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model using the symmetric
positive definite matrices for
cross-subject EEG classification
with meta-transfer-learning
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The electroencephalography (EEG) signals are easily contaminated by various

artifacts and noise, which induces a domain shift in each subject and

significant pattern variability among di�erent subjects. Therefore, it hinders

the improvement of EEG classification accuracy in the cross-subject learning

scenario. Convolutional neural networks (CNNs) have been extensively applied

to EEG-based Brain-Computer Interfaces (BCIs) by virtue of the capability

of performing automatic feature extraction and classification. However, they

have been mainly applied to the within-subject classification which would

consume lots of time for training and calibration. Thus, it limits the further

applications of CNNs in BCIs. In order to build a robust classification algorithm

for a calibration-less BCI system, we propose an end-to-end model that

transforms the EEG signals into symmetric positive definite (SPD) matrices

and captures the features of SPD matrices by using a CNN. To avoid the

time-consuming calibration and ensure the application of the proposed

model, we use the meta-transfer-learning (MTL) method to learn the essential

features from di�erent subjects. We validate our model by making extensive

experiments on three public motor-imagery datasets. The experimental results

demonstrate the e�ectiveness of our proposed method in the cross-subject

learning scenario.

KEYWORDS

EEG, Motor imagery, SPD matrices, CNN, Meta-transfer-learning

1. Introduction

An EEG-based Brain-Computer Interface (BCI) is a system to measure and

analyze the electroencephalography (EEG) brain signal (Rao, 2013), thus enabling the

communication or interaction between the brain and external environment (Kothe and

Makeig, 2013). Recent research has opened up the possibility for EEG signals to apply in

rehabilitation (Tariq et al., 2018), entertainment (Nijholt et al., 2008), and transportation

(Göhring et al., 2013) because of the harmless, non-invasive, and inexpensive features

of the EEG-BCI. Motor imagery (MI), which refers to the mental simulation of body
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movements, is a famous paradigm of the EEG-BCI system (Lotze

and Halsband, 2006). MI signals are widely used in the BCI

system (Alamgir et al., 2010; Arvaneh et al., 2013; Jayaram et al.,

2016) because of their flexibility in reflecting the bioelectrical

activity of the brain. These signals attract increasing attention

in rehabilitation therapy (Naseer and Hong, 2013, 2015; Hong

et al., 2015).

However, due to the separation between the signal source

(inside the human brain) and the detector, the EEG signals

would be easily contaminated by various artifacts and noise,

including muscle movements, eye blinks, heartbeats, and

environmental electro-magnetic field in the applications of the

BCI-system. This phenomenon induces a domain shift in each

subject, even in different sessions of the same subject (Reuderink

et al., 2011), and exhibits significant pattern variability between

different subjects. Consequently, it hinders people from using

the data generated from different subjects to improve the

performance of the BCI system (Lotte and Guan, 2010) and

increasingly reduces the accuracy and stability of EEG cross-

subject classification. Currently, the users of the BCI-system

have to provide tons of EEG-data to build a user-specific

classifier so that the system can work properly. Accordingly, it

greatly lengthens the time of calibration of the BCI system and

heavily inhibits BCI-system development.

To overcome this problem, lots of methods are proposed

to eliminate the shifting problem of data distribution among

different subjects. Rodrigues et al. (2018) present a transfer

Learning approach to match the statistical distributions of

different sessions/subjects. This method allows the BCI systems

to reuse the data from different users and reduce the calibration

time. He and Wu (2019) propose a Euclidean Space Data

Alignment Approach to align the time-domain EEG trials in

the Euclidean Space and alleviate the domain shift between

different sessions and subjects successfully. However, this

kind of data-augmentation method normally classifies the

data by the traditional geometry-aware classifiers (such as

support vector machine and the minimum distance to mean

classifier) (Barachant et al., 2013), which are insufficient for

feature extraction. Also, it requires people to use certain prior

knowledge of brain science.

