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Abstract: The ore fragment size on the conveyor belt of concentrators is not only the main index
to verify the crushing process, but also affects the production efficiency, operation cost and even
production safety of the mine. In order to get the size of ore fragments on the conveyor belt,
the image segmentation method is a convenient and fast choice. However, due to the influence of
dust, light and uneven color and texture, the traditional ore image segmentation methods are prone to
oversegmentation and undersegmentation. In order to solve these problems, this paper proposes an
ore image segmentation model called RDU-Net (R: residual connection; DU: DUNet), which combines
the residual structure of convolutional neural network with DUNet model, greatly improving the
accuracy of image segmentation. RDU-Net can adaptively adjust the receptive field according to the
size and shape of different ore fragments, capture the ore edge of different shape and size, and realize
the accurate segmentation of ore image. The experimental results show that compared with other
U-Net and DUNet, the RDU-Net has significantly improved segmentation accuracy, and has better
generalization ability, which can fully meet the requirements of ore fragment size detection in
the concentrator.

Keywords: ore image; conveyor belt; image segmentation; DUNet; residual connection

1. Introduction

In the mining industry, the early production of minerals includes three steps: blasting, crushing
and grinding. There are three crushing stages of ore with different fragment size requirements. All the
material is transported by conveyor belts, which consumes a lot of energy. In addition, because the
size of the feeding ports on the conveyor belt of some concentrators cannot be adjusted, large ore
fragments can easily block the feeding port and damage the belt when ore enters the feeding port,
which seriously affects the production efficiency and safety of the mine. In order to reduce energy
consumption, improve production efficiency and ensure production safety, the concentrator needs
a real-time and effective method to determine the ore fragment size and adjust the parameters of
production equipment according to the fragment size. Compared to the ore pile, the ore on the
conveyor belt is tiled on it, so the ore fragments are less blocked, which can more intuitively reflect the
size of the fragments. Therefore, we choose the ore image of the conveyor belt as the research object.

Using machine vision methods to segment the ore image to obtain the size of each ore is an effective
method. However, the production environment on the mine is complicated; the dust interference is
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large, the open-air equipment has a large impact on the light, the colors and textures of the ore are
different, the boundaries of the ore fragments are blurred, etc., all of which pose major challenges
to any ore image segmentation technique. In response to these problems, many image processing
methods have been proposed: OTSU and its improvement method [1,2], cluster analysis [3], watershed
and its improvement methods [4–9], and graph-based segmentation algorithms [10]. They can segment
specific ore images, but they are limited and require precise parameter adjustments.

Deep convolutional networks have the characteristics of high efficiency and accurate results in
image segmentation. FCN [11], U-Net [12], SegNet [13], deformable convolutional networks [14,15]
and other semantic segmentation networks have been proposed one after another and can realize
the end-to-end segmentation of images providing a great breakthrough in semantic segmentation.
Xu et al. [16] used a U-Net deep convolutional network to solve the segmentation problem of ordinary
stone images, realized accurate segmentation of rock images, and further verified the feasibility of
deep learning in segmenting mineral images.

