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Abstract

Background: Mounting evidence suggests that nutritional exposures during pregnancy
influence the fetal epigenome, and that these epigenetic changes can persist postnatally,
with implications for disease risk across the life course.

Methods: We review human intergenerational studies using a three-part search strategy.
Search 1 investigates associations between preconceptional or pregnancy nutritional
exposures, focusing on one-carbon metabolism, and offspring DNA methylation. Search
2 considers associations between offspring DNA methylation at genes found in the first
search and growth-related, cardiometabolic and cognitive outcomes. Search 3 isolates
those studies explicitly linking maternal nutritional exposure to offspring phenotype via
DNA methylation. Finally, we compile all candidate genes and regions of interest identi-
fied in the searches and describe their genomic locations, annotations and coverage on
the lllumina Infinium Methylation beadchip arrays.

©The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. 1910
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


http://orcid.org/0000-0001-5448-8193
https://academic.oup.com/

International Journal of Epidemiology, 2018, Vol. 47, No. 6

1911

Results: We summarize findings from the 34 studies found in the first search, the 31 stud-
ies found in the second search and the eight studies found in the third search. We pro-
vide details of all regions of interest within 45 genes captured by this review.
Conclusions: Many studies have investigated imprinted genes as priority loci, but with
the adoption of microarray-based platforms other candidate genes and gene classes are
now emerging. Despite a wealth of information, the current literature is characterized by
heterogeneous exposures and outcomes, and mostly comprise observational associa-
tions that are frequently underpowered. The synthesis of current knowledge provided by
this review identifies research needs on the pathway to developing possible early life
interventions to optimize lifelong health.

Key words: Epigenetics, DNA methylation, fetal programming, Developmental Origins of Health and Disease, one-
carbon metabolism, candidate genes, metastable epialleles, cognitive development, cardiometabolic outcomes,
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Key Messages

gene classes such as metastable epialleles.

offspring epigenotype to later phenotype.

* The body of evidence linking maternal nutritional exposure to offspring phenotype via DNA methylation in humans is
rapidly growing yet currently remains complex and inconsistent.
* Candidate genes in the field of intergenerational nutritional epigenetics go beyond imprinted genes to include other

* Going forwards, there is a continued need for adequately powered prospective cohort studies with repeated longitu-
dinal measurements and randomized nutritional interventions to track the full continuum from maternal exposure to

Introduction

Epigenetic modifications influence gene expression without al-
tering the nucleotide sequence, through the action of a diverse
array of molecular mechanisms including DNA methylation,
histone modifications and RNA-mediated effects.! Epigenetic
processes have been implicated in the aetiology of a variety of
diseases,” most prominently cancer’ and fetal growth disor-
ders.” Epigenetic marks are mitotically heritable and can be
influenced by the environment,” suggesting a potential mecha-
nism linking early life exposures to later phenotype,®” a no-
tion supported by animal studies.*'° However, the extent to
which epigenetics plays a role in fetal programming in humans
remains relatively unexplored. In this review we collate evi-
dence from human intergenerational studies, exploring which
nutritional exposures during pregnancy may affect DNA
methylation in the offspring, and the possible impact of such
modifications on health and disease risk across the life course.

DNA methylation and gene expression

Many biological processes rely on DNA methylation, in-
cluding genomic imprinting, X-chromosome inactivation
! DNA methylation
describes the addition of a methyl group to a cytosine base

. e . 1
and tlSSllC-SpClelC gene expression.

at the 5’ carbon position to form S-methylcytosine,
catalyzed by DNA methyltransferases (DNMTs). This
most commonly occurs at cytosine bases adjacent to gua-
nine, termed CpG (‘cytosine-phosphate-guanine’) sites.
Regions of high CpG density are known as ‘CpG islands’,
and approximately two-thirds of human genes contain
these in their promoter regions.'> DNA methylation has
been shown to influence transcriptional activity either by
blocking transcription factors binding to the DNA, or by
the recruitment of histone modifiers which promote a
closed chromatin structure and gene silencing.! CpG meth-
ylation within promoters is typically associated with tran-
scriptional silencing,'® although not consistently, and the
effect of DNA methylation may vary depending on which
region within the gene is methylated.'* There is also in-
creasing evidence that DNA methylation and histone mod-
ifications work in concert with non-coding RNAs to
regulate gene expression.'> DNA methylation plays a role
in chromatin remodelling, as DNMT enzymes at CpG sites
can be physically linked to enzymes which bring about his-
tone methylation and de-acetylation.'> MicroRNAs
(miRNAs) affect gene expression through binding to mes-
senger RNAs (mRNAs) and repressing translation,'® in-
cluding mRNAs that control the expression of DNMTs
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and histone deacetylases.”® The transcription of some
miRNA classes can be influenced by CpG methylation and
histone modifications."®

Epigenetics, windows of plasticity and the
Developmental Origins of Health and Disease

The Developmental Origins of Health and Disease (DOHaD)
hypothesis posits that early life exposure to environmental
insults can increase the risk of later adverse health outcomes.”
David Barker’s early cohort studies showed that lower birth-
weight was associated with an increased risk of hypertension,
type 2 diabetes (T2D) and cardiovascular disease in later
life,"” findings that were widely replicated.'® Risk of disease
was further exacerbated by rapid childhood weight gain,
adult obesity and other lifestyle factors such as unhealthy
diets, smoking and lack of exercise.'”?° The Dutch Hunger
Winter studies showed that exposure to famine during preg-
nancy was associated with a wide range of phenotypes in the
adult offspring, including increased blood pressure,*!
obesity** and schizophrenia,* effects that depended on the
timing of the exposure during pregnancy.**

Epigenetic processes are emerging as potential mecha-
nisms to explain these and other associations found in the
DOHaD literature. For example the ‘thrifty epigenome’
hypothesis proposes that in utero exposures can shape an
epigenetic signature, resulting in a phenotype that is
‘adapted’ to the early life environment but which may
prove to be ‘maladapted’ if the environment changes in
later life.”* Therefore famine exposure during pregnancy
could programme ‘thrifty epigenotypes’ that are adapted
to a nutritionally poor environment, but this may subse-
quently trigger metabolic disease if the adult environment
changes to one that is nutritionally abundant.

