formation of lipid strips in AS.

NPY and Nicotine Dependence
Nicotine addiction is a chronic disorder characterized by
dysphoria upon nicotine withdrawal and relapse after periods of
abstinence.Withdrawal and relapse increase levels of NPY and its
receptor proteins in the central nervous system, especially the Y1
receptor associated with brain reward function (112). NPY and
Y1R agonists improve pathological withdrawal signs and negative
affective states (113). Conversely, increased Y2R expression in
the hippocampal CA3 region might play an important role
in nicotine withdrawal-induced social dysfunction behavior
and is involved in the mediation of nicotine relapse (38).
Importantly, manipulations of Y1R and Y2R signals can regulate
nicotine usage and Y1R agonists and Y2R antagonists promote
reduced nicotine intake in central system regions (114, 115). In
addition, upon investigating 2517 Japanese elderly smokers, it
was discovered that the prevalence of the NPY2R rs4425326C
allele and the rs4425326 homozygous T allelotype was obviously
associated with nicotine dependence (116). Thus, NPY can affect
nicotine consumption, and is a promising target for treating
nicotine-induced endothelial dysfunction.

In conclusion, nicotine can regulate the expression of NPY,
which can affect human nicotine intake. NPY may play a role
as an enhancer in nicotine-induced endothelial dysfunction.
Nicotine can cause changes in damage to the vascular wall,
initiation of atherogenesis, hemorheological parameters, and
coronary artery hemodynamics. NPY can increase blood flow
resistance by promoting not only vasoconstriction but also
platelet aggregation and vascular plaque formation. NPY
can also promote lipid deposition, inflammatory reaction,
and leukocyte adhesion, resulting in a hypercoagulable
blood state. As such, NPY aggravates blood flow disorder
induced by nicotine. The flow disordered can further induce
endothelial dysfunction.

CONCLUSIONS AND FUTURE
DIRECTIONS

The role of NPY polymorphism in the regulation of
cardiovascular activity has been studied, but the effect on
endothelial function has varied in different studies, possibly
due to varied receptor effects. Few studies have explored the
regulation of NPY in vascular endothelial dysfunction and AS.
Lagraauw et al. observed that focalized NPY overexpression in
the carotid artery significantly increased atherosclerotic plaque
size and perivascular mast cell activity in apoE(–/–) mice. NPY

may impact plaque progression in part via mast cell activation
(28). In particular, the role of NPY in vascular endothelial
dysfunction in smokers remains unclear. Polymorphisms of
the NPY gene determine its functional complexity, reflected
in its ability to induce angiogenesis and vascular remodeling.
NPY improved functional blood flow in mice with hind limb
ischemia (44), but has also contributed to the development of
AS by promoting thrombosis and oxidative stress blood vessels
(117). The discovery and complete utilization of NPY functions,
including the promotion of EC proliferation and NO secretion,
may direct future research and generate hope for the clinical
treatment of arteriosclerotic cardiovascular disease. Evidence
suggests that an excited sympathetic nervous system induced
by an acute coronary heart attack, can promote NPY release,
thereby causing coronary artery spasm and aggravating further
myocardial ischemia. However, additional in vitro and in vivo
experimental studies are urgently needed to further support
these findings. NPY led to neointima formation, and triggered
thrombosis and vessel occlusion. Therefore, NPY receptor
antagonists may offer a new approach to treating restenosis.
NPY demonstrated an important role in stem cell therapy for
acute myocardial infarction, by regulating vascular access for
progenitor cells (118), as well as defended the nerves of bone
marrow (119, 120). NPY diversity determines the complexity
of its functions. NPY can promote cell proliferation, increasing
the risk of coronary heart disease reinfarction and rebleeding.
Smoking can affect the expression of NPY, which can aggravate
endothelial dysfunction and blood flow disorder induced by
nicotine. In light of this, NPY receptor-targeted therapy may
be useful in treating nicotine-related cardiovascular diseases.
At present, research on NPY is mostly limited to animal
experiments; therefore, more human experiments are needed
to further confirm the function and mechanism of NPY. A
thorough study on the relationship between NPY and coronary
heart disease may open the door for new treatments for the
latter. Moreover, the prevention and treatment of nicotine-
related cardiovascular diseases present a major challenge for
providing medical care.
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