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Spin–orbit coupling in buckled 
monolayer nitrogene
Paulina Jureczko & Marcin Kurpas*

Buckled monolayer nitrogene has been recently predicted to be stable above the room temperature. 
The low atomic number of nitrogen atom suggests, that spin–orbit coupling in nitrogene is weak, 
similar to graphene or silicene. We employ first principles calculations and perform a systematic 
study of the intrinsic and extrinsic spin–orbit coupling in this material. We calculate the spin mixing 
parameter b2 , reflecting the strength of the intrinsic spin–orbit coupling and find, that b2 is relatively 
small, on the order of 10−6 . It also displays a weak anisotropy, opposite for electrons and holes. To 
study extrinsic effects of spin–orbit coupling we apply a transverse electric field enabling spin–orbit 
fields � . We find, that � are on the order of a single µ eV in the valence band, and tens to a hundred of 
µ eV in the conduction band, depending on the applied electric field. Similar to b2 , � is also anisotropic, 
in particular for the conduction electrons.

Two-dimensional (2D) pnictogens have gained a lot of attention in recent  years1–10. Among these materials 
atomically thin black phosphorus emerged as the most promising one for electronic and spintronic applications 
due to its intrinsic semiconducting band gap, extraordinary high carrier mobility and strongly anisotropic orbital 
and spin  properties1,2,11,12. Recently, 2D atomically thin nitrogen, called also nitrogene13, has been predicted to 
be structurally stable even far above the room  temperature10,13,14. According to these predictions, 2D nitrogene 
can crystallize in a few different forms, each having distinct electronic properties. Puckered (black phosphorus 
like) nitrogene is a direct gap semiconductor with the gap 1.25  eV15. Octagon nitrogene is an indirect wide-gap 
semiconductor with the gap 2.6  eV16,17, while buckled honeycomb nitrogene is an indirect gap insulator with the 
calculated band gap of about 4–6  eV13. The wide band gap of buckled nitrogene may be an obstacle to use this 
material in semiconductor electronics. However, several ways of lowering the gap to the semiconducting limit 
have been proposed, including formation of  multilayers14, doping by  boron18 or making nitrogene  nanoribbons13.

So far the experimental realization of 2D nitrogene remains a challenge. The main obstacle here is a tendency 
of N atoms to form N2 molecules with a triple N ≡ N  bond19. Therefore, the goal is to find conditions under which 
this tendency is minimized, allowing for the formation of single bonds between N atoms. Such conditions can 
be created, for instance, by high pressure and temperature. Very recently this strategy has led to the synthesis 
of bulk nitrogen in black phosphorus  structure19,20. More useful method, in terms of practical applications of 
nitrogene, was used by Harada et al., who epitaxially grown a single atom thick N layer in  GaAs21. Although the 
structure of the epitaxial layer did not correspond to any of the theoretically envisaged, this is a big step towards 
the realization of 2D nitrogene.

Nitrogen is a light element with the atomic number Z=14. Therefore, spin–orbit coupling (SOC) in nitro-
gene is expected to be  weak22, similar to  graphene23 and  phosphorene12. Indeed, in a recent theoretical study, 
Lee et al.10 observed no significant effects of SOC on the band structure of buckled nitrognene. This may open 
great perspectives for this material in spintronics, since weak SOC should result in long lasting spin coherence. 
Buckled 2D nitrogene crystallizes in the centrosymmetric structure of the P3m̄1 space group being isomorphic 
with the D3d point group. The unit cell of nitrogene contains two nonequivalent atoms (Fig. 1b) belonging to two 
noncoplanar sublattices A and B. The finite out of plane buckling of the structure breaks the mirror symmetry of 
the lattice and allows the emergence of the intrinsic Rashba24,25 spin–orbit coupling (PIA SOC in the context of 
functionalized  graphene26,27). In contrast to the well known Bychkov–Rashba28 SOC due to structure inversion 
asymmetry, the intrinsic Rashba SOC preserves the spin degeneracy of states, as a consequence of space inver-
sion symmetry of the lattice and the time reversal symmetry. On the other hand, it affects the electron spin and 
leads to the emergence of in-plane spin components, forbidden by symmetry in flat, mirror symmetric graphene.