The periconceptional period is a time of rapid cell dif-
ferentiation and epigenetic remodelling, and may therefore
represent a critical window during which the developing
epigenome is sensitive to environmental influences.”’ We
define the periconceptional window from 14 weeks pre-
ceding conception until 10weeks after conception.”®
Within 48 hours of fertilization, there is rapid erasure of
methylation marks to render the developing cells pluripo-
tent.'' After implantation, re-methylation occurs in a
tissue-specific manner, and continues throughout preg-
nancy, enabling differentiation of somatic cells. A second
wave of demethylation occurs in the primordial germ cells
as they migrate to the genital ridge.?” At this stage most pa-
rental imprints are erased, so that sex-specific imprints can
be laid down. In boys the prospermatogonia then undergo
re-methylation throughout gestation, whereas in girls the
oocytes continue to be re-methylated over the duration of
their maturation, with evidence of high activity as each egg

ripens before ovulation.””

Notable classes of loci that may be especially sensitive
to early environmental exposure include imprinted genes,
metastable epialleles (MEs) and transposable elements
(TEs).® Imprinted genes exhibit monoallelic expression,
whereby only the maternally or paternally inherited allele
is expressed, with expression controlled by regulatory
regions whose methylation state is inherited in a parent of
origin-specific manner.”® MEs are genomic loci showing
variable methylation between individuals, but showing
high correlation in methylation status across tissues within
the same individual, indicating establishment of methyla-
tion state in the first few days after conception, preceding
gastrulation.”” MEs therefore help to pinpoint the timing
of an exposure influencing ME methylation to the pericon-
ceptional period.>**! TEs are small, mobile sequences of
DNA that are thought to comprise 45% of the human ge-
nome.”” They can insert into new genomic locations and
become disruptive if transposed into a functional gene or
when increasing copy number. Whereas most TEs are si-
lenced epigenetically,®® some have variable methylation
patterns that have been shown to be influenced by nutri-
tion in mice.” Their methylation states can alter neighbour-
ing gene expression, exemplified by the Agouti mouse
model detailed later.

Influence of nutrition on DNA methylation

A range of maternal exposures have been associated with
DNA methylation including nutrition, stress, infection,
pollutants, smoking, radiation, level of exercise and paren-

34-3¢ Animal studies suggest that the

tal body composition.
epigenome is particularly sensitive to such environmental
factors in early life, notably during the prenatal and neona-
tal periods.”*>3” Studies of the effects of early life nutri-
tion on DNA methylation have shown that maternal
under- or over-nutrition or differences in protein, fat, sugar
or micronutrient intake during gestation can induce epige-
netic and phenotypic changes in the offspring.®*® Recent
studies have also shown that variations in paternal diet or
body composition might also induce long-term epigenetic
and phenotypic changes in the offspring.>” One-carbon
nutrients and metabolites are thought to be particularly
important in the periconceptional period and during em-
bryonic development.?® One-carbon metabolism (OCM)
pathways link the folate, methionine, homocysteine, trans-
sulphuration and transmethylation metabolic pathways to-
gether (Figure 1). These are crucial for many biochemical
processes, including DNA methylation.

Nutrition plays a key role in OCM by providing sub-
strates (folate, methionine, choline and betaine) and essen-
tial co-factors (vitamins B12, B6 and B2). For example,
B12 is required by methionine synthase to methylate
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Figure 1. A simplified summary of one-carbon metabolism. BHMT, Betaine Homocysteine MethylTransferase; CBS, Cystathionine-Beta-Synthase;
CTH, Cystathionine Gamma-Lyase; DHFR, Dihydrofolate Reductase; dTMP, Deoxythymidine Monophosphate; dTTP, Deoxythymidine Triphosphate;
FAD, Flavin Adenine Dinucleotide; GNMT, Glycine N-MethylTransferase; MAT, Methionine AdenosylTransferase; MS, Methionine Synthase; MT,
Methyl Transferases; MTHFD, MethyleneTetraHydroFolate Dehydrogenase; MTHF, MethyleneTetraHydroFolate Reductase; SAHH, S-Adenosyl
Homocysteine Hydrolase; SHMT, Serine HydroxyMethylTransferase; TS, Thymidylate Synthase. Source: reproduced with permission from James
et al. Epigenetics, nutrition and infant health. In: Karakochuk C, Whitfield K, Green T, Kraemer K (eds). The Biology of the First 1000 Days. Boca Raton,

FL: CRC Press, 2017.

homocysteine, B6 is essential in the homocysteine trans-
sulphuration pathway, and both B6 and B2 are needed to
reduce dietary folate to methyltetrahydrofolate. A more
detailed overview of OCM and the role of nutrients in
these pathways is provided in Supplementary Material 1,
available as Supplementary data at IJE online.

The potential for maternal nutrition to both alter off-
spring DNA methylation and influence phenotype is fa-
mously illustrated by the Agouti mouse experiments. Two
groups of pregnant dams were fed diets that differed only in
nutrients essential to OCM (folic acid, choline, betaine and
B12). Increased levels of one-carbon nutrients increased
methylation in the isogenic pups at a retrotransposon locus
[Intracisternal A Particle (IAP), also an ME] upstream of the
Agouti gene. The degree of expression of the Agouti gene
depended on the level of IAP methylation, and this in turn
altered the pups’ fur colour, as well as their appetite, adipos-
ity and glucose tolerance in adulthood.®’

Review methodology

We performed a narrative review of the literature in three
stages to form the thematic analysis in this paper. First we
searched for studies describing associations between pre-
conceptional or pregnancy nutritional exposures and DNA
methylation in offspring. We limited this search to human
studies that used an intergenerational design. We included
nutritional exposures in dietary or supplemental form re-
lated to OCM, or broader measures that could influence
availability of such nutrients (famine, seasonal diets and
macronutrients). We excluded paternal exposures and
nutrients not directly involved in OCM, and we only con-
sidered epigenetic studies focusing on DNA methylation.
Second, we searched for human studies linking infant
DNA methylation to a subset of phenotypic outcomes
(growth-related, cardiometabolic and cognitive), restrict-
ing the included studies to those describing methylation at
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genetic loci identified in the first search (‘nutrition-
sensitive’ loci). Third, we isolated those studies explicitly
linking maternal nutritional exposure to offspring pheno-
type via DNA methylation. Three authors (P.]., S.S.,
A.S.T.) performed the searches in PubMed and Google
Scholar, titles
inclusion criteria. Reference sections of included studies

assessing and abstracts against the
and relevant review papers were also used to help confirm
that key studies had been included. Searches took place
from January to March 2017. Supplementary Material 2,
available as Supplementary data at IJE online, details the
strategy and gives an example of the search terms used in

PubMed.

