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Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, which

ranks sixth in cancer incidence and third in mortality. Although great strides

have been made in novel therapy for HCC, such as immunotherapy, the

prognosis remains less than satisfactory. Increasing evidence demonstrates

that the tumor immune microenvironment (TME) exerts a significant role in the

evolution of HCC and has a non-negligible impact on the efficacy of HCC

treatment. In the past two decades, the success in hematological malignancies

made by chimeric antigen receptor-modified T (CAR-T) cell therapy leveraging

it holds great promise for cancer treatment. However, in the face of a hostile

TME in solid tumors like HCC, the efficacy of CAR-T cells will be greatly

compromised. Here, we provide an overview of TME features in HCC, discuss

recent advances and challenges of CAR-T immunotherapy in HCC.

KEYWORDS
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Introduction

Primary liver cancer, represents the sixth most commonly diagnosed cancer and the

third leading cause of cancer-related mortality currently according the Global Cancer

Statistics 2020, with approximately 906,000 new cases and 830,000 deaths (1). In the vast

majority of cases, HCC frequently develops from cirrhosis, caused by viral (hepatitis B or

C virus) and non-viral (alcoholic or non-alcoholic fatty liver disease) risk factors (2).

Frustratingly, HCC is an insidious tumor often diagnosed in advanced stage. For the

patients with advanced stages, the treatments of choice are usually palliative. Despite

aggressive treatment regimes, including surgery, combined radio and chemotherapy,
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HCC patients will still experience tumor recurrence and

metastasis with the death rates increasing by 2–3% per year (3,

4). Therefore, identification new factors underlying therapy

resistance and novel therapeutic strategies for HCC are

urgently needed.

Among patients with HCC who are diagnosed as the same

TNM stage and experience similar clinical management, clinical

outcomes are different, indicating that HCC is highly

heterogeneous. Additionally, the complexity of heterogeneity is

not only reflected in different patients, but also reflected in the

disease progression and treatment courses of the individual

patient (5). Recent accumulating evidence has revealed that this

extraordinarily heterogeneity is closely related to TME of HCC,

and contributes to the inconsistent outcome of anti-cancer

therapy. Consequently, TME received considerable attention in

recent years, and targeting TME is increasingly recognized as a

new battlefield for HCC therapy, especially immunotherapy

including vaccines, antibodies, immune checkpoint inhibitors,

and adoptive cell therapy (ACT), such as CAR-T cells (6–8).

CAR-T cell therapy, as the most encouraged immunotherapy, has

made great strides in hematological malignancies. Meanwhile,

intensive endeavors to target HCC by CAR-T has demonstrated

promising efficacy with manageable toxicity and safety. The

present review aims to provide a comprehensive picture of TME

in HCC, discuss efforts to develop treatments by CAR-T.
Overview of TME in HCC

The tumor microenvironment is an intricate system, which

comprises cellular and non-cellular components (Figure 1). The

major cellular components include tumor cells, activated hepatic
Frontiers in Endocrinology 02
stellate cells, myeloid-derived suppressor cells (MDSCs), cancer-

associated fibroblasts (CAFs), tumor-associated macrophages

(TAMs), tumor-associated neutrophils (TANs), immune and

endothelial cells (9, 10). Produced by these cells, the tumor

stroma includes extracellular matrix (ECM) proteins, proteolytic

enzymes, cytokines and growth factors (7). Crosstalk between

cancer cells and TME has been identified to have a profound

effect on cancer progression through prompting cell

proliferation, survival and the ability of migration and evasion.

Thus, a better understanding of the adverse TME would facilitate

to develop novel therapeutic approaches for treatment of HCC

in future.
Hepatic stellate cells (HSCs)

HSCs are the most principal cell players responsible for

collagen synthesis in the liver and have a quiescent and an

activated state, the latter being transformed from the former

upon liver injury (11). Activated HSCs (a-HSCs) can produce

the extensive accumulation of ECM in chronically damaged

livers, leading to the development of hepatic fibrosis (12).

Although some researchers advocate that HSCs act as a tumor

suppressor in HCC, the mainstream view is that HSCs in TME

may facilitate tumor growth, involving tumor angiogenesis,

invasion and metastasis (13). It was reported that a-HSCs

strongly affect the malignant phenotype of HCC via paracrine

feedback mechanisms through activating NF-kB and extracellular

regulated protein kinases (ERK), two major signaling pathways in

hepatocarcinogenesis (14). Another research demonstrated that

HSCs can be activated under acidic condition depending on the

phosphorylation of ERK1/2 and secrete osteopontin to promote
A B

FIGURE 1

The tumor microenvironment of HCC. (A) TME is the cellular milieu in which the HCC cells grow. (B) Crosstalk among diverse suppressive
immune cells in TME. IDO:indoleamine 2,3-dioxgenase.
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HCC metastasis (15). Also, IL-6/STAT3 pathway has proven

important, by which HSCs increased cancer cell viability and

migration ability in HCC (16). Furthermore, Franziska and

colleagues have identified that proteinase-activated receptor 2

expressed by HSCs can promote secretion and migration of

pro-mitotic and pro-angiogenic factors to accelerate HCC

growth (17). HSCs’ function in angiogenesis was also verified in

Lin’s research (18). As elucidated by Yuta et al, in the HCC

microenvironment, an increase of HSCs may be involved in

tumor progression by producing GDF15 in an autophagy-

dependent manner (19). In addition, mechanistic studies

indicated that a-HSCs can accelerate HCC progression through

miR-1246-RORa-Wnt/b-catenin axis (20). Furthermore, HSCs

can indirectly affect HCC by cross talking with immune cells and

impairing immune surveillance. A-HSCs have been elucidated to

aggravate HCC by interacting with monocytes and macrophages,

shifting them from an inflammatory to an immunosuppressive

phenotype (21, 22). Li et al. provided the evidence that HSCs

inhibit T cells proliferation and IFN-g production through active

TGF-b1 from a cell-surface-bound latent TGF-b1/GARP complex

(23). It could also act in an autocrine fashion for HSCs to

indirectly induce T cells apoptosis through upregulating

expression of programmed death-ligand 1 (PD-L1) (24).