Besides the above general considerations, not much is known about SOC in this material. For instance, the 
question about the competition of the intrinsic Rashba SOC, polarizing the spins in-plane, and the intrinsic 
SOC polarizing spins along the z directions has not been addressed. Since such a competition may lead to the 
anisotropy of the SOC, we take up this problem here and perform a systematic study of SOC in buckled mon-
olayer nitrogene. By employing first principles calculations we characterize the intrinsic SOC by the spin mixing 
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parameter b229, while the extrinsic SOC, arising due to breaking of the space inversion symmetry, is quantified 
by the amplitude of spin splittings �so and spin–orbit fields � . All these quantities provide essential information 
about the strength and anisotropy of SOC in the band structure.

We find, that b2 is of the order of 10−6 , both for electrons and holes, and displays a weak in-plane to out-of 
plane anisotropy. The extrinsic SOC shows significant diversity between the valence and conduction bands. In 
the former, the values of spin–orbit fields � vary between a few to a dozen of µ eV for the considered amplitudes 
of an external electric field, and are rather isotropic. In the latter, the values of � are roughy ten times bigger and 
are strongly anisotropic.

Results and discussion
Intrinsic spin–orbit coupling. We begin our considerations from the examination of the electronic band 
structure of nitrogene. The calculated first principles relativistic band structure is shown in Fig. 1. Similar to 
other buckled 2D materials made of group V elements, such as blue phosphorene, arsenene or  antimonene22, the 
band gap of monolayer nitrogene is indirect. The size of the indirect gap for the PBE exchange correlation func-
tional is Eg = 4.06, eV, and is in agreement with the values reported by  others13. The top-most valence band has 
two local maxima lying between the Ŵ K and Ŵ M paths in the First Brillouin Zone (FBZ) (Fig. 1c). The maxima 
are located approximately 0.5 eV above the saddle point at the Ŵ point, and differ in energy by 35 meV. The edge 
of the conduction band is located in the middle of the Ŵ M path in the FBZ.

As already stated by Lee et al.10, the effects of spin–orbit coupling on the band structure on buckled nitro-
gene are weak. Indeed, the inclusion of relativistic effects in the calculation makes no significant effects on 
the non-relativistic band structure. The most prominent ones are spin–orbital gaps opened at high symmetry 
points of the FBZ. In the valence band, the spin–orbital gap at the Ŵ point (between the bands marked 2 and 
3) is �Ŵ

SO = 17.3 meV, while at the K point (between the bands marked 1 and 2’) it is �K
SO = 2.1 meV. For com-

parison, the same splittings for graphene are �Ŵ
SO = 9 meV and �K

SO = 24 µeV23, and for blue phosphorene 
�Ŵ

SO = 48 meV, �K
SO = 10 µeV22.

To characterize the intrinsic SOC in the band structure away from the high symmetry points we calculate the 
spin mixing parameter b2 . This parameter measures the amplitude of the spin component being admixed to the 
Bloch state of opposite spin by the SOC. Importantly, the parameter b2 can be easily accessed experimentally from 
the Elliott relation connecting b2 with the spin τs and momentum τp relaxation times: b2 = τp(4τs)

−1 , provided 
the Elliott-Yafet mechanism dominates spin  relaxation29,30. This is usually the case, when the spin lifetime follows 
the same characteristics as the momentum  lifetime31–34. Knowing τp and τs from the experiment, one can extract 
the sample independent parameter b2 , and compare it with the theoretical values. Recently we have successfully 
applied this strategy to characterize b2 and spin relaxation in black  phosphorus12,34. In numerical simulations 
the parameter b2 can be calculated directly from the wave functions, provided the spin subbands of a Bloch state 
ψk,n are degenerate. This requirement is met if the time reversal symmetry and space inversion symmetry of the 
sample are present simultaneously. In such a case the two Bloch subbands are