With the development of machine learning, deep learning

technology has been applied to extract discriminative features

from EEG (Lotte et al., 2018) and many model-based

learning algorithms have been proposed for MI-EEG cross-

session/subject classification (Wu et al., 2020). Schirrmeister

et al. (2017) focus on the application of different CNN

architectures in EEG-MI classification and design an efficient

network architecture to decode information from the EEG-MI

signal. This method shows the powerful feature extraction ability

of CNN and draws a great deal of attention to the applications of

CNN in the BCI system. Lawhern et al. (2018) propose a brand-

new compact CNN-based model called EEGNet, which contains

depth-wise and separable convolutions to extract the descriptive

information from EEG signal directly. This network structure is

robust enough to learn a wide variety of interpretable features

over a range of BCI tasks in cross-session/subject learning

and gain outstanding classification performance. Fahimi et al.

(2019) propose an inter-subject transfer learning framework

built on top of the CNN model which is fed into three different

EEG representations and transfers knowledge between different

subjects thus avoiding time-consuming re-training. However,

this kind of network focus on the feature extraction of EEG

signal and their performances would deteriorate when the data

of the user are insufficient, especially in the few-shot scenario of

cross-subject learning.

In the most recent studies, meta-learning, which is a task-

level learning method, has seen substantial advancements in

computer vision and speech recognition recently (Vanschoren,

2018). This kind of learning method helps the neural network to

extract usable features from related tasks and largely increases

the generalization ability of the neural network. Li et al.

(2021) use the training method called Model-Agnostic Meta-

Learning (MAML) (Finn et al., 2017) and build the CNN-

based classifier which combines one and two dimensional-CNN

layers to improve the accuracy of the MI-EEG classification.

However, these kinds of meta-learning structure are very

sensitive to neural network architectures (usually shallow neural

networks), which often leads to instability during training and

easily induces overfitting problems. Therefore, it limits the

effectiveness of meta-learning.

In consequence, given the above, an effective model that

is capable of capturing essential features and a robust meta-

learning method are both essential to cross-subject learning

in EEG classification. The symmetric positive definite (SPD)

matrices have been widely used in motor imagery EEG-based

classification over the past few decades (Barachant et al., 2013;

Xu et al., 2021), because of their capacity to capture informative

structure from the data (Huang and Van Gool, 2017). In terms

of the ability to capture input data structure, the CNN has the

powerful capability of extracting features of two-dimensional

matrix-shape data (LeCun et al., 1998; Krizhevsky et al., 2012)

and the SPD matrices are one of the two-dimensional matrix-

shape data. Therefore, Hajinoroozi et al. (2017) combine the SPD

matrices of EEG data and the deep learning method and present

a series of deep covariance learning models for drivers’ fatigue

prediction, which explore the potential of this kind of method

for the application of BCI system. Inspired by this, we propose

a plain CNN-based model called SPD-CNN, which transforms

the EEG signal into the SPD matrices and uses a CNN with

five convolutional layers to capture the features of SPDmatrices.

Also, we apply a cutting edge meta-updating strategy called the

meta-transfer-learning (MTL) (Sun et al., 2019) which combines

the advantage of transfer learning and meta-learning to extract

the subject invariant features and alleviates the shifting problem
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TABLE 1 Key information of the three MI-EEG datasets used for experiences.

Dataset
Number Trails

Class
Band pass Number of

of subjects per subject filter (Hz) electrodes channnels

BNCI2014001 9 576 4 4–250 22

BNCI2015004 9 400 5 0.5–100 30

Sch2017 14 1,000 4 4–250 128

TABLE 2 Table of symbols used in the article.