Notably, HSCs can also induce regulatory T cells (Tregs) and

MDSCs probably through activating COX2-PGE2-EP4 pathway

provide an immunosuppressive milieu for HCC (25, 26).

Clinically, it’s well evidenced that HSCs are associated with

recurrence and poor survival of patients with HCC (21, 27).

Collectively, previous studies unraveled the significant role of

HSCs in HCC progression and presented possibilities for HSCs

as therapeutic targets.
Myeloid-derived suppressor
cells (MDSCs)

MDSCs, characterized by a pathological state of activation,

represent a heterogeneous population of immature myeloid cells,

and exert inhibitory function in antitumor immunity in patients

(28, 29). Studies investigated that CXCL1/CXCR2 and CCL26/

CX3CR1 axis are two important pathways that induce the

homing of MDSCs to the HCC microenvironment, thereby

promoting immune escape and tumor growth (30, 31).

Additionally, HIF-1a exerts a critical role by recruiting

MDSCs into the hypoxia region of HCC foci via mediating

ENTPD2 over-expression in HCC cells (32).

As a powerful inhibitory immune modulator, infiltrated

MDSCs exert versatile immunosuppressive effects in HCC by

inhibiting effector T cells, reducing natural killer (NK) cells

cytotoxicity, expanding immune checkpoint signaling through

diverse mechanisms. Researchers have reported that MDSCs

suppressed autologous T cell proliferation and activation by

depleting energy resources (e.g. arginine and cysteine) (33).
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Interestingly, Baumann et al. identified that T cells can be

stunned by MDSCs via cell-cell transfer of the metabolite

methylglyoxal (34). Infiltration into tumor sites is a

prerequisite for immune cells to exert anti-tumor effects.

Unfortunately, it was reported that MDSCs are significantly

associated with reduced tumor infiltrating lymphocytes (TILs) in

HCC (35). Additionally, MDSCs can reduce cytotoxicity and

cytokine release of NK cells via the NKp30 receptor (36).

Mechanistic studies indicated NKT cells are also one of the

targets of MDSCs to exert immunosuppressive effects by

selectively suppressing the secretion of IFN-g deriving from

NKT cells (37). As such, MDSCs can allow tumor cells to

evade immune surveillance by interacting with other immune

cells. Evidence has shown that MDSCs promote tumor growth

and are associated with diminished efficacy of immunotherapy

(38, 39).
Cancer-associated fibroblasts (CAFs)

CAFs are defined as the fibroblastic type of cells in a tumor

mass, which are thought to interplay tightly with cancer cells

(40). As an abundant and active cell type within the TME, CAFs

are mainly activated from resident fibroblasts, stellate cells,

mesenchymal stem cells or mesothelial cells, but evidence from

a lineage-tracing analysis is still lacking (40, 41).

Although there is no denial that CAFs may exert a tumor-

suppressing function, recent emerging data has convincingly

indicated the tumor-promoting effects of CAFs. In tumors, CAFs

function as remodeling machine to aid the creation of a

desmoplastic TME and the signaling center to participate in

the crosstalk with tumor and non-tumor cells (41). Firstly, CAFs

could facilitate HCC cells epithelial-to-mesenchymal transition

(EMT) through the transglutaminase 2-dependent IL-6/IL6R/

STAT3 pathway, and promote HCC metastasis by activating

HIF1a/ZEB1 axis (42–44). Secondly, a great deal of findings

reported that CAFs could accelerate tumor growth by producing

epidermal growth factor (EGF), fibroblast growth factor (FGF),

hepatocyte growth factor (HGF), cytokines and chemokines

(45–47). An in vitro experiment demonstrated that CAFs

activated by TIMP-1 markedly inhibited HCC apoptosis by

upregulating BCL-2/BAX ratio via SDF-1/CXCR4 axis (48).

Also, Mano et al. provided important evidence that

endogenous and exogenous BMP4 play a key role in the

transformation of fibroblasts to CAFs which subsequently

produce large amounts of cytokines to enhance invasiveness of

HCC cells (49). Notably, CAFs-mediated cellular crosstalk is

another important mechanism by which they promote tumor

progression. Very recently, a study revealed that CAFs-derived

CLCF1 could increase the secretion of CXCL6 and TGF-b in

HCC cells, which subsequently enhance stemness of cancer cells

and promote TANs infiltration and polarization in autocrine

and paracrine manners, respectively. Interestingly, CXCL6 and
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TGF-b in turn activate CAFs to express more CLCF1, thus

forming a positive feedback loop that promotes tumor

progression (50). Moreover, it’s well evidenced that IL-6 and

SDF-1a derived from CAFs can induce MDSCs generation,

which subsequently impairs T-cell proliferation and alter the

phenotype and function of T cells, which create favorable

conditions for HCC progression (51). Crosstalk between CAFs

and other cells such as NK and dendritic cells was also reported

(52, 53).
Tumor-associated macrophages (TAMs)

TAMs are termed as macrophages within the tumor stroma

and play pro-tumoral or sometimes anti-tumoral roles due to the

ability to acquire M1 (classic) or M2 (alternative) phenotype-

depending on signals from the tumor stroma (54). The

classically activated macrophages or M1-type which exert their

cytotoxic function through their T cell-stimulating activity, can

be induced by Th1 cytokine such as INF-g and through Toll-like

receptor 4 engagement. Unfortunately, TAMs are also polarized

towards an M2 phenotype with decreased antigen-presenting

ab i l i ty by Th2 cytok ines IL-4/ IL-13 , funct ion ing

immunosuppressor in the TME (54, 55).

An immunogenic analysis showed that macrophages are

prone to polarize to the M2 phenotype in HCC. Patients with

high presence of M2 macrophages tend to have a more aggressive

phenotype (56). A great deal number of studies confirmed and

extended this observation. Bartneck’s study demonstrated that

immunosuppressive TAMs are abundant in the center of HCC

and that CCR2+ TAMs accumulate at the highly vascularized

border of tumor; In vivo experiments showed that inflammatory

and angiogenic pathways are activated in CCR2+ TAMs (57).