(1)ψ
⇑

k,n(r) =[ak,n(r)| ↑ � + bk,n(r)| ↓ �]eik·r ,
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Figure 1.  Electronic properties of monolayer nitrogene: (a) Calculated relativistic band structure of nitrogene 
plotted along high symmetry lines of the First Brillouin Zone shown in (c). The inset enlarges the valence band 
around the Ŵ point. The two maxima lie approximately 0.5 eV above the minimum at the Ŵ point; (b) crystalline 
structure of 2D nitrogene with the lattice vectors v1 , v2 , |v| = 0.69 Å and the unit cell marked by the shaded area; 
(c) The First Brillouin Zone of 2D nitrogene with depicted high symmetry points.
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where n is the band index, ak,n and bk,n are lattice periodic functions, k is the crystal momentum and | ↑� , | ↓� are 
eigenstates of the spin one-half operator with eigenvalues ±�/235. Here, bk,n is the amplitude of spin component 
|σ

′
� being admixed by the SOC to the Bloch state of spin |σ � , σ = {↑,↓} . Since the Bloch states ψ⇑

k,n(r) and ψ⇓

k,n(r) 
are degenerate at any k-point, any linear combination of these states is also an eigenstate of the Hamiltonian. 
This allows us to chose the amplitudes ak,n and bk,n in such a way, that ψ⇑

k,n(r) , ψ
⇓

k,n(r) diagonalize spin one-half 
operator ŝi , i = x, y, z . By doing so we can choose the spin quantization axis (SQA), SQA=i, which in experiment 
corresponds to the direction of magnetization of injected spins.

The spin mixing parameter can be calculated by integrating the amplitude |bk,n,| over the whole unit cell

or, alternatively by calculating the deviation of the expectation value of the spin operator ŝi from its nominal 
value 1/2 (in units of �)36

where σ = {⇑,⇓} and ψσ ,i
k,n(r) is the eigenstate of ŝi . For normalized states 0 ≤ b2

k,n,i ≤ 0.5 , where b2
k,n,i = 0.5 

corresponds to fully spin mixed states and b2
k,n,i = 0 to pure spin up (down) spinors.

The calculated Fermi contour averaged spin mixing parameter b2 plotted versus the position of the Fermi 
level is shown in Fig. 2. The value of b2 is in the range of 10−6 for both, the valence and the conduction band. This 
is roughly ten times the value of b2 for graphene and ten times less than for black and blue  phosphorus22,34,37. 
At EF ≈ 32 meV the second valence band maximum (along the ŴM path in Fig. 1) crosses the Fermi level and 
k-points from this wedge of the FBZ start contributing to b2 , slightly modifying its slope. The parameter b2 is 
almost doping independent. Such behavior is typical for bands being energetically separated from other lower 
and higher lying  bands22.

The parameter b2 shows weak anisotropy with respect to the spin quantization axis. In the valence band (Fig. 2a) 
b2 for SQA=z (out of plane polarization) is roughly twice as large as for SQA=x, y, b2SQA=x/y/b

2
SQA=z ≈ 0.54 . This 

result is surprising, since most of buckled elemental monolayer materials display the opposite  trend22. In this 
context nitrogene is similar to graphene, which exhibits similar anisotropy of b2 for holes away from the Dirac 
point. For conduction electrons (Fig. 2b) we observe the opposite trend in b2 , namely, b2SQA=x/y/b

2
SQA=z ≈ 1.6 . 

Although the anisotropy of b2 is not very high, this result deviates from other buckled pnictogens, for which b2 
is mostly isotropic.

The results presented Fig. 2 have been obtained for the PBE exchange–correlation functional. Since for 
hybrid functionals the band gap increases by 2  eV13, we have checked how the band gap correction influences 
the values of the spin mixing parameter and performed calculations for the  HSE38 functional. Although the band 
gap increased to 6.34 eV (see Supplementary Fig. S1) the corresponding spin mixing parameter (Supplementary 
Fig. S2) stays almost unaffected and varies by at most a few percent. Therefore, the results obtained for the PBE 
functional can be taken as conclusive.