However, extensive research shows that U-Net networks have certain limitations, so scholars
have proposed different U-Net model variants. Casella et al. [17] implemented an adversarial network
consisting of two fully convolutional neural networks. One (segmenter) is a segmentation network
inspired by U-Net and integrated with residual blocks. Miao et al. [18] proposed and evaluated an
improved U-net model that includes a combination of squeeze and excite (SE) and ResNet blocks.
Dash et al. [19] proposed an automatic psoriasis lesion segmentation method based on the improved
U-Net architecture (PsLSNet). The architecture consists of a fully convolutional network with a depth
of 29 layers. Sun et al. [20] designed a U-Net-based network architecture DRRNet, replacing simple
skip connections with encoder adaptive blocks, and using densely connected fusion blocks in the
decoder. Jeppesen et al. [21] proposed a U-net-based remote sensing network (RS-Net) for detecting
clouds in optical satellite images. Liu et al. [22] proposed a liver CT sequence image segmentation
algorithm GIU-Net, which combines an improved U-Net neural network model with graph cutting.
The U-Net-based method proposed by Fang et al. [23] combines hybrid dilated convolution (HDC)
and spectral normalization, which can use sharp structures and fine textures to fill missing areas of
any shape. Hong et al. [24] used U-Net to develop a novel segmentation framework suitable for deep
WMH. The segmented WMH was subdivided with ten-fold cross-validation, and its true accuracy rate
is high. Ibtehaz et al. [25] replaced the sequence of two convolutional layers with MultiRes blocks
and developed a novel architecture MultiResUNet. Liu et al. [26] proposed an improved osteoporosis
diagnosis algorithm based on U-NET network. Fang et al. [27] developed an improved network
architecture using a residual channel attention block (RCAB) based on the conventional U-Net method:
residual channel attention U-Net (RCA-U-Net). Jin et al. [28] proposed DUNet for segmentation of
retinal blood vessels under the influence of deformable convolutional neural networks.

Based on DUNet, in order to solve the problem of information loss between convolutions and protect
the integrity of information, this paper introduces the residual structure of ResNet [29], and proposes a
novel ore image segmentation model called RDU-net, which has better segmentation effect.

The structure of the rest of this article is as follows: in Section 2, we will introduce the production
and preprocessing methods of the ore image dataset. Section 3 describes the network structure
of RDU-Net and the method of ore image segmentation. It also briefly introduces the DUNet.
The experimental results are shown in Section 4. We evaluated different image segmentation methods.
The conclusions are given in Section 5.

2. Preprocessing and Production of Data Sets

2.1. Image Preprocessing

Deep neural networks can effectively learn from unprocessed image data, but if the image data is
properly preprocessed, it will be more efficient. The image data set is the video data of the ore on the
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conveyor belt collected in the Taiyuan Iron and Steel Group’s open-air beneficiation plant, and the
video data is taken as frames.

It can be seen from Figure 1a that the ore fragments are uneven in color, the surface texture is
complicated, the dust interference is serious, and the fragment edges are not obvious. These factors
will affect the final segmentation effect.

Figure 1. Images after each preprocessing step: (a) Original image, (b) Grayscale image, (c) Image after
CLAHE operation, (d) Image after bilateral filtering.

We use three image preprocessing methods. If the algorithm is directly processed with color images,
the data processing time will be prolonged due to the large amount of data. A gray image requires only
one byte to represent the gray value of a pixel, and also enhances the contrast with the background.
Compared with RGB images, the amount of data to be processed is reduced by about two-thirds,
which speeds up the algorithm operation. The processing result is shown in Figure 1b. We use contrast
limited adaptive histogram equalization (CLAHE) to enhance the foreground-background contrast,
remove dust interference, increase the contrast between various parts of images, enhance the image
details in dark areas, and make the gap between ore fragments more visible as shown in Figure 1c.
Finally, because the color of the ore is uneven, the edges are not clear, and the images contains a lot
of noise, we need to perform noise reduction processing on the images, in order to remove the noise
interference in the images as much as possible and maintain the details of the original images. It can be
seen from Figure 1d that the use of bilateral filtering denoising not only effectively reduces the image
noise, but also the edge information of the ore fragments is well retained.

2.2. Production of Data Sets

In order to create a deep learning sample set and meet the needs of comparative analysis of
experimental results, we take the belt section as the background and use the image labeling tool
LabelMe to manually describe the boundaries of the ore fragments. At the same time, the mask is used
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to shield the area outside the image upload belt and keep the area within the field of view. Finally,
the label maps and mask maps were obtained after binarization, as shown in Figure 2.

Figure 2. (a) Original images: (b) corresponding ground truth (c) field of view example.