Consistently, TAMs accumulation had significant prognosis value

in HCC patients (56). Mechanistically, TAMs can produce

cytokines such as VEGF, EGF, platelet-derived growth factor

(PDGF) to promote tumor angiogenesis, and matrix

metalloproteinases secreted by TAMs can remodel TME to

facilitate tumor metastasis (58). In addition, TAMs can also

induce Treg cells infiltration into tumor tissue via producing

cytokines and chemokines, such as IL-10, TGF-b and CCL20 (59,

60). As elucidated by Wu and colleagues, TREM-1+ TAMs

promote the recruitment of CCR6+Foxp3+ Tregs through the

ERK/NF-kB axis, which endows HCC with anti-PD-L1 therapy

resistance (61). Kupffer cells, which are liver-resident

macrophages,can inhibit CD8+ T cytotoxicity by PD-L1/PD-1

interaction and thus inhibit CD8+ T-dependent immune response

(62). Hence, the role of TAMs in HCC deserves much attention

and TAMs may be a promising target in the treatment of HCC. It

has been verified that macrophages mediate sorafenib resistance in

HCC and TAMs depletion can improve the therapeutical efficacy

of sorafenib (63, 64).
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Tumor-associated neutrophils (TANs)

Neutrophils, derived from the bone marrow, are the first

subset of immune cells to be recruited to lesions responding

against infectious and inflammatory insults (65). In TME,

neutrophils infiltrating into lesions can exhibit N1 (anti-

tumoral) or N2 (pro-tumoral) phenotype-depending on the

presence of TGF-b (66, 67).

As one of the most abundant components in HCC,

Neutrophils have been recognized to play pivotal roles in

regulating cancer development. It was verified that increased

intra-tumoral neutrophils are correlated strongly with decreased

recurrence free survival (RFS)/overall survival (OS) and can act

as an independent prognostic factor in HCC patients (68). These

results were reinforced in other studies (69–71). Zheng’s and his

coworkers provided evidence that neutrophils can be induced by

IL-17 to migrate to tumor stroma through epithelial cell-derived

CXC chemokines; Besides, high infiltration of TANs is positively

associated with angiogenesis at tumor-invading border of HCC

(72). They further identified that TANs also perform autophagy

via the synergy of ERK1/2, p38 and NF-kB signaling axis and

subsequently facilitate tumor progression by enhancing the

secretion of OSM and MMP9, suggesting a regulatory loop

between tumor cells and neutrophils (73). A positive feedback

loop was also verified and exerts an essential function in the

generation of stem-like cells in HCC (74). In addition, as the

major source of c-Met ligand HGF, the accumulated neutrophils

can actively promote the metastasis of HCC through the HGF/c-

Met pathway. Of note, high infiltration of neutrophils in HCC

determined malignant cell c-Met-associated clinical outcome of

patients (75). A series of studies have shown that TANs also

interact with other immune cells to exert their tumor-promoting

function. The research conducted by He and colleagues has

unraveled that infiltrating neutrophils express a higher

frequency of PD-L1 in the presence of GM-CSF and TNF-a in

TME; In turn, the PD-L1+ neutrophils effectively impaired anti-

tumor immunity via suppressing the proliferation and activation

of T cells through the PD-L1/PD-1 signaling axis (76). Another

study came to a similar conclusion (77). These TANs could also

drive HCC progression and sorafenib resistance by recruiting

macrophages, Treg cells and NK cells (69, 78).
Lymphocytes

Regulatory T cells (Tregs), defined as CD4+ and CD8+ T cells

with immunosuppressive function, are known for their critical role

in suppressing inflammation, and thus can antagonize the anti-

tumor effect of immune responses (79). Studies have shown that

Tregs are the main type of tumor-infiltrating T cells in HCC, which

can significantly prejudice CD8+ T cells proliferation, activation and

suppress cytolytic molecule release and production of CD8+ T cells
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like granzymes, perforin (80). It was also evidenced that Tregs

promote HCC invasion via TGF-b1-induced EMT (81). Tregs

mediate sorafenib resistance, and blocking Tregs with inhibitors

can overcome sorafenib resistance and increase tumor sensitivity to

immunotherapy (82).

Recently, a research demonstrated that HCC tissue has a

significantly higher TIM-1+ regulatory B cells (Bregs) infiltration

than the adjacent benign tissue. These Bregs show a

CD5highCD24-CD27-/+CD38+/- phenotype, secrete much

immunosuppressive cytokine IL-10 and suppress CD8+ T cells

strongly. In addition, the infiltration of Bregs is correlated with

advanced disease stage, predicted early recurrence and decreased

survival of patients with HCC (83). It was verified that CD40/

CD154 signaling axis may be one of the pathways by which

Bregs promote HCC progression (84).

Th17 cells are CD4+ lymphocytes producing IL-17. Wang’s

work demonstrated that Th17 synchronically increases with

Tregs and Bregs in the peripheral circulation and in tumor

tissues in HCC patients. Also, further studies indicated that the

production and proliferation of Th17 are promoted by tumor

cells in TME mainly through cell-contact independent

mechanisms (85). Furthermore, clinical studies showed that

increased Th17 cells in tumor stroma are correlated with poor

survival and higher postoperative recurrence, suggesting that

Th17 cells may facilitate the development of HCC (86).
Tumor-associated endothelial
cells (TAECs)

Endothelial cells are essential components in the process of

tissue vascularization. It has been verified that migration of

endothelial cells to tumor sites promotes the formation of the

tumor neo-vasculature. TAECs express angiogenic surface

receptors, such as VEGFR, EGFR and CXCL12, which conduct

signaling through the interaction with their corresponding

ligands to regulate endothelial cell survival, proliferation,

mobilization, and invasion (87, 88). Compared with those in

normal tissues, TAECs have accelerated cell cycle, increased

ability of migration, and overexpressed CD105 and TGF-b1.
TGF-b1 promotes the recruitment of CD105+ endothelial cells,

thereby contributing to angiogenesis of tumor (89). CD105+

endothelial cells could make HCC resistant to chemotherapeutic

drugs and angiogenesis inhibitors by increasing angiogenic

activity of tumors (90).
Extracellular matrix

ECM, consisted of proteoglycans, glycoproteins and

hyaluronan, is one of the major components of tumors that

exert various crucial functions, including structural support,

modulation of the microenvironment, and mediating
Frontiers in Endocrinology 05
intercellular communication (91). As one of the major

components of TME, dysregulation of the ECM is a distinctive

feature in cancer (91, 92).