Symbols Meaning

F(2, θ) The classification network with parameter 2 and θ

2, θ The parameter of the feature extractor block and the classifier block

2pre ,2meta The parameter after the pre-train phase and the meta-adaption phase

f (2, θ) The network after the F(2, θ) is upgraded by specific task

X The multiple time-series of a EEG matrix

C The covariance matrix estimated by X

Dtr ,Dval ,Dte Dataset D for Training,Validation and Testing phase

Ti The specific task which is sample from the D

li The loss function in task i during the inner-loop

Lφ The meta loss function in meta training

between the source domain (training subjects) and the target

domain (test subjects). The major contributions of this article

can be summarized as follows.

• The SPD-CNN model we proposed uses the SPD

matrices of the EEG signal as descriptors to highlight

the spatial information of the EEG-MI signal and

reduces the diversity of EEG data characteristics of

different subjects. Additionally, the proposed descriptor

tremendously decreases the size of data and effectively

reduces the difficulty of feature extraction.

• Using the MTL as our learning strategy helps the network

extract the crucial features. In other words, it can transfer

the domain knowledge between different subjects during

the training process and enhance the robustness of the

network in the BCI system.

• To the best of our knowledge, the network we proposed

is simple to design and has fewer parameters than most

networks for EEG classification currently. Therefore, it

could simplify the training process tremendously and

shortens the training time extremely.

The remainder of the article is organized as follows. Section

2 presents the framework of the proposed approach. Section

3 describes the experimental settings, then shows the results,

and provides a comprehensive analysis. The effectiveness of

the proposed SPD descriptor is discussed in Section 4 and the

conclusion is summarized in Section 5.

2. Materials and methodology

2.1. Data description

We present examples with three public EEG-MI

datasets which are BNCI2014001 (Tangermann et al., 2012),

BNCI2015004 (Scherer et al., 2015), and Sch2017 (Schirrmeister

et al., 2017).

BNCI2014001 consists of the EEG data from 9 subjects

and this MI-paradigm consists of four different motor imagery

tasks that the subjects are required to make the imagination of

movement of the left hand, right hand, both feet and tongue.

The EEG Signals are recorded with 22 electrodes at a 250 Hz

sampling rate and two sessions were recorded for each subject.

Each session is composed of 6 runs separated by short breaks.

One run consists of 48 trials (12 for each of the four possible

classes), yielding a total of 288 trials per session.

BNCI2015004 is a 30-electrode dataset obtained from 14

subjects with disability (spinal cord injury and stroke). The

dataset consists of five classes of imagined movements of right-

hand and feet, mental word association, mental subtraction, and

spatial navigation. The EEG signals are recorded at a 250 Hz

sampling rate, and two sessions were recorded for each subject.

Each session consists of 8 runs, resulting in 40 trials of each class.

The EEG signals were bandpass filtered 0.5–100 Hz and sampled

at a rate of 256 Hz.

Sch2017 is a 128-electrode dataset obtained from 14 healthy

subjects [6 women, 2 left-handed, age 27.2 ± 3.6 (mean ± std)]

and this MI-paradigm consists of four different motor imagery

tasks which ask subjects to make the imagination of movement

of the left hand, right hand, both feet, and rest (no movement),

with roughly 1,000 four-second trials of executed movements

divided into 13 runs (each run consist of the approximately 1,000

trails per subject.

Three datasets mentioned above are publicly available on the

"Mother of all BCI Benchmarks"(MOABB) framework (Jayaram

and Barachant, 2018).In the experiment section, the subjects in

the same dataset will be divided into training subjects, validation

subjects, and test subjects who provide data for the training

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2022.958052
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen et al. 10.3389/fnbot.2022.958052

FIGURE 1

Overall visualization of the SPD-CNN architecture. It starts with an SPD descriptor to transform EEG into SPD matrices, then the matrices are

encoded by Feature Extractor Block and flattened as the input data of the classification block. In the classification block, the features are passed

to a two-fully connected layer and put into a soft-max classification with K units, K is the number of classes in the data.

set, validation set, and test set for the cross-subject learning

experiments, respectively. More details can be seen in Table 1.

2.2. SPD-CNN model

Table 2 gives a brief description of the mathematical symbols

that will be used in the rest of the article.