Extrinsic spin–orbit coupling. Monolayer nitrogene has been predicted to be structurally stable on metal 
surfaces. Even though the interaction with the substrate is weak and makes no significant changes to the band 
structure of  nitrogene13, the crystal potential at the interface breaks the inversion symmetry of the nitrogene 
lattice and enables the extrinsic Bychkov–Rashba spin–orbit  coupling28. The extrinsic SOC has two main effects 
on the electron spin. First, it removes the degeneracy of spin states, and second, it induces crystal momentum 

(2)ψ
⇓

k,n(r) =[a∗−k,n(r)| ↓ � − b∗−k,n(r)| ↑ �]eik·r ,

(3)b2
k,n =

∫

|bk,n(r)|
2d3r,

(4)b2
k,n,i =

1
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− |�ψ
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Figure 2.  Calculated Fermi contour averaged spin-mixing parameter b2 versus the position of the Fermi level 
EF and for three directions of SQA aligned with the Cartesian system axes: (a) for the valence band; (b) for 
the conduction band. The Fermi level is measured with respect to the valence (conduction) band maximum 
(minimum).
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dependent spin–orbital fields ���k , which lead to spin polarization of Bloch states and to the emergence of the 
characteristic spin texture in the FBZ. The SO field ���k is linked to spin splitting by the Zeeman-like Rashba 
Hamiltonian

where � is the Planck constant, and σ is the vector of Pauli matrices.
Instead of placing nitrogene on a particular substrate we model its presence by applying an external transverse 

electric field EEE = (0, 0,E) , whose amplitude can be precisely controlled in numerical calculations. This approach, 
allowing us to simulate different substrates, is justified due to weak hybridization of states of nitrogene and the 
 substrate13.

In Fig. 3 we show the Fermi contour averaged spin splitting �so calculated for several values of the electric 
field. In contrast to the spin mixing parameter b2 , �so differs significantly between the valence and conduction 
band. In the former (Fig. 3a), �so takes the values from a few to a dozen of µ eV for the considered values of 
electric fields and grows by approximately 3 µ eV per 1Vnm−1 . In the conduction band (Fig. 3b) the corre-
sponding values are almost ten times bigger than in the valence band, and vary between 20 µ eV to 100 µeV, for 
E = 1 Vnm−1 and E = 4 Vnm−1 respectively, with a linear growth of 33 µ eV per 1 Vnm−1 . Similarly to b2 , the 
slope of �so in the valence band changes slightly when the Fermi level EF ≈ 32 meV and the second valence 
band maximum (between the Ŵ and M points in Fig. 1) enters the Fermi contour.

The spin splitting �so characterizes the strength of the extrinsic SOC in a band. The anisotropy of SOC can 
be accessed through the components of the spin–orbit field ���k , �k,i ,

where Si , i = {x, y, z} is the expectation value of spin one-half operator at a given k point, and 
Sk =

√

S2k,x + S2k,y + S2k,z
39. The calculated Fermi surface averaged components �i are presented in Fig. 4. In the 

valence band (Fig. 4a,b), �x and �y take similar values, while �z (Fig. 4c) is almost twice smaller and displays 
different monotonicity. In the conduction band, the in-plane spin components �x , �y (Fig. 4d,e) are large, tens 
of µeV, and are doping independent, while �z (Fig. 4f) takes the values of a few µeV, and is doping dependent. 
Such big differences between �x/y and �z lead to a sizeable, up to �x/y/�z ≈ 40 , doping-dependent 
anisotropy.

To understand these results one needs to look at the components of the electron spin which shape �i . We 
show them in Fig. 5a,b. The in-plane spin components Sx and Sy form the typical circulating Rashba spin texture 
(Fig. 5a). Within the considered doping range the length of Sx and Sy is approximately constant, as shown in 
Fig. 5c. The Sz component displays much bigger diversity, and takes small values in the center of FBZ, while 
for bigger crystal momenta we observe the spin-valley locking effect with a strong spin polarization. In effect, 
when doping increases the average value of |Sz | in the valence band first decreases from the value |Sz | ≈ 0.1 to 
|Sz | ≈ 0.03 , and for EF ≤ −32 meV its starts increasing and saturates at the value |Sz | ≈ 0.075 (Fig. 5c). The 
qualitative change to Sz takes place when the Fermi contour reaches the k-points close to the anticrossings marked 
by the green rectangle in Fig. 1a, what happens exactly at EF ≈ −32 meV. For k in the range from the Ŵ point to 
the anticrossing at E − EF ≈ −10 eV, Sz ≈ 0 (see the Supplementary Fig. S3). Increasing k towards the K-point, 
Sz starts growing and reaches the maximum Sz ≈ 0.5 at k above the anticrossing lying at E − EF ≈ −9 eV. Since 
the valence band maximum lies in between of the two anticrossings, we first observe a decrease of |Sz | followed 
by its increase.