Review of studies linking maternal
nutritional exposure to offspring DNA
methylation

We provide a broad overview of the associations found in
the literature between maternal nutritional exposure and off-
spring DNA methylation in Table 1. Below we briefly review
the associations by type of exposure, but refer the reader to
detailed information on the individual studies (z = 34) in
Supplementary Table 1, available as Supplementary data at
IJE online, which includes information on the nutritional
exposures, timing of exposures, study design, DNA tissue,
age of offspring and associated genes. All gene names are de-
fined in Table 4 (see candidate gene data summary, below).

Table 1. Summary of associations between maternal one-carbon metabolites and broader nutritional exposures with offspring

DNA methylation

Timing of exposure Maternal exposure®

Offspring DNA methylation association
(1/]: increased/decreased methylation)

Periconception 1B2
TBetaine
Famine

1Folates

1Folic acid

TMultiple micronutrients
Seasonality of one-carbon

1PLAGL1 (ZAC1),"* {VTRNA2-1*!

1 DNMT1,** 1POMC,** [RXRA*

IIGF2,% 1|PIGF2,*¢ | INSIGF,***" 11L10,*” {GNASAS,*” 1LEP,"”
1ABCA’,*” {MEG3," 1TACC1,*® 1ZNF385A,*® | TMEM105,*
1PAX8,* | ZFP57,*, |IPRDM9*

18TX11,°° |OTX2,°° | TEAP2A,>° |CYS1,°° |LEP,** {RXRA**

1LEP,** |H19,°* 1IGF2,°2| IGF2**

|GNASAS,>® |[MEG3,>® |IGF2R,*> | MEST®3

1POMC,* 1VTRNA2-1,** 1BOLA3,%° 1FLJ20433,3° 1PAX8,>°

metabolites® 1SLITRK1,>® 1ZFYVE28,>° {RBM46>*
1st and 2nd trimester 1B6 IMEG3**

TBetaine | LEP*

1Carbohydrates |RXRA%

1Choline |DNMT1*

Famine 1FAM150B,*® 1SLC38A2,* {PPAP2C,*® | OSBPLS/MRGPRG,*®
1TACC1,*® 1ZNF385A,* 1PAX8,* | ZFP57,*° |PRDM9*’

1Folates |PEG3,°° I{NR3C1,%” |MEG3,°® |PLAGL1,>® 1IGF2,°° | LEP,*
|DNMT1*

1Folic acid |PEG3,°® 1IGF2,°® IDNMT1*

3rd trimester 1B2 1PLAGL1 (ZAC1)*°

B2 UeR”

1Choline 119 NR3C1,°° 1]9CRH,®® {DNMT1,*>*

Famine |GNASAS,*” 1TACC1,** 1ZNF385A,* 1PAX8,* | ZFP57,*°
|PRDM9*

TFolates 1DNMT1,** |RXRA,** 1LASP1,°' {ACADM,°" 1 WNT9A,°"
1FZD7,°' | ZFP57,°1 |LY6E,°! | C210rf56°

1Folic acid TRXRA*

1 Meat and fish intake THSD2°*

1 High sugar, high fat diet 1IGE2%3

1Omega-3 PUFA |H19,°* 1IGF2,° mostly |associations in EWAS®®

1Omega-6 PUFA IMIRLET7BHG®®

?Like nutrients are shaded in the same colour during each time period.
PDifferent associations at different loci within gene.

“Rainy season (higher concentration of most one-carbon metabolites) versus dry season.

Different associations between different tissues.

EWAS, epigenome-wide association study; PUFA, polyunsaturated fatty acids.
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Folate

Associations between maternal folate exposure and the off-
spring methylome are inconsistent, with varying effects
according to the form of folate (dietary folates or folic acid
supplements)®® the timing of exposure,***® baseline mater-

30:61 ynderlying genotype,®” the genomic

nal folate status,
region affected®® and individual CpG site.**

Periconceptional folic acid has been positively associ-
ated with offspring methylation at LEP,** inversely associ-
ated with methylation at H19,”' and has demonstrated
both positive’* and inverse** associations at IGF2. Not all
studies have found an effect of periconceptional folic acid
exposure.”® Supplementation started after 12 weeks of ges-
tation has been associated with increased offspring methyl-
ation at IGF2 and decreased methylation at PEG3.%® Folic
acid taken up to the end of the second trimester has been
inversely associated with DNMT1 methylation, but posi-
tively correlated at the same locus when the folic acid con-
sumption was extended into the third trimester.**

Data for dietary folate intakes (assessed using questionnaires
or plasma samples) are equally variable. Periconceptional folate
intake and offspring DNA methylation were inversely associ-
ated with the majority of differentially methylated CpGs in an
epigenome-wide screen, although this trend reversed in strati-
fied analysis among women with low intakes (<200 pg/day).*°
Periconceptional intakes have also been inversely associated
with methylation at LEP and positively associated at RXRA.**
First trimester folate exposure has shown positive associations
with DNA methylation at IGF2°® and NR3C1,%” and inverse
associations at MEG3, PLAGL1 and PEG3.%¢ For second tri-
mester folate exposure, studies have reported inverse associa-
tions at multiple differentially methylated CpG sites,*® and at
LEP and DNMT1.* Third trimester folate exposure has
shown positive associations with methylation at DNMT1,**
and at LASP1, ACADM, WNT9A, C210rf56 and FZD7,°!
but inverse associations at ZFP57, LYGE and RXRA.*>°!