As mentioned above, we are particularly interested in

the case where the SPD matrices are spatial covariance

matrices, which describe the second-order statistics of zero-

mean multivariate time series. We assume that the information

on the power and spatial distribution of EEG sources can be

coded by a covariance matrix. Therefore, the spatial covariance

matrixC of a T-sample realization of a zero-mean d-dimensional

time series (d being the number of electrode channels) X ∈

Rd
×T , is estimated as

Ci =
1

T
XT
i Xi, i = 1, 2, . . . , n (1)

where Xi is the sample from the EEG dataset D = {Xi, i =

1, 2, · · · , n} and n is the total amount of samples in dataset D.

Based on the analysis above, we develop a covariance matrix

estimator called the SPD descriptor that captures not only

the diversity among different electrode channels but also the

statistical properties of EEG image regions. The descriptor is

capable of estimating the d × d covariance matrix of the EEG

features mentioned in Equation (1). Then, these matrices are

normalized with the whole sample setmentioned in Equation (2)

to improve the numerical stability of the model. Consequently,

the network is able to focus on the critical features and accelerate

the learning process (Shanker et al., 1996).

C∗i = (Ci − Cmean)

/

Cstd, i = 1, 2, · · · , n (2)

where Cmean, Cstd is the mean and SD of covariance matrix

set C = {Ci, i = 1, 2, · · · , n} and C∗i is the output sample

of the descriptor.

TABLE 3 Basic parameter of SPD-CNNmodel.

Block Layers Size andKernel Activation

Feature extractor

Conv1 4× (2× 2) Relu

Conv2 8× (2× 2) Relu

Conv3 16× (2× 2) Relu

Max− pool (2× 2) -

Conv4 32× (2× 2) Relu

Conv5 64× (2× 2) Relu

Clasiifier FC 2× 32 softmax

In the Feature Extractor block,Conv means a convolutional layer and FC represents a

two-layer fully-connected network, with 32 neurons inside the hidden layer as shown in

Figure 1.

After being processed by the SPD descriptor, the

d × d matrices are taken into a Feature Extractor

block. This block contains five convolutional layers

(Conv1,Conv2,Conv3,Conv4,Conv5) with minimum

convolution kernel (2 × 2). Then the output data from

Feature Extractor were flattened and taken through a classifier

block with a two-layer fully-connected network (FC) onto

the BCI outputs. A whole visualization and full description

of the SPD-CNN model can be found in Figure 1 and

Table 3.

2.3. Training structure and learning
strategy

Our training structure is to help the model extract the

key features through learning a better initial set of parameters

from various tasks of different subjects. Hence, the network

gains a fast adaption to new user tasks using only a few data.

This learning strategy is based on the assumption that the

EEG data from different subjects share the same representative

features. These features are just masked by the effect of

individual variation and wide discrepancy in the experiment
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FIGURE 2

Workflow of our training framework. The dataset for training, validation, and test process is displayed on di�erent rectangular regions with the

colors blue, yellow, and red, respectfully. The picture of human heads in di�erent colors (such as purple, blue, yellow, brown, and red) with a

hand or feet inside represent the data from di�erent subjects doing motor-imagery tasks. The black horizontal lines with a black arrow represent

the change of the parameter of the neural network and the colorful vertical and horizontal lines (such as purple, blue, gray, and green) indicate

the direction of data flow. In addition, the black gears in the circle represent the update process of parameters. (A) Pre-train phase, (B)

Meta-update phase, and (C) Domain-adaption phase.

FIGURE 3

Diagram of parameters variation through the learning process in di�erent phases. (A) Pre-train phase, (B) Meta-update phase, and (C)

Domain-adaption phase.

environment. In this section, we illustrate the main idea of

MTL and describe its application in the EEG cross-subject

learning scenario.