For the purpose of reducing the computational complexity and efficiently use the training data
set while ensuring the surrounding local features, we set the size of the patches to 48 × 48 pixels,
and intercepted 200,000 samples in total. All datasets are divided into a training set, a validation
set, and a test set. 20 images in the dataset are used for training and validation and 10 images are
used for testing. The training set is used to adjust the weights; the validation set is used to select the
best weights; and the test set is used for performance evaluation. In order to reduce the problem of
overfitting, RDU-Net is trained by randomly extracting small patches from images. It is shown in
Figure 3.

Figure 3. Typical 48 × 48 patches selected for model training: (a) shows the patches from the
original images; (b) shows the patches from the preprocessed image; (c) shows the patches from the
corresponding ground truth.

3. The Establishment of RDU-Net

3.1. DUNet Model

The DUNet model is a deformed U-Net network model based on a fully convolutional neural
network, which is applied to the segmentation of retinal blood vessels. Figure 4 illustrates the structure
of DUNet. The architecture consists of a convolutional encoder (left) and a decoder (right) in the
U-Net framework. At the bottom of the DUNet, a normal convolution layer is used instead of the
deformation block. At each encoding and decoding stage, deformable convolutional blocks are
used to simulate retinal vessels of different shapes and scales by learning local, dense and adaptive
receiving fields. The dotted window shows the detailed design of the deformable convolution block.
Each deformable convolution block includes a convolution offset layer (which is the core concept of
deformable convolution), a convolution layer, a batch normalization layer [30], and an activation layer.
With this structure, DUNet can learn to identify features and generate accurate retinal blood vessel
segmentation results.
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Figure 4. DUNet architecture with convolutional encoder and decoder based on U-Net architecture.
Output size of feature map is listed beside each two layers.

3.2. RDU-Net Model

In a convolution neural network, the deeper the network level is, the more errors will be generated
in the training process, and the longer the training time is. ResNet, proposed by He et al. in 2015 [29],
solves this problem to a certain extent. ResNet puts forward a method of fitting residual mapping,
that is, it does not directly take convolution results as output, but uses residual mapping to perform
calculation, which is called short cut. This residual connection solves the problem of performance
degradation of deep convolution neural network under extreme depth conditions.

This paper combines the characteristics of DUNet and residual connection, introduces the concept
of “shortcut” into the DUNet structure, and proposes a novel model called RDU-Net. This model is
based on the DUNet model, and the residual structure is added to the original variable convolution
module (5–6, 8–9, 25–26, 27–28 layers). It helps the network to further extract features from the
target, reduce the loss of information that occurs during the information transfer between the deep
convolutional layers, and improve the accuracy of model detection.

This model uses a U-shaped structure, the left convolution module performs down-sampling to
extract image features; the right convolution module performs up-sampling to improve the output
resolution. We also use skip connection to combine low-level features with high-level features to
extract contextual information to achieve pixel-level localization. Because deformable convolution
is added to the model, the receiving field and sampling points can be adaptively trained to adapt to
the size and shape of the ore fragments, both of which can achieve accurate segmentation. By using
the residual structure, the shallow information extracted by the previous convolutional layer can be
passed to the subsequent convolutional layer in a jumping manner, reducing the loss of information
transmission between layers. Due to the characteristics of the residual network, the problem of
performance degradation of deep convolutional neural networks is solved. This is also an important
reason for choosing the residual structure to improve the DUNet model. Figure 5 illustrates the overall
structure of RDU-Net.
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Figure 5. Overall structure of RDU-Net, Output size of feature map is listed beside each two layers.

Figure 6 shows the detailed design of a normal convolution block and an improved deformable
convolution block. Each improved deformable convolution block uses the convolution offset layer and
the convolution layer to extract feature information, and uses residual connections to add the original
feature map and the feature map after this structure, and simultaneously transfers shallow level
information and deep level information to the next convolutional layer to extract features. Since the
number of channels of the feature map after convolution becomes 2 or 1/2 of the original, this paper
cannot use the method of ResNet to improve the network by adding several residual structures to a
convolutional layer directly, but adds a 1 × 1 size convolutional layer to the residual connection, so that
the dimension is unified when the residual is added to the current feature map. In order to solve the
internal covariate shift problem and speed up the training processing speed, a batch normalization
layer is inserted after each unit. The detailed structure of RDU-Net is shown in Table 1.