Heparin sulfate, chondroitin sulfate, and keratan sulfate are

the major components of proteoglycans in ECM, providing

binding receptors for growth factors, cytokines, chemokines

and are involved in many physiological and pathological

processes (91). For example, Heparin sulfate proteoglycan

(HSPG) acts as a co-receptor for binding of FGF-2 to its

cognate FGF receptors, thus forming a ternary complex critical

for cell proliferation and angiogenesis (93, 94). Glypican 3

(GPC3), an oncofetal HSPG anchored to the cell membrane,

exhibits elevated expression in tumor cells and tumor vascular

cells in HCC, and its expression correlates with a poor prognosis

(95). Mechanistically, the oncogenic role of GPC3 is exerted

through Wnt/b-Catenin pathway (96). SULF1 and SULF2 are

two heparin-degrading endosulfatase enzymes that regulate

heparin-dependent signaling in cells by altering the sulfation

of HSPGs. Decreased expression of SULF1 was verified in the

majority of HCC cell lines and approximately 30% of HCCs, but

almost all HCC cell lines and 60% of HCC samples demonstrate

elevated expression of SULF2 (97). Besides, upregulation of

SULF2 predict a significant poor prognosis and higher

postoperative recurrence rates (98, 99). Mechanistically, Lai

et al. found that overexpression of SULF2 could enhance

GPC3 expression and exert the oncogenic role by GPC3-

dependent Wnt activation (99).

Collagens are the most abundant ECM proteins to support

mechanical structure. Aberrant expression of collagen probably

acts as a barrier for tumor metastasis, but may also promote

tumor metastasis as a foothold for its movement (100). It was

verified that COL1A1 is highly expressed in HCC tumor tissues

compared with benign tissues and confers a survival advantage

to liver cancer cells and enhances their oncogenicity (101).

Laminin, together with collagen, constitutes a component of

the basement membrane. Laminin is involved in various

biological activities, including cell adhesion, growth,

differentiation, migration and angiogenesis (100). Laminin-5,

which is not detected in normal liver, but overexpressed in HCC

tissues, correlating with more proliferative and metastatic

phenotypes. Together with TGF-b, Laminin-5 promotes EMT

by upregulating Snail and downregulating E-cadherin in HCC

(102). Also, Laminin B1 stimulates integrin-dependent focal

adhesion kinase/Src proto-oncogene non-receptor tyrosine

kinase signaling and supports tumor progression at the

invasive front of HCC through the PDGFRa-laminin B1-

keratin 19 cascade (103).

Taken together, these data provide solid evidence supporting

the important role of the TME in the development of HCC and

reveal the complex interaction among the components in the

TME, also explain why traditional therapy fail in the treatment

of HCC, and thus the development of novel therapeutic

modalities is urgently needed.
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Chimeric antigen receptor
T cell immunotherapy

A recently-developed adoptive cell therapy is to generate

tumor-specific CAR-T cells. The typical CAR is composed of an

extracellular single-chain variable fragment (scFv) for recognizing

antigens, a hinge region to provide flexibility, a transmembrane

region and intracellular signaling domain (104). Due to the

requirements of functional improvement, the intracellular

signaling domain can be modified, and according to this, CAR

can be divided into five generations (Figure 2). The first

generation CARs only have a single signal domain CD3z chain

for T-cell activation; The second and third generation CARs are

characterized by the addition of one or two costimulatory

domains, respectively; Most commonly derived from CD28 or

4-1BB, costimulatory domains endow CAR-T cells improved

proliferation and persistence, enhanced cytokine secretion and

increased anti-tumor cytotoxicity; The fourth generation CAR-T

incorporates a costimulatory domain and inducible cytokine

cassette and is termed “T cells redirected for universal cytokine-

mediated killing” (TRUCK) to release the proinflammatory

cytokines to activate innate immune response against the tumor

and resist inhibitory components in TME, such as Tregs and

MDSCs (104, 105). Recently, the fifth generation CARs, encoding

a truncated cytoplasmic domain from IL-2Rb and a STAT3-

binding tyrosine-X-X-glutamine motif, together with CD3z and

CD28 domains, were also developed. These novel CARs can

activate the JAK-STAT signaling pathways in an antigen-

dependent manner, which confers CAR-T cells superior

persistence and antitumor effect (106).

Compared with the traditional T cell receptor-T cells,

CAR-T can specifically recognize a wide array of antigens in

a non-major histocompatibility complex (MHC) restricted

manner, and solve the immune escape caused by the
Frontiers in Endocrinology 06
downregulation of MHC molecules (107). Furthermore,

additional genes could be introduced to modify intracellular

signaling domains enabling T cells resistant to immune

suppression. CAR-T therapy has shown remarkable success

for hematological malignancies and received its approval by

the U.S. Food and Drug Administration as gene therapy which

paves the way for further extension of this approach to solid

malignancies including HCC (108, 109). In present, significant

progresses have been made in the preclinical models and

clinical trials utilizing CAR-T cells in HCC. Next, this review

discusses several CAR-T targeting different antigens currently

being evaluated in HCC. The latest clinical trials on CAR-T

therapy for HCC is summarized in Table 1.
GPC3

Gao and his coworkers firstly reported the experience on

CAR-T cells for the treatment of HCC. They constructed the first

(aGPC3-Z CAR-T) and third generation CAR (aGPC3-28BBZ
CAR-T) targeting GPC3. Results indicated that both generations