B vitamins

Maternal serum B12 at first antenatal visit has been in-
versely associated with cord blood global methylation lev-

¢ and inversely associated with offspring IGF2

els,
methylation when exposure timing was at delivery.’” Some
studies have assessed joint effects of B vitamins. One study
assessed pre-pregnancy and third trimester maternal B2,
B3, B6, folate and B12 intake, and found a positive corre-
lation between maternal B2 and offspring methylation at
PLAGLI1 (ZAC1) at both time points.*” Another study
found no associations between first trimester maternal
plasma B12 and B6 concentrations with offspring methyla-

tion at H19, PEG10/SGCE and PLAGL1, but there was a

positive trend in methylation at MEG3 across maternal B6
quartiles.”*

Choline and betaine

To date there is one human intervention study investigating
the effect of supplementing mothers’ diets with choline
(480 mg vs 930 mg) in the third trimester on offspring DNA
methylation. The intervention increased methylation at
NR3C1 and CRH in fetal placental tissue but reduced methyl-
ation in cord blood. No effect was seen at GNAS-AS, IGE2,
IL10 or LEP®° In observational studies, second trimester cho-
line intake has been inversely associated with DNMT1 methyl-
ation in cord blood.** Third trimester choline intake has been
positively associated with DNMT1 methylation in cord blood
and in infant buccal cells.**** Maternal periconceptional beta-
ine intake has been positively associated with cord blood
methylation at DNMT1, RXRA and POMC,**~** and second

trimester intake inversely associated with LEP methylation.**

Polyunsaturated fatty acids

Polyunsaturated fatty acids (PUFAs) are thought to influ-
ence OCM by upregulating enzymes responsible for the
methylation of homocysteine to methionine and by directly
influencing demand for methyl groups via phosphatidylcho-
line (described in Supplementary Material 1, available as
Supplementary data at IJE online). There have been several
studies of PUFA supplementation in mothers. In one trial,
omega-3 PUFA supplementation in the second and third tri-
mesters showed no difference in the cord blood methylation
of various gene promoter sites, but the intervention in-
creased global methylation (LINE-1) in offspring of mothers
who smoked.®” It also decreased H19 methylation, and in-
creased IGF2 methylation in offspring of overweight moth-
ers.* A more recent trial, also implemented in the second
and third trimesters, found omega-3 PUFA supplementation
was associated with 21 differentially methylated regions
(DMRs) at birth.®® These were predominantly hypomethy-
lated in the intervention group. However, not all omega-3
PUFA supplementations trials have demonstrated an effect
on methylation.”® Maternal plasma omega-6 PUFA concen-
trations in the third trimester have been inversely associated
with offspring MIRLET7BHG methylation.®®

Broader nutrition measures: famine studies,
seasonal exposures, macronutrients

Several studies have used broader measures of maternal
nutritional exposure, such as famine, season of conception
and macronutrient intake. During the Dutch Famine of
1944, there was a large drop in all food intakes, with aver-
age energy intake reduced to 500-1000kcal per day.”*
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In follow-up studies of adults who were exposed to famine
in utero, exposure in early pregnancy (periconception and
up to 10 weeks of gestation) was associated with lower
methylation of INSIF and TMEM105, increased methyla-
tion at IL10, GNASAS, LEP, ABCA1, MEG3, TACCI
and ZNF385A, and both increased and decreased methyla-
tion at IGF2 depending on the loci within the gene.*™*®
Not all these effects were seen in those exposed during late
gestation.*>*® In a candidate gene analysis of putative
metastable epialleles, offspring exposed to famine for at
least 7 months during gestation in Bangladesh had higher
methylation at PAX8 and lower methylation at PRDM9
and ZFP57, compared with unexposed controls.*’

One study found an inverse association between mater-
nal second trimester carbohydrate intake and infant RXRA
methylation.”” Another study looked at the effect of a pre-
natal diet high in fat and sugar and found a positive associ-
Higher
methylation at GR has been observed in infants of mothers

ation with offspring IGF2 methylation.®?
having higher meat/fish/vegetables and lower bread/potato
intake in late pregnancy (>20 weeks of gestation compared
with earlier in pregnancy) and increased infant methylation
at HSD2 has been associated with increased maternal meat
and fish intake in late pregnancy.®” In a pilot trial of peri-
conceptional multiple micronutrient supplementation
(UNIMMAP) for mothers, there were sex-specific effects
on infant methylation at IGF2R, GNASAS, MEG3 and
MEST.>? The difficulty of such studies, however, is that it
is not possible to know which nutrient deficits or imbalan-
ces caused the epigenetic effects. In The Gambia, where
season has marked effects on maternal diet and body
weight,”* children conceived in the rainy season had higher
methylation in peripheral blood lymphocytes at six MEs,
at VTRNA2-1 and at POMC compared with those con-
ceived in the dry season.’’*"*** This may reflect a role of
one-carbon-related nutrients; in the rainy season, maternal
periconceptional plasma showed higher concentrations of
folate, B2, methionine, betaine, S-adenosyl methionine
(SAM):S-adenosyl homocysteine (SAH) ratio and betai-
ne:dimethylglycine (DMG) ratio, and lower B12 and ho-
mocysteine, indicating higher methylation potential.

Aside from those considered above, the list of maternal
exposures associated with changes in infant DNA methyla-
tion continues to grow. These include further nutrition-
related exposures (e.g. dietary polyphenols,”® vitamin

D’*7 and vitamin A”®) non-nutrition-related exposures

(e.g. maternal stress’” and toxin exposure’®) and factors
that span the spectrum of nutrition and health-related con-
siderations (e.g. maternal hyperglycaemia,”” maternal
body mass index (BMI),%*% intrauterine growth restric-
tion (IUGR),%**® the microbiome®® and infection®”). The

ongoing challenge is not only to identify relevant

exposures, but also to delineate the consequences for hu-
man health across the life course. It is to this latter point
that we now turn.