In the conduction band (Fig. 5b,d), the in-plane spins also form the Rashba texture, similar to the valence 
band, but the z component of spin is very small in the wedge of the BZ corresponding to doping range 

(5)HR(k) =
�

2
���k · σσσ ,
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Figure 3.  Fermi contour averaged spin splitting versus Fermi level for several values of the external electric field 
E, and for: (a) the top most valence band; (b) the bottom most conduction band. The Fermi level is measured 
with respect to the valence (conduction) band maximum (minimum).
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(represented by black ellipses). In effect, �x and �y take the values close to �so , while �z is of the order of a few 
µ eV (Fig. 4d–f), generating a large anisotropy of the extrinsic SOC.

As can be seen from the results shown above, SOC in nitrogene is weak. The calculated spin mixing parameter, 
b2 ≈ 10−6 , is approximately ten times bigger than for  graphene22. This suggests, that the intrinsic SOC should 
not contribute much to spin scattering in nitrogene. Taking the typical momentum lifetime τp = 100 fs, we can 
make a rough estimate of spin lifetime from the Elliott-Yafet  mechanism29,31,τEYs ≈ τp/4b

2 ≈ 50 ns. On the other 
hand, several factors may affect SOC and spin dynamics in a material. For instance in graphene, the out-of-plane 
lattice distortions strongly affect both, the strength of the SOC and momentum scattering, dramatically reduc-
ing spin  lifetime40–43. A transition from the flat to rippled graphene results in the emergence of an additional 
(intrinsic) SO term Hcurv

42,44. For typical ripples of radii in the range R ∼ 50 nm-100 nm the characteristic energy 
of this interaction is �curv ≈ 0.2 K, and can exceed the energy of the intrinsic SOC, �int ≈ 0.01K− 0.1  K23,42, 
making the relevant spin-flip processes important. Additionally, rippling breaks the mirror symmetry ( z → −z ) 
protecting the electron spin, and enables additional spin relaxation channels by flexural phonons and random 
spin–orbit  fields41,43.

In contrast to graphene, nitrogene is naturally buckled. Thus, the effects of buckling are embedded in the 
intrinsic SOC and b2 , and are much stronger than effects of rippling discussed above. It was shown, that �int at the 
K-point in graphene grows quadratically with the buckling height δ , �int ∼ (δ/a)2 , a being the lattice constant, 
and for δ/a ≈ 0.08 it jumps to �int ≈ 1  K23. In the case of nitrogene, the buckling height is δ ≈ 0.9 Å, a = 2.3 Å, 
which gives δ/a ≈ 0.4 . Following the quadratic dependence for graphene, one gets for nitrogene �int = 25 K, 
close to the value �K

so = 23 K extracted from our first principles calculations. For comparison, static ripples of 
radii R ∼ 50 nm-100 nm, give the correction to the intrinsic SOC of the order of �curv ∼ a/R ≈ 0.2  K42,—neg-
ligible in the case of nitrogene.

Although lattice ripples should not significantly affect the intrinsic SOC in nitrogene, they can generate a 
small random spin–orbit fields leading to faster spin decoherence, in a similar way as it takes place  graphene41. 
Fortunately, lattice rippling can be to a large extent eliminated by encapsulation of the host layer by, e.g., hex-
agonal boron  nitride45,46.

spin–orbit coupling plays an important role in contemporary solid state physics, spintronics and topologi-
cal quantum computing. Apart from these areas of physics, it has also been intensively studied in cold atoms 
systems. Therefore, in the next few lines we briefly compare SOC in crystalline solids with SOC in Bose gases.

In crystalline solids, SOC originates from the crystal potential, in which an electron is moving. In the rest 
frame of the electron, the electric field induced by the crystal potential acts as an effective, momentum depend-
ent Zeeman field acting on the electron spin. The strength of SOC in a band is determined by the chemical 

Figure 4.  Fermi contour averaged components of the spin–orbit field �� versus the position of Fermi level EF 
and for several values of electric field E. Panels (a–c) show the x, y, and z components of ��� for the valence band 
respectively; (d–f), same as (a–c) but for the conduction band. The Fermi energy is measured with respect to the 
valence (conduction) band maximum (minimum).
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composition of the crystal (materials made of heavier elements display stronger SOC effects than those made of 
light elements) and the topology of the band structure, and to some extent may be modified externally, e.g., by 
electric  fields47,  strain48, proximity  effects49 or  twisting50. The form of the spin–orbit interaction is dictated by 
the symmetry of the crystal; for instance, the famous Bychkov–Rashba28 and  Dresselhaus51 types of SOC result 
from broken structure and bulk inversion symmetry, respectively.