of CAR-T specifically lysed HCC cell lines in vitro. aGPC3-
28BBZ CAR -T cells could inhibit the growth of tumor in

immunodeficient mice. It is of note that the third generation

CAR-T cells secreted more IL-2 and IFN-g, which has a positive

correlation with the level of GPC3 expression on HCC cells

(110). Another group reached the similar conclusion that the

second and third generation CAR-T had a superior performance

than the first generation construct in vivo (111). They found that

T cells signaling via CD28 had higher cytotoxicity than those via

4-1BB in vitro; However, CAR-T cells containing the 4-1BB

costimulatory domain had better proliferative activity in vitro

and in vivo, indicating that the choice of costimulatory domain

might affect the behavior of CAR-T cells. In two phase I trials, 13
FIGURE 2

Schematic representation of the CAR structure. A CAR consists of single-chain variable fragment with a hinge, transmembrane domain, and
CD3z (1st generation). 2nd generation and 3rd generation CARs contain one or two costimulatory molecules, respectively. Whereas the signal
domain of the 4th generation CAR includes an inducible cytokine cassette. The 5th generation CAR encodes a truncated cytoplasmic domain of
IL-2 receptor b with a binding site for the STAT3 to activate JAK-STAT pathway.
frontiersin.org

https://doi.org/10.3389/fendo.2022.918869
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Guizhen et al. 10.3389/fendo.2022.918869
TABLE 1 Clinical trials in HCC using CAR-T.

NCT
Number

Phase Antigen CAR-T
Type

Status Sample
Size (n)

Conditions Outcome Measures

NCT05123209 I GPC3 2nd
generation
Autologous

Recruiting 12 LC 1 AEs 2 ORR, DOR, PFS and OS 3 Plasma a-AFP cells infusion 4
Persistence of CAR-T

NCT02932956 I GPC3 N/A Recruiting 10 LC 1 DLT 2 CR or PR 3 Median T cell persistence

NCT04093648 I GPC3 2nd
generation
Autologous

Withdrawn N/A HCC 1 DLT 2 Response rate

NCT05003895 I GPC3 N/A Recruiting 38 HCC 1 Safety and feasibility 2 OS
3 Best overall response rate

NCT04951141 I GPC3 N/A Recruiting 10 HCC 1 AEs 2 ORR 3 OS

NCT04377932 I GPC3 N/A
Autologous

Recruiting 24 Basket
including LC

1 DLT 2 Median CAR-T cell persistence
3 Best response as either CR or PR

NCT04715191 I GPC3 N/A
Autologous

Not yet
recruiting

24 Basket
including LC

1 DLT 2 Median CAR-T cell persistence
3 Best response as either CR or PR

NCT05103631 I GPC3 N/A
Autologous

Recruiting 27 LC 1 DLT 2 Median CAR-T cell persistence
3 Best response as either CR or PR

NCT02959151 I/II GPC3 N/A
Autologous
/Donated

Unknown 20 Basket
including
HCC

1 AEs 2 Tumor response
3 Detection of CAR-T in the circulation

NCT03198546 I GPC3 3rd/4th
generation
Autologous

Recruiting 30 HCC 1 DLT 2 Median CAR-T cell persistence
3 Best response as either CR or PR

NCT04506983 I GPC3 2nd
generation
Autologous

Suspended 12 HCC 1 AEs 2 ORR 3 Proliferation ratio of CAR-T cells

NCT04121273 I GPC3 2nd
generation
Autologous

Recruiting 20 HCC 1 DLT 2 Evaluation of tumor size 3 Peripheral tumor marker 4
Number of peripheral CAR-T cell

NCT03884751 I GPC3 2nd
generation
Autologous

Completed 9 Advanced
HCC

1 DLT, MTD and AEs 2 CAR-T expansion and persistence 3 PFS,
ORR, OS, DOR, DCR and DOC

NCT02715362 I/II GPC3 2nd
generation
Autologous

Unknown 30 HCC 1 AEs 2 Tumor response 3 Detection of CAR-T in blood 4 Serum
cytokine levels

NCT02395250 I GPC3 2nd
generation
Autologous

Completed 13 HCC AEs

NCT02905188 I GPC3 2nd
generation
Autologous

Active, not
recruiting

9 HCC 1 DLT 2 Best response as either CR or PR
3 Median CAR-T cell persistence

NCT03980288 I GPC3 4th generation
Autologous

Completed 6 Advanced
HCC

1 DLT, MTD and AEs 2 CAR-T expansion
3 ORR, DCR, DOC, DOR, PFS and OS

NCT03130712 I/II GPC3 2nd
generation
Autologous

Unknown 10 Basket
including
HCC

1 AEs 2 Tumor response
3 Serum cytokine levels

NCT05155189 I GPC3 2nd
generation
Autologous

Recruiting 20 HCC 1 AEs and limiting toxicities 2 Tumor response
3 Serum cytokine levels

NCT03146234 N/A GPC3 N/A
Autologous

Completed 7 HCC 1 Safety and tolerance 2 Engraftment
3 ORR, PFS and OS 4 Time of tumor progression

NCT05070156 I GPC3 N/A
Autologous

Recruiting 3 Advanced
HCC

1 AEs, cellular kinetics 2 PFS, OS, ORR, DCR, DOR and DOC 3
Serum free GPC3, cytokines, CRP and lymphocyte subsets

NCT03084380 I/II GPC3 2nd
generation
Autologous

Unknown 20 HCC 1 AEs 2 Overall complete remission rate
3 Duration of CAR-T in circulation

(Continued)
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patients with advanced HCC received autologous GPC3 CAR-T

treatment to assess the safety. Most patients experienced

manageable side effects, including pyrexia, decreased

lymphocyte count, and grade 1/2 cytokine release syndrome

(CRS). Grade 5 CRS occurred in only one patient and none of

the patients experienced grade 3/4 neurotoxicity. The OS rates at

3 years, 1 year and 6 months were 10.5%, 42.0% and 50.3%,

respectively. Additionally, two partial responses (PR) were

confirmed. One patient with sustained stable disease (SD) was

alive after 44.2 months (112).