The MTL combines the advantage of transfer

learning and meta-learning structure. This training

method uses the fine-tune skill and model-agnostic

meta-learning (MAML) algorithm (Finn et al., 2017)

with a novel constrained setting on network parameters

called scaling and shifting (SS) operation to solve the

overfitting problem. Hence, our training framework

consists of three parts: Pre-train, Meta-updating, and Fast

adaption. The whole workflow in this framework is shown

in Figure 2.

As shown in Figures 2, 3, in the Pre-train phase, data of

training subjects are merged randomly into a training dataset

Dtr for classifier F(2∗, θ∗). The network F with initialized

parameter (2∗, θ∗) is optimized by the traditional gradient

descent method (refer to Equation 3) and gains the better

initialized parameter(2pre, θpre).

[2∗; θ∗] = :[2∗; θ∗]− α∇LDtr ([2
∗; θ∗]) (3)

where α is the learning rate of and LDtr denotes the most

frequently used empirical loss in machine learning like cross-

entropy (Zhang and Sabuncu, 2018). This process neglects the
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FIGURE 4

In each radar picture, every axis is assigned a variable that represents the classification accuracy of the specific subject (such as 1:subject1 and

2:subject2) and the di�erent colors represent di�erent network architectures (Blue:EEGNet,Red:DeepConvNet,Green:SPD-CNN).Also, the radar

pictures arranged in the same column are shown the performance of experiences in the same dataset. The subgraph (A) represents the

experiments that train the network with the ML method using zero-shot in the target domain. The subgraphs (B,C) represent the experiments

that train the network with TL and MTL methods, respectively and fine-tune the network using 10shot on the target domain.

domain shift from different subjects and provides a rough

direction for the network to upgrade the parameter.

In the meta-update phase(b), we randomly re-initialize the

parameter θ∗ first and use the MAML structure (Finn et al.,

2017) as a training structure with constraining parameter 8ss.

The 8ss is updated by Equation (4) as follows,

8ss = :8ss − λ∇8ssLTi1 ,··· ,Tin
([2; θ],8ss) (4)

where λ is the learning rate during the update process of 8ss.

The main idea of constraining parameter 8ss is to restrict the

learning process of weight and bias in each convolutional layer,

which means the weights and the biases of the same CNN layer

are scaled and shifted as a whole, respectively.

To be specific, the weights W in the same CNN layer

will time a scaling factor 8s1 and the biases b in the same

CNN layer will add a shifting factor 8s2 through an update

process. Assuming X is the input data, the SS operation could

be expressed by Equation (5).

SS(X; ,W, b;8s1 ,8s2 ) = (W ⊙8s1 )X + (b+8s2 ) (5)

where ⊙ denotes the element-wise multiplication (For details,

refer to the article by Sun et al., 2019).

Inside the MAML learning framework, we sample the data

of j classes (where j is the number of ways in few-shot learning)

from the same training subject for a task. Therefore, each

subject-specific task is seen as an independent sample of the

same classification problem.
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FIGURE 5

The aim of this radar picture is to show the di�erent performances using di�erent training methods and di�erent colors represent di�erent

training strategies (Blue:ML,Red:TL,Green:MTL).The three subgraphs (A–C) represent the classification performance of the three models,

respectively.

More specifically, the train set Dtr was segmented into

different training tasks Tik and test tasks T∗ik
,where Tik ⊂ T =

{Ti1 ,Ti2 , ...Tin} and T∗ik
⊂ T∗ = {T∗i1

,T∗i2
, ...Ti∗n}, n being the

number of tasks in meta-learning. Significantly, the data of Tik
and T∗ik

are sampled from the same training subject xi and the

data of the subject-specified task (Tik or T∗ik
) are divided into

training data and test data for the training process. As a result,

the generalized model F(2pre, θ∗).

will be trained into different subject-specified networks

f (2pre, θ ik ) by gradient descent method. Also, after training the

fik (2
pre, θ ik ) with the training data of the test task T∗ik

again and

calculating the loss function based on the test data of the T∗ik
,

each network f (2pre, θ ik ) would generate subject-specified loss

lik . After updating the parameter 2pre several learning epochs,

which is guided by themeta-loss L(2) based on different subject-

specified loss lik (refer to Equation 6), the parameters 2meta

with better generalization ability are selected by validate set Dval

through the meta-validation process.