In cold bosons systems, SOC is realized by coupling the motion of an atom to its internal (hyperfine) pesudo-
spin states, corresponding to the electron’s spin up and spin down  states52–56. Implementation of such coupling, 
called synthetic  SOC54, requires an extra effort of dressing atomic states with lasers, but offers a full control of 
this interaction at  will57. By a proper combination of laser fields and atomic pseudo-spin states, a variety of 
SOCs can be created and dynamically  modified54,57,58. For example, Lin et al.54, realized one dimensional SOC, 
corresponding to equal contributions of Bychkov–Rashba and Dresselhaus SOC in conventional systems; Wu 
et al.57 implemented a scheme allowing for a controllable transition from 1D to 2D SOC. More exotic forms of 
SOC having no counterparts in real materials, such as, a 3D analogue of Rashba  SOC59,60, are also possible, mak-
ing cold atoms systems a powerful platform for exploring spin–orbit coupling and many body physics. Like in 
conventional materials, in bose gases, SOC is essential to the emergence of fascinating physical phenomena, e.g., 
a degenerate ground state of spin–orbit coupled Bose–Einstein  condensates61, spatial separation of  BEC54,62,63, 
quantum phase  transitions64, or the existence of topologically non-trivial  phases57,60. These few examples are a 
small sample of SOC-induced phenomena in cold atoms systems. A more detailed discussion of this topic can 
be found in Refs.65–69.
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Conclusions
We have investigated the fundamental spin–orbit coupling in buckled monolayer nitrogene. Based on first prin-
ciples calculations we found that spin mixing parameter characterising the intrinsic SOC is small, on the order 
of b2 ≈ 10−6 , and displays weak anisotropy. The extrinsic SOC, characterized by the Rashba spin–orbit fields � , 
is also weak, on the order of µ eV in the valence and tens to a hundred of µ eV in the conduction band. Similar to 
the intrinsic SOC, the extrinsic SOC is also anisotropic. The anisotropy is particularly strong in the conduction 
band. Weak spin–orbit coupling in nitrogene suggests, that doped nitrogene or nitrogene nanoribbons may be 
attractive materials for spintronics applications.

Methods
First-principles calculations were performed with the Quantum Espresso  package70,71. The norm-conserving 
pseudopotential with the Perdew–Burke–Ernzerhof (PBE)72,73 version of the generalized gradient approxima-
tion (GGA) exchange-correlation functional was chosen, taking the kinetic energy cutoff of the plane-wave 
basis 80 Ry for the wave function and 320 Ry for charge density respectively. These parameters were found to 
give well converged results. Calculations with a hybrid functional were done with the Heyd–Scuseria–Ernzerhof 
(HSE06)38 functional, with the Fock exchange contribution 20%. Monolayer nitrogene was placed in a vacuum 
of 21 Å  to minimize interactions between periodic copies of the system. Self-consistency was achieved with 
21kx × 21ky × 1kz Monkhorst-Pack  grid74. The optimized lattice constant a was determined by minimizing the 
total energy followed by fitting a parabolic function. In each step the positions of atoms were fully relaxed by the 
quasi-Newton scheme as implemented in Quantum Espresso, assuming force convergence threshold 10−4  Ry/
bohr. We found a = 2.29 Å  and the out of plane buckling of the lattice δ = 0.96 Å, similar to those reported by 
other  authors13. Calculations with the electric field were carried out with the dipole  correction75. Fermi contour 
averages of spin mixing parameter b2 , spin–orbit field �2 and spin components si were calculated according to 
the formula

where Ak stands for b2k , �
2
k and sk,i , SBZ is the area of the Fermi surface, ρ(EF) is the density of states per spin at 

the Fermi level, vF(k) is the Fermi velocity.
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