In order to further improve the therapeutic efficacy, Pang et al.

developed CAR-T cells which express IL-7 to induce proliferation

and CCL19 to enhance migration of CAR-T cells. Results showed

that incorporation of IL-7 and CCL19 into CAR-T cells

remarkably promoted the antitumor ability. Surprisingly, these

CAR-T cells eliminated the tumor completely 30 days after

intratumor injection in a patient with advanced GPC3+ HCC in

a phase I clinical trial (NCT03198546) (113). Similarly, another

group verified that pretreatment the tumor by a recombinant

adeno-associated virus carrying the CCL19 gene (AAV-CCL19)

could increase the infiltration of GPC3 CAR-T to tumor tissue and

significantly prolonged the survival time of mice (114). Besides, the

impact of serum GPC3(sGPC3) on CAR-T treatment is also

noteworthy. sGPC3 was reported to be associated with poor
Frontiers in Endocrinology 08
prognosis in postoperative patients with HCC (115). sGPC3 can

competitively bind to CARs with membrane GPC3, but fail to

activate CAR-T cells effectively, thus resulting in an inhibitory

effect on CAR-T cells in HCC (116). Combination chemotherapy

or immune checkpoint inhibitors may provide more possibilities

for GPC3 CAR-T in the treatment of HCC.
CD133

Expressed by cancer stem cells, CD133 is a pentaspan

transmembrane glycoprotein. CD133 has attracted considerable

attention as a potential cancer therapeutic target. Wang et al.

constructed CD133-specific CAR-T cells (CD133 CAR-T) and

found that CD133 CAR-T displayed distinctive lysis activity and

secreted high level of cytokines targeting CD133+ cells and

remarkably suppressed tumor growth in vivo. Surprisingly, high

level of CAR gene copy was detectable in tumor tissue (117).

Given these surprising results, they conducted a clinical trial

(NCT02541370) to evaluate the antitumor effect of CD133

CAR-T cells in patients with advanced HCC. 21 patients were

included and received CD133 CAR-T cells across phases I and II.

Hyperbilirubinemia as the most common high-grade adverse

event, this trial showed feasibility and controllable toxicities.
TABLE 1 Continued

NCT
Number

Phase Antigen CAR-T
Type

Status Sample
Size (n)

Conditions Outcome Measures

NCT05344664 I GPC3 N/A Not yet
recruiting

12 HCC AEs

NCT02729493 II EpCAM N/A
Autologous

Unknown 25 LC DCR

NCT03013712 I/II EpCAM 3rd generation
Autologous

Unknown 60 Basket
including
HCC

1 Toxicity profile 2 Persistence of CAR-T
3 Anti-tumor efficacy

NCT03672305 I c-Met/
PD-L1

N/A
Autologous

Unknown 50 HCC 1 The efficacy of CAR-T in the treatment of HCC 2 AEs 3 The
amplification and persistence of CAR-T

NCT05028933 I EpCAM N/A
Autologous

Recruiting 48 Basket
including
HCC

1 DLT, MTD and AEs 2 ORR, DCR, DOR, PFS, OS 3 Level of
tumor cells in peripheral blood

NCT04348643 I/II CEA N/A Recruiting 40 Basket
including LC

1 AEs 2 Persistence of CAR-T 3 ORR, DOR, PFS and OS 4 Levels
of CEA, IL-6 and CRP in Serum

NCT03993743 I CD147 3rd generation
Autologous

Recruiting 34 Advanced
HCC

1 DLT, MTD and AEs 2 Activity of CAR-T cell
3 CAR-T detection in extrahepatic sites

NCT02541370 I/II CD133 N/A
Autologous

Completed 20 Basket
including LC

1 Occurrence of study related AEs
2 Anti-tumor responses to CAR-T

NCT03349255 I AFP 2nd
generation
Autologous

Terminated 3 Basket
including
HCC

1 DLT 2 Response rate 3 CAR-T cell engraftment

NCT04550663 I NKG2D N/A
Autologous

Not yet
recruiting

10 Basket
including
HCC

1 MTD and AEs 2 Monitoring 3 ORR, PFS and OS
N/A, not available; AEs, adverse events; DLT, dose limiting toxicity; MTD, maximum tolerated dose; ORR, objective remission rate; CR, complete remission; PR, partial remission; PFS,
progression-free survival; OS, overall survival; DOR, duration of response; DCR, disease control rate; DOC, duration of disease control. For more information, please visit the website:
https://clinicaltrials.gov/.
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The median OS and progression free survival (PFS) were 12

months and 6.8 months, respectively. Of 21 evaluable patients, 1

had a PR, 14 had SD for 2 to 16.3 months, and 6 progressed after

T-cell infusion (118).
c-Met

c-Met is a tyrosine kinase receptor encoded by MET proto-

oncogene and can binds to HGF with high affinity (119). As

previously described, c-Met exerts an important role in

metastasis of HCC through c-Met/HGF signaling pathway. c-

Met-targeting CAR-T cells have demonstrated anti-tumor

efficacy in c-Met positive several malignancies such as renal

carcinoma, gastric cancer and breast cancer (120–122). Huang

and coworkers constructed the second and third generation of c-

Met CAR-T and evaluated their anti-tumor abilities in vitro and

in vivo. They confirmed that c-Met CAR-T cells could

specifically lyse HCC cells with the third generation CAR-T

cells displaying more potent anti-tumor capability in vivo (123).

Additionally, to weaken the influence of HCC-suppressive

tumor microenvironment on CAR-T, scientists tried to design

a dual CAR directing c-Met and PD-L1. In comparison with c-

Met CAR-T cells or PD-L1 CAR-T cells, this dual CAR-T

showed increased anti-tumor ability against c-Met+ PD-L1+

HCC cells. Moreover, improved survival persistence was

observed in these dual CAR-T cells (124).
Alpha-fetoprotein (AFP)

AFP is a 70-KDa glycoprotein which is a well-established

biomarker for HCC (125). In most HCC patients, AFP is

detected at elevated levels and is associated with HCC

progression and drug resistance (125, 126). Demonstrated by Liu

et al., intratumoral administration of AFP CAR-T cells efficiently

inhibited both HepG2 and AFP158-expressing tumors in vivo.