Figure 6. Detailed design of ordinary convolution block and improved deformable convolution block.
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Table 1. Network structure of RDU-Net.

Contracting Path Expanding Path

Layer
Number Layer (Type) Output

Shape Filter Size Layer
Number Layer (Type) Output

Shape Filter Size

L1 Input [1,48,48] L16 Upsample-1 [128,6,6] 2 × 2

L2 Conv-1+BN+ReLU [16,48,48] 3 × 3 L17 Conv-15+BN+ReLU [64,6,6] 3 × 3

L3 Conv-2+BN+ReLU [16,48,48] 3 × 3 L18 Conv-16+BN+ReLU [64,6,6] 3 × 3

L4 MaxPool-1 [16,24,24] 2 × 2 L19 Upsample-2 [64,12,12] 2 × 2

L5 Conv-3+Conv-4+DeformConv-1+BN+ReLU Conv7+BN [32,24,24] 3 × 3 1 × 1 L20 Conv-17+BN+ReLU [32,12,12] 3 × 3

L6 Conv-5+Conv-6+DeformConv-2+BN+ReLU Conv7+BN [32,24,24] 3 × 3 1 × 1 L21 Conv-18+BN+ReLU [32,12,12] 3 × 3

L7 MaxPool-2 [32,12,12] 2 × 2 L22 Upsample-3 [32,24,24] 2 × 2

L8 Conv-7+Conv-8+DeformConv-3+BN+ReLU Conv7+BN [64,12,12] 3 × 3 1 × 1 L23 Conv-19+Conv-20+DeformConv-5+BN+ReLU Conv7+BN [16,24,24] 3 × 3 1 × 1

L9 Conv-9+Conv-10+DeformConv-4+BN+ReLU Conv7+BN [64,12,12] 3 × 3 1 × 1 L24 Conv-21+Conv-22+DeformConv-6+BN+ReLU Conv7+BN [16,24,24] 3 × 3 1 × 1

L10 MaxPool-3 [64,6,6] 2 × 2 L25 Upsample-4 [16,48,48] 2 × 2

L11 Conv-11+BN+ReLU [128,6,6] 3 × 3 L26 Conv-23+Conv-24+DeformConv-7+BN+ReLU Conv7+BN [16,48,48] 3 × 3 1 × 1

L12 Conv-12+BN+ReLU [128,6,6] 3 × 3 L27 Conv-24+Conv-25+DeformConv-8+BN+ReLU Conv7+BN [16,48,48] 3 × 3 1 × 1

L13 MaxPool-4 [128,3,3] 2 × 2 L28 Output = Conv-26 [1,48,48] 1 × 1

L14 Conv-13+BN+ReLU [128,3,3] 3 × 3

L15 Conv-14+BN+ReLU [128,3,3] 3 × 3
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3.3. Algorithm Flowchart

The algorithm flow chart of this paper is shown in Figure 7. Firstly, the input image is preprocessed
(gray, CLAHE, bilateral filtering) to make it easier to segment, and then it is transferred to the trained
model to learn the recognition features and generate accurate segmentation results. Furthermore,
in order to more fully evaluate the segmentation effect of the RDU-Net model, we need to accurately
draw the outline of the ore fragments, so the probability maps output by the model need to be processed
again (bilateral filtering, homomorphic filtering, binarization) to make the edges of the ore in the
probability maps clearer. Finally, use OpenCV to find the outline of the ore fragments and draw it on
the input image.

Figure 7. Algorithm flowchart.