L(2)T =
∑

lik , k = 1, 2, · · · , n (6)

In the domain-adaption phase(c), we fix the parameter of

Feature Extractor 2meta learned from the Meta-update phase

and use the Fine-tune skill to train a user-specify network

f (2meta, θuj ), which is greatly adapted to the user uj pattern. In

this process, a few data of the user from the test set are used to

train the F(2meta, θ∗) into f (2meta, θuj ) and the parameter of

the classifier block is updated by the Equation (7).

θ∗
′

← θ − β∇θLTuj
([2meta; θ∗],8ss) (7)
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TABLE 4 The 4-way, 10-shot, and 5-shot classification accuracy (%) on three datasets (5-way for BNCI2015004).

Dataset BNCI2014001

Method
ML TL-10 MTL-10 TL-5 MTL-5

Network

EEGNet 37.65±2.847 35.25±2.7 35.95±3.56 28.68±3.17 29.84±3.15

DeepConv 33.96±3.14 38.75±4.32 38.8±3.9 34.52±3.52 35.64±3.4

SPD-CNN 36.88±3.56 46.78±2.78 47.44±4.1 42.99±2.78 43.39±2.63

BNCI2015004

EEGNet 20.88±2.72 21.22±3.32 22.76±2.36 21.3±4.28 22.79±3.4

DeepConv 20.46±2.23 21.37±2.21 23.29±3.02 21.74±3.76 22.47±4.31

SPD-CNN 22.74±2.45 27.92±3.3 28.57±2.58 25.62±3.63 26.82±3.77

Sch2017

EEGNet 50.2±4.23 48.07±3.91 49.27±3.12 43.82±4.21 45.13±4.26

DeepConv 44.25±3.06 56.02±3.49 59.22±4.39 51±2.67 56.4±3.53

SPD-CNN 50.44±3.04 56.31±4.53 56.92±3.79 51.13±3.44 52.94±3.67

Each accuracy is averaged over all subjects and folds. (in 95% confidence level). Bold values represents best results in this set of experiments.

TABLE 5 The time complexity and scale of the dataset for di�erent

networks are compared in this table.

Method EEGNet DeepConvNet SPD-CNN

Dataset Training Time (minute)

BNCI2014001 48 m 156 m 23m

BNCI2015004 52 m 179 m 36m

Sch2017 218 m 418 m 175m

Data Size(Gigabyte)

BNCI2014001 0.89G 0.016G

BNCI2015004 1.5G 0.022G

Sch2017 30.8G 1.7G

In this table, we train different network architectures using MTL, then calculate the scale

of input data and the average consuming time of all folds. Bold values represents best

results in this set of experiments.

where β is the learning rate during the update process. After this

phase, the network is greatly adapted to the situation of user uj

and gains better prediction in the BCI system.

3. Experiments and results

Our experiments aim to assess whether SPD-CNN is

capable of extracting the discriminative information of EEG

data recorded from different subjects and evaluate the transfer

capacity of our proposed learning structure in the cross-subject

scenario based on the recognition accuracy in the few-shot

learning framework.

3.1. Implementions details

We conduct normal machine learning and few-shot

learning experiments on the cross-subject scenario. In these

experiments, we compare SPD-CNN with two wildly used

models, DeepConvNet (Lawhern et al., 2018) and EEGnet

(Schirrmeister et al., 2017), which perform well on EEG

classification with code publicly available. The experiments show

the different performance of classification between our training

strategy and the benchmark of transfer learning methods

in EEG classification.