Review of studies linking
nutrition-associated DNA methylation
loci to health outcomes

In animal studies, nutritional exposures in pregnancy bring
about distinct phenotypic effects in offspring via epigenetic
mechanisms. Differential methylation of genes may induce
phenotypic variation by the modulation of gene expression
which may alter tissue structure, homeostatic control pro-
cesses and the activity of metabolic pathways.*® Often
cited examples include the effects of maternal methyl do-
nor supplementation on offspring coat colour and adipos-
ity in the Agouti mouse, and the development of the fertile
queen bee from genetically identical larvae by epigenetic si-
lencing of DNMT3, caused by preferential feeding of royal
jelly.”5?

In this section we focus on evidence provided by two
types of studies:

i. Those reporting associations between methylation at
the nutrition-sensitive epigenetic loci described above
and offspring phenotypes; these are summarized in
Table 2, with detailed information on all included stud-
ies (m = 31) in Supplementary Table 2, available as
Supplementary data at IJE online;

ii. Those linking maternal nutrition exposure, infant DNA
methylation and offspring phenotypic effects in a single
study (7 = 8); these are summarized in Table 3.

We consider three broad categories of offspring pheno-
typic outcomes: growth and body composition, cardiome-
tabolic risk markers and cognitive function.

Growth and body composition

DNA methylation signatures in different tissues such as
cord and peripheral blood, placenta, subcutaneous and vis-
ceral adipose tissue and buccal cells have been associated
with growth outcomes such as size at birth (usually birth-
weight, with or without adjustment for gestational age),
child/adult adiposity and skeletal growth or bone size/qual-
ity (see Supplementary Table 2, available as Supplementary
data at IJE online).

Birth size: most studies investigating growth-related
phenotypes have analysed imprinted genes due to their
known role in fetal growth regulation.'®® Chromosomal
region 11p15.5 contains two imprinting control regions
(ICRs): the H19/IGE2 (ICR1) and KCNQ1/CDKNI1C
(ICR2) domains.'”” Russell-Silver Syndrome (RSS, a
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Table 2. Summary of associations between methylation at nutrition-sensitive genetic loci and phenotypes

Direction of DNA methylation/locus

Associated phenotype/direction

Tissue analysed

Age at methylation

(1/]: increased/decreased) measurement
Birth size
1H19,°° {PLAGL1,%® 1Birthweight Cord blood Birth
|MEG3,°° [MIRLET7BHG,*®
1IGF2%°
1IGF2 DMR2°! Birthweight Placenta Birth
1IGF2,°> {HSD2°%* 1Birthweight Peripheral blood 17 months,** 40 years®?
1H19 ICR®* |Birth length Peripheral blood 40 years
1PLAGL1* 1Estimated fetal weight at 32 weeks of Cord blood Birth
gestation
1HSD2°%* |Neonatal ponderal index Peripheral blood 40 years
|IGF2 DMRO0,%* 1H19°* 1Small for gestational age Cord blood Birth
1MEST,”> 1LEP** 1Small for gestational age Placenta,”® cord blood®*  Birth
1IGF2 DMR0*® 1Small for gestational age Peripheral blood 11 years
Anthropometric measures/adiposity
1PLAGL1* 1Weight at age 1 year Cord blood Birth
1PLAGL1* 1Body mass index (BMI) z-score at age 1 year ~ Cord blood Birth
1IGF2 DMR2°! THeight, head and thorax circumference at Placenta Birth
birth
1POMC’® 1Obesity at age 11 years Peripheral blood 11 years
1IGF2/H19 ICR”’ |Early childhood head circumference Peripheral blood 1-10 years
1H19 ICR,** THSD2%* 1Weight in adulthood Peripheral blood 40 years
1H19 ICR,%* THSD2,%* TWaist circumference in adulthood Peripheral blood 40 years
I1NR3C1 exon 1C%?
1POMC,* 1H19 ICR,** 1BMI in adulthood Peripheral blood 48,% 40,°%2 34.7°% years
1HSD2,°% 1 NR3C1
exon 1C,°> |LEP®®
TRXRA> TAdiposity at age 9 years Cord blood Birth
|LEP®® 1Obesity at age 10-15 years Saliva 10-15 years
|LEP' 1Obese subjects with insulin resistance at age  Peripheral blood 10-16 years
10-16 years
1IGF2/H19 ICR”” 1Skinfold thickness and subcutaneous Peripheral blood 17 years
adiposity at age 17 years
Skeletal growth and bone quality
IRXRA”’ 1Bone mineral content at age 4 years Cord blood Birth
Cardiometabolic outcomes
1LEP®® 1Fasting low-density lipoproteincholesterol Peripheral blood, 34.7 years
levels in adulthood Subcutaneous adipose
tissue
1H19 ICR,%* | NR3C1 exon 1Blood pressure in adulthood Peripheral blood 40 years
1F,°? {HSD2%?
|LEP! THigh-density lipoprotein (HDL) profile Peripheral blood 17 months
1IGF2'%* 1 Triglycerides (TG), TTG:HDL Peripheral blood 11.6 years
Cognitive outcomes
11GF2%3 1Early onset conduct problem, attention- Cord blood Birth
deficit/hyperactivity disorder
TNR3C1,'0%10% | g§p2103:104 TRisk of being in a poorly regulated neurobe-  Placenta, Buccal cells Birth
havioural profile
TLEP'® 1Lethargy and hypotonicity Placenta Birth

associated with hypermethylation of ICR1 and hypomethy-
lation of ICR2.'%® Some studies indicate that patients with
RSS and BWS exhibit abnormal methylation at multiple

disorder of impaired growth) is associated with hypomethy-
lation of ICR1 and hypermethylation of ICR2. Beckwith-
Wiedemann Syndrome (BWS, an over-growth disorder) is
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gene loci.'%” Differences in methylation at these loci have
also been associated with less extreme growth-related phe-
notypes. In a study of 50 French-Canadian mothers and
infants, 31% of variance in birthweight was attributed
jointly to differential IGF2/H19 methylation and genotype
of a particular IGF2/H19 polymorphism (rs2107425).°!
The direction of association between methylation and birth-
weight, however, varies by study and tissue analysed.”®”!
For example, hypomethylation at IGF2 DMRs have been
associated with both increased and decreased birth-
weight,* 837023110 §ome studies have found no association
with birthweight.'"" Further examples of the complex rela-
tionship between DNA methylation at various IGF2/H19
DMRs and infant growth phenotypes are detailed in
Supplementary Table 2, available as Supplementary data at
IJE online.