4. Experimental Results and Discussions

The computer used for image segmentation model training in this article is configured with
an Intel Core i5-7500 3.40 GHz processor, NVIDIA GTX 1050 Ti graphics card, 16 GB RAM and a
500 GB Western Digital hard disk. In terms of software, the computer operating system is Windows
10 64 bit. The experiment is carried out under the pytorch framework. Opencv and PIL are used to
process images. In terms of GPU, cudnn7.3.1 and cuda10.0 are used to accelerate the training and
detection process.

In the test process, the method of zeroing the boundary is used to make the length and width of
the images an integer multiple of 48, so that the images of any resolution can be tested. The method of
sliding window is used to intercept the test image samples, and the windows are partially overlapped,
which makes the probability of the overlapped area points not only depend on the probability value
of one test sample at this point, but also the average value of the probability of multiple samples
containing the area points, so the results are more accurate.

4.1. Evaluation Criteria

Accuracy (ACC), positive predictive value (PPV), true positive rate (TPR), true negative rate (TNR)
and the area under curve (AUC) of receiver operating characteristic (ROC) were used to evaluate the
probability maps of model output.

ACC is a metric that measures the ratio between correctly classified pixels and total pixels in a
data set. PPV, also known as precision, represents the proportion of true positive samples among
all predictive positive samples. TPR, also known as sensitivity, measures the proportion of correctly
identified locations, TNR, or specificity, measures the proportion of negatives that are correctly
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identified. These indicators are the accurate evaluation of the probability map of the model output in
the numerical aspect. These indicators take the following form:

ACC =
TP + TN

TP + FP + TN + FN
(1)

PPV =
TP

TP + FP
(2)

TPR =
TP

TP + FN
(3)

TNR =
TN

TN + FP
(4)

Among them, TP indicates the number of true positive samples; TN indicates the number of true
negative samples; FP indicates the number of false positive samples; FN indicates the number of false
negative samples. In addition, the similarity and diversity of the test data set were evaluated by using
F-measure (F1) and Jaccard similarity (JS).

In order to better quantify the segmentation effect, this paper counts the proportion of
over-segmented and under-segmented ore fragments in the contour maps, which is called the error rate
(Error). Among them, over-segmentation refers to that a piece of ore is divided into multiple blocks
in the manual segmentation maps, and under-segmentation refers to that multiple pieces of ore are
treated as one block in the prediction segmentation maps. Except for these two types, the ore fragments
are segmented correctly, and the predicted segmentation boundaries are roughly the same as the
artificial segmentation boundaries. We define CM as the number of correctly segmented ore fragments,
US as the number of under-segmented ore fragments, and OS as the number of over-segmentation ore
fragments. The calculation formula for the error rate is as follows:

Error =
US + OS

US + OS + CM
(5)

4.2. Evaluation of Model Segmentation Results

4.2.1. Residual Structures are Located in Different Convolutional Layers

In order to get the best segmentation effect. The position of the residual structure in the model is
used as a variable, and many experiments are performed, divided into using the residual structure in all
convolutional layers (RDU-Net_res1); using the residual structure only in ordinary convolutional layers
(RDU-Net_2); using the residual structure only in deformable convolutional layers (RDU-Net_res3).
The probability maps of the model output is shown in Figure 8. As can be seen from Figure 8 evidently,
compared with other improved RDU-Net models, when the residual structure is only added to the
deformable convolutional layer, the segmentation effect of the output probability maps is the best.
The comparison of ACC, PPV, TPR, TNR, JS, FI and Test time of residual structure added in different
positions is shown in Table 2. It can be seen from the table that the RDU-net network with residual
structure only added in deformable convolution layers has reached the highest value in most indexes.
The test times of each model are similar, among which, RDU-net_res3 is the fastest. In summary,
we adopted the structure of RDU-net_res3.

Table 2. Performance of the three models tested.