Moreover, intravenous injection of AFP CAR-T cells suppressed

tumor growth rapidly and profoundly in tumor-bearing mice. AFP

CAR-T cells also showed potent antitumor activity in an established

intraperitoneal HCC xenograft model (127).
CD147

CD147, a transmembrane glycoprotein belonging to the

immunoglobulin superfamily, is upregulated in kinds of

malignancies, such as non-small cell lung cancer, breast cancer,

and HCC (128, 129). Its involvement in the regulation of the TME

and cancer progression, suggesting its potential as a promising

target in cancers (129, 130). In Zhang’s research, a novel CAR-T

cell system targeting CD147 induced by Doxycycline (Dox) was

developed. The supply of Dox can be terminated immediately
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once severe adverse events occur, in which case the expression of

CD147 CAR on T-cells will return to the baseline within 24-48

hours to minimize potential toxicities of CAR-T cells (131).

Similarly, researchers also developed logic-gated (log) GPC3-

synNotch-inducible CD147 CAR to minimize any on-target/off-

tumor toxicity. LogCD147-CAR selectively lyses dual antigen

(GPC3+CD147+), but not single antigen (GPC3-CD147+)

positive cells and severe toxicity was not occurred in a human

CD147 transgenic mouse model (132). Currently, a phase I

clinical trial (NCT03993743) is ongoing to assess the clinical

response of CD147 CAR-T in patients with advanced HCC.
NK group 2 member D (NKG2D)

NKG2D, a type II transmembrane glycoprotein, is expressed

on all NK cells, CD8+ T cells, some autoreactive CD4+ T cells

and subsets of gd T cells (133). Generally, NKG2D ligands

(NKG2DL) are not detected on normal cells but exhibit

elevated expression on tumor cells, suggesting potential targets

for immunotherapy (134). In Sun’s study, the second generation

human NKG2D CAR-T cells efficiently eliminated the

NKG2DLs-expressing HCC cell in vitro, whereas they less

efficiently killed NKG2DL-silenced or -negative cells; The

subcutaneous xenograft model further illuminated that T cells

expressing the NKG2D CAR effectively suppress tumor growth.

Interestingly, NKG2D CAR-T cells derived from patients with

HCC demonstrated anti-tumor ability and specifically

eradicated NKG2DL-high HCC cells (134).
Other promising targets

At present, various other potential targets for HCC are under

investigated. MUC1 is a transmembrane glycoprotein, whose

aberrant overexpression is identified on the surface of diverse

human malignancies (135). Immunohistochemical analysis

demonstrated that MUC1 was strong positive in 70.8% of liver

cancer, while absent in normal liver tissues. Functionally, MUC1

participates in the migration and invasion by interacting with the

HGF/c-Met and JNK/TGF-b signaling pathway and strongly

correlates with metastasis and poor prognosis of HCC (136–138).

Of note,MUC1CAR-T exhibited antitumor potential against breast

cancer (139, 140). At present, a basket trial of MUC1 CAR-T is

underway in several malignancies including HCC (NCT02587689)

Themelanoma antigen gene (MAGE) protein family consists of

type I and II proteins (141). Normally, numerous MAGE proteins

are only expressed in reproduction-related tissues, but aberrant

expressions are observed in various tumors including HCC (141,

142). MAGE-1 and MAGE-3 mRNA expression is identified in

68% of HCC cases, but MAGE expression was no detected in the

non-tumor samples (143).Wei’s search showed that overexpression
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of MAGE-A9 contributes to stemness and malignancy of HCC

(144). To date, MAGE CAR-T cells for the treatment of lung cancer

is underway in a phase I/II clinical trial (NCT03356808). Little

information is available for MAGE CAR-T in HCC.

Epithelial cell adhesion molecule (EpCAM) is a

transmembrane glycoprotein (145). Immunohistochemistry

analysis revealed that EpCAM is broadly expressed by HCC

and normal adjacent tissues; However, its expression is

upregulated in tumor tissues and associated with poor

prognosis in HCC patients (146). Functionally, EpCAM can

maintain the capacity for malignant proliferation, invasion and

metastasis (147–149). Several clinical trials to evaluate the

EpCAM CAR-T cells for the treatment of advanced HCC are

carrying out (NCT05028933, NCT03013712, NCT02729493).

As a foetal glycoprotein, carcinoembryonic antigen (CEA), is

not usually expressed in significant quantity after birth but can

be overexpressed on the cell surface of various cancers, such as

colorectal, gastric, pancreatic, ovarian and lung cancer (150,

151). Under physiological conditions, the expression of CEA is

restricted to the apical surface of epithelial cells towards the

lumen to avoid recognition by immune cells (151). This unique

expression pattern makes CEA an attractive target for

immunotherapy. Currently, clinical trials using CEA CAR-T

are mainly for the treatment of liver metastasis. A phase I/II

basket trial to evaluate the efficacy and safety of CEA-targeted

CAR-T cells is recruiting patients with relapse/refractory CEA+

tumors including liver cancer (NCT04348643).
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Tumor endothelial marker 1 (TEM1) is the prototypical

member of a family of genes expressed in the stroma of tumors,

cancer cells and pericytes (152). In HCC, TEM1 is mainly

expressed in CAFs and its expression inversely correlates with

patient prognosis (153). TEM1 also contributes to the vascular

adhesion, migration and invasion of tumor cells (105, 153). Julie

et al. successfully constructed a second generation CAR-T to

specifically target TEM1+ cells, confirming TEM1 as an

attractive target for cancer immunotherapy (154).

New York esophageal squamous cell carcinoma (NY-ESO-1), a

promising cancer testes antigen, is expressed by 43.9% of cases of

HCC (155, 156). Very recently, NY-ESO-1 CAR-T cells constructed

by Liu et al. suppressed tumor growth and prolonged the OS of

mice in breast cancer and melanoma model (157).