The paternally expressed imprinted gene MEST acts as
an inhibitor of human adipogenesis and is involved in skel-
etal muscle growth and development.''? In placenta, in-
creased methylation at the MEST transcription start site is
correlated with reduced gene expression and TUGR.”*!!3

Increased methylation at the paternally expressed
PLAGL1, which codes for a cell growth suppressor pro-
tein, is associated with higher birthweight and weight at 1
year of age.*”

Some studies have associated other (non-imprinted)
genes with birth size. For example, small-for-gestational
age newborns had higher methylation at LEP in cord
blood than appropriate-for-gestational age infants.”*
Methylation at CpGs within HSD11B2, which codes for
the enzyme responsible for catalyzing the conversion of
cortisol to inactive cortisone, has been inversely related to
newborn ponderal index in a cohort study.®*

A small number of studies have investigated links be-
tween maternal nutrition, DNA methylation and newborn
size. One study found that higher maternal erythrocyte fo-
late levels in the first trimester were associated with de-
creased methylation in cord blood at MEG3, PLAGLI
and PEG3, and increased methylation at IGF2.°® Folate
concentration and methylation at five DMRs were posi-
tively associated with birthweight. The authors hypothe-
siszed that the association of folate with birthweight could
be mediated by differential methylation at MEG3, H19
and PLAGL1, with MEG3 contributing the strongest ef-
fect. Another cohort study found that higher maternal
plasma glucose and omega-6 PUFA concentrations in the
third trimester were associated with increased infant meth-
ylation at IGDCC4 and CACNA1G, and decreased meth-
ylation at MIRLET7BHG. These methylation patterns
were all associated with higher birthweight.®®

Adiposity: a case-control study in Germany found that
adults  (BMI >35 kg/m?) lower

obese demonstrated

methylation at MEST than in controls (BMI <25 kg/m?),
and used a separate dataset to suggest that such outcomes
may be partially caused by intrauterine exposure to gesta-
tional diabetes mellitus.''* In obese boys from the USA, an
inverse association was reported between LEP methylation
in buccal DNA and BMI, waist circumference (as z-scores)
and percentage body fat.”” NR3C1 Exon 1 C methylation
has been positively associated with waist circumference
and BMI at age 40 years,®” and increased IGF2/H19 meth-
ylation has been associated with increased skinfold thick-
ness and subcutaneous adiposity at age 17 years.””

A number of studies have investigated maternal nutri-
tional exposure, DNA methylation and child adiposity.
POMC codes for melanocyte-stimulating hormone (MSH)
and is involved with leptin in the regulation of body
weight. POMC is an ME, and children conceived in the
dry season in The Gambia had lower DNA methylation at
a POMC variably methylated region (VMR) compared
with those conceived in the rainy season.*> POMC VMR
methylation influences POMC expression,’® and methyla-
tion at this locus in blood and MSH-positive neurons is as-
sociated with BMI and obesity in children and adults.*?
Godfrey et al. (2011) found that lower carbohydrate intake
during early pregnancy was associated with increased um-
bilical cord tissue methylation at RXRA, which in turn
was associated with greater adiposity in the offspring at
9years of age.”’

Skeletal growth and bone quality: RXRA forms hetero-
dimers with vitamin D (and other nuclear) receptors, facili-
tating their role in the regulation of bone metabolism.''*>''®
Differential methylation of specific CpGs in RXRA in cord
blood DNA has been inversely associated with percentage
bone mineral content and bone mineral content adjusted for
body size, measured at age 4 years, and also with maternal
free 25(OH)-vitamin D index.”

Cardiometabolic outcomes

Maternal nutritional status during pregnancy and factors
influencing fetal growth have been implicated in the aetiol-
ogy of cardiometabolic outcomes such as dyslipidaemia,
hypertension, type 2 diabetes (T2D) and cardiovascular
disease later in life,'!”-!!®

Leptin has been studied extensively in the domain of
cardiometabolic outcomes, owing to its role in metabolism
and regulation of body weight."'” LEP methylation at a
specific CpG in blood and subcutaneous adipose tissue has
been positively associated with low-density lipoprotein
cholesterol levels in very obese (BMI >40kg/m?) adults.”®
In the same study, methylation at the LEP promoter was
inversely correlated with BML.”® A different study found
an inverse relationship between LEP methylation in whole


https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy153#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy153#supplementary-data
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blood and high-density lipoprotein cholesterol levels in 17-
month-old infants.'" Furthermore, lower methylation in
CpGs near the LEP transcription start site has been ob-
served in adolescents with obesity and insulin resistance,
although not with obesity alone.'’® IGF2 methylation has
also been related to lipid profile in obese children aged
11 years; those with intermediate methylation at the IGF2
P3 promoter had higher triglycerides (TG) and a higher
TG:high-density lipoprotein cholesterol ratio than those
with hypomethylation.'”” HSD2 methylation has been
positively associated with systolic blood pressure,® and
NR3C1 exonlF and H19 ICR methylation also show posi-
tive associations with both systolic and diastolic blood
pressures in adults.” Note that adiposity and obesity
(reviewed above) are also important risk factors that,
alongside other markers, can signal increased risk of ad-

verse cardiometabolic outcomes.'?°

Cognitive outcomes

The glucocorticoid receptors modulate the action of gluco-
corticoids and are involved in brain development and func-
tion."”! NR3C1 and HSD11B2 genes regulate the action
of cortisol and have been well studied in relation to neuro-
behaviour. Increased methylation at the NR3C1 promoter
and decreased methylation in HSD11B2 in placental and
infant buccal cell DNA have been associated with a high-
risk neurobehavioural profile characterized by poor atten-
tion, high excitability, low quality of movement and signs
of stress.'®*'%* An increase in LEP methylation in placen-
tal DNA has been associated with an increased risk of leth-
argy and hypotonia among male infants.'®> Increased
methylation at IGF2 in cord blood has been associated
with early onset persistent attention-deficit/ hyperactivity
disorder (ADHD) in children between 7 and 13 years of
age.®?