AUC ACC TNR TPR PPV JS FI Test Time (s)

RDU-Net_res1 0.9848 0.9305 0.9372 0.9240 0.9392 0.9305 0.9315 20.66
RDU-Net_res2 0.9820 0.9244 0.9250 0.9238 0.9281 0.9244 0.9259 20.58
RDU-Net_res3 0.9902 0.9454 0.9623 0.9204 0.9430 0.9454 0.9316 20.16
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Figure 8. Comparison of model segmentation results with residual structure added at different positions.
Red box: under segmentation; Orange Box: over segmentation; Blue box: wrong identification of
conveyor belt; Green box: good segmentation.

4.2.2. Comparison with Other Models

In order to explore the feasibility of the proposed RDU-Net ore image segmentation model,
this paper makes a simple comparison with traditional segmentation methods such as canny contour
extraction algorithm, OTSU, watershed algorithm, and K-means. As can be seen from Figure 9,
Otsu, watershed algorithm and K-means algorithm can easily judge the dark part of the ore as the
background, and the ore fragments are seriously adhered, and there are a lot of noise and under
segmentation problems (Figure 9 blue box). Moreover, for images with uneven brightness such as
image1, they cannot be well processed (Figure 9 red box). Canny edge detection algorithm will appear
many discontinuous edges and will extract the wrong texture of the ore surface, but also cannot deal
with the adhesive part (Figure 9 orange box). These algorithms cannot eliminate the influence of the
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conveyor belt and objects outside the conveyor belt (Figure 9 green box). The experimental results
show that these traditional segmentation algorithms are not suitable for ore image segmentation on
conveyor belt. The RDU-net algorithm proposed in this paper has a good segmentation effect for the
ore image on the conveyor belt, which can effectively process the conglutinated ore fragments and
effectively segment the ore fragments in the dark area, and perfectly shield the influence of the objects
outside the conveyor belt and the conveyor belt.

Figure 9. Comparison with Canny algorithm, Otsu algorithm, watershed algorithm and k-meams algorithm.

This paper also compares the proposed RDU-Net model with U-Net and DUNet models. It can
be seen from Figure 10 that the U-Net model has the worst segmentation effect, and there are many
over-segmentations and under-segmentations. DUNet’s segmentation effect is better than U-Net,
but both incorrectly identify some parts of the conveyor belt as ore. The RDU-Net model has the best
segmentation effect, retaining more details, and the textures of the ore itself have not been recognized,
which has better visual effects. Table 3 records the ACC, PPV, TPR, TNR, FI, JS, and Test time of
the three models. As can be seen from the table, compared with the other two networks, Although
RDU-Net is higher than the U-Net network in the test time, it has greatly improved the accuracy and is
obviously better than the other two networks.
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Figure 10. Comparison of segmentation results of U-Net, DUNet and RDUN-net. Red box: under
segmentation; Orange Box: over segmentation; Blue box: wrong identification of conveyor belt;
Green box: good segmentation.

Table 3. Performance of the three models tested.

AUC ACC TNR TPR PPV JS FI Test Time (s)

U-Net 0.9265 0.8229 0.8815 0.7706 0.8792 0.8229 0.8213 11.46
DUNet 0.9513 0.9012 0.8959 0.9103 0.8371 0.9012 0.8722 20.30

RDU-Net 0.9902 0.9454 0.9623 0.9204 0.9430 0.9454 0.9316 20.16

In addition, we use the ROC curve to evaluate the model. In ROC coordinates, the closer the
ROC curve is to the upper left boundary, the more accurate the model is. As shown in Figure 11,
the RDU-Net curve is the upper left corner of the three models, and the U-Net curve is the lowest one
of the three models. In addition, the Figure 10 also shows that RDU-Net has the largest area under the
ROC curve (AUC). Based on the above, RDU-Net has significant performance in solving the problem
of ore image segmentation.
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Figure 11. ROC curves of three models.