Challenges and strategies for CAR-T
towards TME

To date, the research of CAR-T therapy for HCC is in full

swing around the world. Given its exceptional success in

hematological malignancies, it may be very promising as a new

approach for HCC treatment in future. But before that, there are

still a series of difficulties remains to be overcome. In addition to

tumor antigen heterogeneity and serious adverse events, the TME

plays a non-negligible role in compromising the efficacy of CAR-T

in HCC (Figure 3), and scientists are making much efforts to solve

these problems (Figure 4).
FIGURE 3

Challenges for CAR-T cells in TME. Aberrant vasculature and extensive ECM forms the special physical barriers making it difficult for CAR-T to
efficiently traffic and infiltrate towards tumor tissues. Due to aberrant vasculature and the enhanced metabolism of tumor, CAR-T cells grow in a
hypoxic, acidic and nutrition-deprivation milieu. Besides, immunosuppressive cellular and noncellular components can deactivate T cells via
diverse mechanisms.
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Trafficking towards and infiltration into tumor tissue is a

prerequisite for CAR-T cells to exert the anti-tumor function.

Different from hematological malignancies, where CAR-T can

directly target malignant cells, regarding to solid tumors, CAR-

T need to traffic to the tumor lesions to bind to their target,

which is often greatly limited by the hostile TME. On the one

hand, special physical barriers such as abundant and

aberrant neovascularization, wide gap of vessel walls,

extensive vascular leakage and ECM make it difficult for

CAR-T to efficiently go home to tumor tissues (158, 159).

Obviously, HCC that develops from liver fibrosis and cirrhosis

are highly fibrotic, which hamper CAR-T to traffic and

infiltrate into tumor sites physically. On the other hand, solid

malignancies often secret chemokines such as CXCL1, CXCL2

and CXCL5 to impede the migration and penetration of T cells

(160, 161). Theoretically, regional delivery of CAR-T can
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compensate for poor trafficking while reducing systemic

tox i c i t y l i nked wi th in t r avenous admin i s t r a t i on

(162). Notably, regional delivery of CAR-T cells to treat

malignant pleural diseases has proven feasible, safe and

demonstrated antitumor activity in a phase I trial (163). It

was reported that inducing secretion of enzymes by CAR-T

cells (eg. heparanase) to degrade ECM have resulted in

improved infiltration (164). As aforementioned, the addition

of CCL19 in CAR-T treatment improved CAR-T cells

infiltration and survival in mice (114). Besides, optimizing

CAR-T cells to express the corresponding receptors of

chemokines derived from tumors appears to remarkably

improve CAR-T cell trafficking. In HCC, CXCR2-expressing

CAR-T cells significantly accelerate trafficking and

accumulation in tumor, and exhibit improved anti-tumor

efficacy (165). Overexpression of other chemokines receptors
FIGURE 4

Strategies for CAR-T cells to overcome hostile TME. Regional delivery allows CAR-T cells to reach the tumor site directly. Inducing secretion of
enzymes by CAR-T (eg. heparanase) to degrade ECM and optimizing CAR-T to express chemokines/chemokines receptors appears to
remarkably improve CAR-T trafficking and infiltration. Disrupting the PD-1 expression on CAR-T cells or silencing/reversing the PD-1/PD-L1 axis
can augment CAR-dependent antitumor activity. And modifying CAR-T to secrete pro-inflammatory factors may be an effective strategy against
the inhibitory tumor microenvironment.
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such as CXCR1 and CXCR4 also provide the advantage of

penetration for therapeutic T cells (166, 167).

Unfortunately, even after migration into the tumor lesions

successfully, it is still harsh for CAR-T cells to survive in a hostile

milieu with various immunosuppressive factors (168). Firstly,

TME is characterized by hypoxia, acidosis and nutrients

deprivation resulting from the enhanced glycolytic metabolism

of tumor cells (105). Secondly, as previously mentioned,

immunosuppressive cellular components such as MDSCs,

CAFs, TAMs and Tregs can deactivate T cells via diverse

mechanisms including the production of tumor facilitating

cytokines and growth factors. Thirdly, immune checkpoints

like PD-1 and CTLA-4 in TME can act as suppressors to

compromise antitumor immunity (168). Thus, combination

checkpoint blockade with CAR-T cells is considered as the

next immunotherapy modality. To date, much efforts to

overcome these problems has been made. Christopher et al.

constructed PSMA CAR-T cells which express a dominant-

negative receptor (DNR) to block TGF-b signaling, and results

showed that these T cells exhibit increased proliferation,

cytokine release, decreased exhaustion and long-term

persistence in vivo (169). Disrupting the PD-1 expression on

CAR-T cells to evade PD-1/PD-L1 pathway has proven to

augment CAR-dependent antitumor activity (170, 171). Given

its improved efficacy in mesothelioma, combination checkpoints

antibody with CAR-T after lymphodepletion may provide more

possibilities for tumor immunotherapy (163). In addition, other

investigations focusing on the pro-inflammatory cytokines

instead of inhibitory signals have been carried out (172, 173).

It was reported that inducible expression of IL-12 in CAR-T

could boost antitumor activity in HCC (172).
Conclusion

HCC is a highly heterogeneous malignant tumor. Its

carcinogenesis and progression are the consequence of the

interaction of multiple factors and mechanisms. The tumor

microenvironment is an intricate network that plays a pivotal

role in the evolution of HCC. Enhancing our knowledge of

mechanisms of carcinogenesis and development in HCC will

greatly benefit the exploration of novel therapeutic modalities.

The success of CAR-T therapy in hematological malignancies

demonstrates the potential of immunity and also bring the light

of HCC immunotherapy, but more efforts are needed to improve
Frontiers in Endocrinology 12
its antitumor efficacy and safety before its widespread clinical

application. Moreover, the role of TME in the treatment of HCC

with CAR-T cells cannot be ignored. We are optimistic about

that with the further in-depth study of cancer molecular

biology and immunology, the treatment of HCC will finally

usher in the dawn.
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