Candidate gene data summary

In Table 4 we provide further details of the 45 ‘candidate
genes’ highlighted so far in this review. This includes infor-
mation on their genomic location, the studies that consid-
ered them, regions of interest (ROIs) analysed and the
coverage of ROIs on Illumina Infinium Methylation bead-
chip arrays.

Discussion

In this review we have described evidence in humans link-
ing maternal nutrition during pregnancy with DNA meth-
ylation in the offspring, and linking DNA methylation at

nutrition-sensitive loci to phenotypes at birth and

outcomes in later life. As with all reviews, publication bias
can mean that null findings may have been under-reported,
and studies that do report associations may sometimes rely
on post hoc subgroup analyses for significant findings.
There are also numerous challenges specific to both the de-
sign and interpretation of intergenerational nutritional epi-
genetics studies which we discuss in the following sections.

Measuring nutritional exposures

Methods for measuring maternal nutritional exposure
have limitations. For example, one of the most commonly
used methods for this purpose are food frequency question-
naires, which suffer from recall bias and have differing va-

3 Weighed records require

lidity by micronutrient.'?
accurate, context-specific dietary databases and well-
trained data collectors, and may not accurately reflect nor-
mal eating habits.'** However, these two approaches have
the advantage of capturing food groups and combinations
of nutrients that more direct tissue nutritional biomarkers
can overlook.'?* Plasma biomarkers are challenging to in-
terpret, given that they represent nutrient levels after ab-
sorption and through interaction with genotype, and are
not simple reflections of dietary intake. Concentrations do
not capture metabolite flux, and can be misleadingly low if
tissue uptake is rapid. Of particular relevance to maternal
gestational samples is the effect of haemodilution, which
can lower several biomarker concentrations.'?® Maternal
plasma nutrient concentrations are assumed to reflect die-
tary intake, and to correlate with cord blood concentra-
tions and nutrient levels in fetal tissue, which may not be
the case. Whereas positive correlations between maternal
serum and cord blood serum are found for homocysteine,
betaine, folate and B12, cord blood levels are multiple
times higher, suggesting that these nutrients are homeo-
statically controlled to ensure fetal supply.'?” In the con-
text of periconceptional studies, more research is needed
on which accessible tissues best represent the nutritional
milieu surrounding the developing embryo in the initial
days after fertilization. In the meantime, serum or plasma
levels, though imperfect, are likely to offer a more accurate
representation of fetal nutrient exposure than dietary in-
take methods.

Most of the attention on nutritional exposures has
focused on the provision of methyl groups and the necessary
co-factors for DNA methylation. However, the periconcep-
tional period is marked by an initial wave of demethylation
to erase parental epigenetic marks, before the process of
remethylation.”” It is therefore important to consider the
role nutrition could play in influencing demethylation.
In demethylation, 5-methylcytosine is sequentially oxidized
to S-hydroxymethylcytosine and S-formyleytosine (5fC)
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5 g E by 10-11 translocation (TET) dioxygenases that use vitamin
e =i .
E & 3 g C (ascorbate) as a co-factor.'?® 5fC can then either be fur-
= T & ther oxidized to S-carboxylcytosine or converted to an
£ xyley
: B g e . .. . . .
" _{j 5 g unmethylated cytosine by base excision repair. Adding vita-
E = . =] g min C to mouse or human embryonic stem cells in vitro
> < & . . . .
22 = § = increases the activity of TET enzymes, resulting in active de-
P~ = I . . .
8 5, § £ 92 methylation in the germline.'*” However, to our knowledge
ks E ¥ g 5 there have been no human in vivo studies exploring effects
7] = . . . . .. .
g8 :n 8 ?ﬂ of periconceptional vitamin C deficiency on offspring DNA
=) w = ) .
59 § g = methylation.
o
= & N g k=
é N = = ‘Q; ) Nutritional compounds do not act in isolation, and ide-
[} 3] S L . . . . « .
5 5 g ally analyses should recognize this by considering their inter-
b3 < = actions in metabolic pathways. For example, one-carbon
T (o] = . . . .
= = g metabolism is governed by intricately controlled feedback
=z o ] g y y
—_ ~ s . .
3 % o & loops which help protect the flux of metabolites, through
=3 © £ @) < . .
= 8 ‘*g E SCE: key reactions over a range of nutrient and co-factor concen-
= .8 2 . <2 . . . N
2z S = g =y trations.'3%!3! This means that associations between indi-
£ 3 = £ — 3 . . . .
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sequence-level variation, which is known to influence
methylation status.'*®'3? Finally, bioinformatics and ana-
lytical expertise are required (as well as the necessary com-
putational resources) to process and model the data, and to
correct for batch and other technical effects, in order to
obtain reliable, high-quality methylation profiles.'*” As an
alternative, true genome-wide approaches such as whole-
genome bisulphite sequencing (WGBS) are available which
interrogate all ~28 million CpG sites in the methylome, al-
though this is currently prohibitively expensive for larger

141,142 offer a

samples. Targeted high-resolution platforms
potential compromise between coverage and cost, but their
utility, convenience and cost-effectiveness for performing
EWAS remain to be established. Given the importance of
demethylation during periconceptional epigenetic remodel-
ling, it may also be important to consider the oxidized
forms of 5-methyl cytosine (e.g. 5-hydroxymethylcytosine)
which occur as intermediate products in the demethylation

pathway.'*?

Tissue specificity, confounding and stability of
methylation across the life course

The tissue-specific nature of DNA methylation presents a
major challenge for epigenetic association studies.'>*!**
The majority of studies reported in this review are con-
strained to accessible tissues such as cord blood that may
be unrelated to the phenotype of interest, and different tis-
sues may be sensitive to different environmental exposures.
In this case reference epigenomes from different tissues and
cell types in both healthy and diseased individuals'*® may
inform the choice of tissue as well as providing data for
investigating the tissue specificity of identified signals.
Where exposure-related effects occur during early embry-

before methylation

changes may be concordant across multiple tissues,"*® so

onic development, gastrulation,
that methylation states in accessible tissues such as blood
and buccal cells may serve as a proxy for methylation in
the target tissue.