4.3. Evaluation of Contour Extraction Results

In order to better evaluate the RDU-Net model, the probability maps obtained after model training
are processed by bilateral filtering, homomorphic filtering and binarization, and then uses OpenCV to
find the area of all closed contours in the image and draw the ore contour maps. It can be seen from
Figure 12 that the original U-net network cannot identify the edges of ore fragments well and cannot
deal with the adherent part. There are many under-segmentation conditions, while the segmentation
effect of DUNet network is better than that of U-net, but the over segmentation phenomenon is obvious,
and some ore fragments with smaller size are not recognized. RDU-Net has a good segmentation
effect for ore images, can effectively deal with stuck ore fragments, and can effectively segment ore
fragments in dark areas. Although there is a tiny amount of under-segmentation and over-segmentation,
It can more completely segment the ore contours on the conveyor belt, and the visual effect is good
and satisfactory.

Figure 12. Comparison of contour maps divided by three models. Red box: under segmentation; Orange
Box: over segmentation; Blue box: wrong identification of conveyor belt; Green box: good segmentation.

Table 4 summarizes the values of error, CM, OS, and US in the contour maps. The average
segmentation error rate of RDU-Net is 2.90%, which is significantly lower than the other two
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models. These results show that the RDU-Net algorithm is accurate and feasible in the application of
ore segmentation.

Table 4. Comparison of contour extraction results of test images.

Model Image CM OS US Total Error (%)

U-Net

Image1 161 7 19 187 13.90%
Image2 196 10 17 223 12.10%
Image3 93 5 7 105 11.42%
Mean 12.47%

DUNet

Image1 177 13 2 192 7.81%
Image2 199 16 7 222 10.36%
Image3 101 6 3 110 8.18%
Mean 8.78%

RDU-Net

Image1 183 3 2 188 2.65%
Image2 227 5 3 235 3.40%
Image3 109 1 2 112 2.67%
Mean 2.90%

The RDU-Net segmentation algorithm is to help estimate the size distribution of the ore fragments.
In this paper, the area of ore fragments in three test figures are counted and compared with the area
of ground truth, and p-value is obtained, as shown in Table 5. It can be seen from the table that
p-value > 0.05 indicates that there is no significant difference between the predicted value and the
actual value, which meets the experimental requirements

Table 5. P-value of three test images.

Image1 Image2 Image3

p-value 0.26 0.34 0.39

In addition, the cumulative distribution of the area of the ore fragments obtained by the RDU-Net
segmentation algorithm is calculated and compared with the artificial segmentation effect. As shown
in Figure 13, the two curves are very close, which shows that the RDU-Net segmentation algorithm
can play a good role in estimating the size of the ore fragments.

Figure 13. Cumulative size distribution of three test images.

In addition, as shown in Figure 8, Figure 9, Figure 10 and Figure 12, we used two conveyor belt ore
images with different styles from the training images for testing. After comparison with the artificial
segmentation images, their error rates were 3.40% and 2.67%. Most of the ore fragments in the images
are completely separated, and the results are satisfactory. This shows that the RDU-Net network has a
strong generalization ability and can be used for the segmentation of ore images on different styles of
conveyor belts.
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5. Conclusions

This paper presents an ore image segmentation method based on the RDU-Net model. Firstly,
the model preprocesses the training images to make it easier to process; secondly, it expands the size of
data set by randomly extracting patches from the training image, and improves the accuracy of model
segmentation by adding residual network structure on the basis of DUNet model; finally, the contours
of ore fragments are extracted from the probability maps of model output to evaluate the segmentation
results quantitatively.

Experimental results show that the RDU-Net network after adding the residual connection solves
the problem of performance degradation of deep convolutional neural networks. Compared with
DUNet and U-Net models, the accuracy of segmentation has been greatly improved. The RDU-net
model provides an advanced method for the fragment size detection of ore. It is a powerful
computer-aided system that can be used to study the crushing and clogging problems of concentrators.
In the future, more ore image data will be merged to verify the proposed model, which is necessary to
effectively reduce the calculation time. The next step will focus on how to reduce the detection time
significantly while ensuring the accuracy of the detection, which will be a fruitful area for future work.

6. Patents

Published patent: a method for ore bulk rate detection based on RDU-Net model (Patent No.
201911096095.0).
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