Furthermore, numerous biological factors may act as
potential confounders, for example age, sex, smoking sta-
tus and BMI. Tissue-specific methylation differences aris-
ing from cell type heterogeneity, notably in blood, can also
act as confounders,'” although there are well-established
methods that can be used to correct for this,'*”>!*8

DNA sequence polymorphisms are also known to influ-
ence DNA methylation status and may confound observed
associations.'* Heritability of DNA methylation is esti-
mated to be in the range of 18% to 37%."°%"*! Consistent
with this, many studies have shown that methylation quan-
titative trait loci (mQTL)—genetic variants associated with
methylation differences at the population level—are

widespread. To account for this, ideally high-throughput
genotype data on the sample being studied should be
used'*” but, if such data are unavailable, population-level
reference mQTL data can be informative.'>’

Finally, methylation changes associated with an early-
life exposure may change throughout the life course, with
implications for their utility as biomarkers of exposure or
predictors of later phenotype.'**"'** Depending on the re-
search question, this may suggest the need to assess long-
term stability of methylation at specific loci, through the
collection of longitudinal samples.

Linking methylation changes to gene function

Many of the DNA methylation changes reported in studies
covered in this review are small, often within the margins
of error of the measuring technology, making it difficult to
draw conclusions on their functional relevance.'® Indeed,
relatively few methylation studies measure gene expres-
sion. The link between DNA methylation and expression is
complex, depending on genomic context (e.g. location
with gene bodies, promoters and enhancers).'*® This could
in part explain seemingly contradictory findings from dif-
ferent studies measuring associations at the same gene.
Moreover, a change in methylation may influence tran-
scription factor binding and the induction of a specific sig-
nalling pathway in order to observe a change in gene
expression. To aid further understanding, future studies
should therefore consider measuring transcription factor
binding, markers of gene transcription (mRNA levels),
and/or translation (protein levels), to better map the poten-
tial effects of DNA methylation differences on gene

L
function.”

Capturing phenotypes

In this review we have focused on phenotypic outcomes
most commonly considered in the DOHaD context.
However, we do not wish to exclude the possibility that
there may be a broader range of phenotypes that are impli-
cated. For example, exposure to the Dutch Hunger Winter
famine during pregnancy has been associated with a wide
variety of offspring phenotypes, varying according to the

. . 45,47
during gestation.™

timing of famine exposure
Consideration of the ‘thrifty epigenotype’ hypothesis™*
would suggest that famine-imposed epigenetic modifica-
tions in early life are adaptive where similar environment
conditions persist, but maladaptive otherwise. There could
therefore be a spectrum of phenotypes according to how
great the mismatch is between in utero and later life envi-
ronments. In the case of complex traits such as obesity, the

resultant phenotype may also be influenced by factors such
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as diet and lifestyle in conjunction with methylation differ-
ences and genotype of the individual.'*®

Causal inference

A major goal of nutritional epigenetic studies, also covered
in this review, is to assess the potential for epigenetic
marks to mediate links between nutritional exposures and
health outcomes. In this context, the use of prospective
study designs with randomization including negative con-
trols, and techniques such as mediation analysis based on
regression systems,'” structural equation modelling'®® or
network-based techniques,'®' parametric/semi-parametric
methods,'®? or instrumental variable approaches such as

80,163,164 can help to strengthen

Mendelian randomization,
causal inference. More broadly, triangulating findings
from diverse studies, each with their own strengths, limita-
tions, assumptions and opposing biases, will maximize the

potential for robust findings.'¢%+'¢°

Study design considerations

The literature in this area is dominated by observational
studies. This increases the risk of spurious associations due

149 the latter being a

to confounding or reverse causation,
particular problem with methylation association studies
where the direction of causality can be hard to establish.
Added to this, effect sizes are generally modest, with
group-level differences in mean methylation typically less
than 10% and often in the region of 1-5% for many of the
exposures and phenotypes studied.'>>'¢”>1%® This has
implications for the design of studies characterizing
genome-wide, population-level methylation differences, as
they need to be adequately powered to detect potentially
small effects after adjusting for multiple testing.'®”

Current interest in periconceptional nutrition has stimu-
lated a number of preconceptional nutrition trials.'”%~17*
In these studies, supplementation before conception is nec-
essary to ensure that the conception period is covered and
that a maximal effect on maternal nutritional status at con-
ception is achieved. Nonetheless, accurately pinpointing
the timing of nutritional exposures to conception is

challenging.

Conclusions

The body of evidence linking maternal nutritional exposure
to offspring phenotype via DNA methylation in humans is
rapidly growing yet currently remains complex and incon-
sistent. It is characterized by heterogeneous exposures and
outcomes, and mainly observational associations that are
frequently under-powered. Existing evidence suggests that

the effect of nutritional exposures on DNA methylation
depends on the form of the nutritional component, the tim-
ing of exposure during periconception and pregnancy, the
underlying nutritional status of the mother, maternal and
offspring genotype and the specific loci under investigation.
The picture is more complex than methylation being deter-
mined simply by availability of methyl donors. Many stud-
ies have investigated imprinted genes as priority loci for
their vulnerability to nutritional exposures, but with the
adoption of microarray-based platforms, other candidate
genes and gene classes are emerging, for example metastable
epialleles.

The utility of this emerging evidence in terms of its
translation into effective interventions and therapies
remains an open question. Epigenetic marks like DNA
methylation may act as integrators of multiple exposures
and genetic risk factors, as well as molecular mediators of
the effect of exposures on phenotype. Where robust associ-
ations are established, DNA methylation can serve as a
proxy measure or biomarker of earlier nutritional expo-
sures.'”> As mediators of the effect on later phenotype, nu-
tritionally sensitive DNA methylation changes can provide
a means to identify genes and pathways for targeted inter-
ventions. Whereas there is still much work to do in this
area, there are grounds for optimism that epigenomic
approaches will provide insights into the molecular basis
of the developmental origins of health and disease, which
could in turn lead to the development of next-generation
interventions.
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