In the experiences of datasets BNCI2014001 and

BNCI20150004, we choose three subjects for the validation set,

two subjects as the user for the test set and all the remaining

subjects for the training set randomly. This choosing process

repeats 18 times, thus, producing 18 different folds. We follow

the same procedure for the experiences of dataset Sch2017

except we increase the number of validate subjects to 5 and

generate 28 folds.

In the few-shot scenario, we consider the 4-class

classification (5-class classification for BNCI2015004), so

we sample 4-class(5-class classification for BNCI2015004),

5-shot/10 shot episodes to contain 5 or 10 samples for a train

episode and 10 samples (each class) for episode test.

The parameter of the network in our experiments are

initialized by the normalization method from He et al. (2015)

and the whole model is trained by Adam optimizer (Kingma

and Ba, 2014). The learning rates α, λ, and β of all learning

phases are initialized as 0.001 and dropped by 1% every 10

epochs. All the loss functions are the normal form of cross-

entropy cause there is no sample imbalance problem in all

datasets (Fatourechi et al., 2008). In the Pre-train phase, the

batch size is set to 64 and the network will be trained 50 epochs

in each fold. In the experiments of MTL, each task is sampled

from the same subjects of all classes evenly in the meta-update

phase. Furthermore, we use 60 tasks that form 12 meta-batch(5

tasks for each meta-batch) in one training update loop and

choose 30 random tasks for meta-validation and meta-test. In

the meta-update phase, the network will be trained 40 epochs in

each fold.
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FIGURE 6

The disparity among five subjects of two classes, right hand and feet, which are on the left and right of the figure, respectively. (A) The

visualization of sample distributions of raw EEG data. (B) The visualization of sample distributions of the SPD matrices.

All the models were implemented based on PyTorch (Paszke

et al., 2019) and trained on a single GPU of 12 GB TITAN-Xp

with Intel Xeon CPU E5-2620 v4 as CPU. More details can be

found in the GitHub repository https://github.com/sabinechen/

SPD-CNN-Using-Meta-Transfer-Learing-EEG-Cross-Subject-

learning.

3.2. Experimental evaluation

To show the effectiveness of ourmodel and learning strategy,

we design some comparative experiments and ablative settings:

Three networks are trained on the chosen dataset using Normal

Machine Learning (ML), Transfer Learning (TL), and MTL

method. In the experiments of ML, we train the networks from

scratch only using the source-domain data, which is also called

zero-shot.In the experiments of TL, we pre-train the networks

on the source domain and fine-tune the classifier block of the

networks on the target domain (5-shot and 10-shot). Figures 4, 5

provide a qualitative summary of the results for the cross-subject

classification accuracy.

Figure 4 gives an overall picture of the performances

obtained by training EEGNet, DeepConvNet, and SPD-CNNnet

on the target domains (10shot) with three learning strategies:
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ML, TL, and MTL. It shows that the three networks show

noticeably varying patterns in the accuracy of different subjects

in cross-subject learning. The green area, which represents the

performance of SPD-CNN, almost covers other different color

areas. It reveals that SPD-CNN has the remarkable ability to

transfer source domains (train set) to the target domain (test set)

in three datasets.

Figure 5 gives an overall picture of the performances of

using different learning strategies on different networks. It shows

that the coverage area of MTL is more evenly distributed in

all dimensions than other learning strategies in most cases,

indicating that the MTL strategy performs better than the

other two learning strategies in the experiments. Therefore, we

can conclude that the MTL learning strategy strengthens the

generalization ability and robustness of the networks.

Furthermore, we present the accuracy of different

experiments and give a quantitative summary of the results in

Table 4 below.

As can be seen in Table 4, there was a statistically significant

difference in the performance of different models [Friedman

Test X2
(15)
= 16.53, p = 0.0002 < 0.05, Post-hoc analysis

with Wilcoxon signed rank tests was conducted] and our model

outperforms EEGNet (p = 0.0003 < 0.05) and DeepConv

(p = 0.005 < 0.05) in most cases through vertical comparison

in the table.

Also, there was a statistically significant difference in the

performance of different learning structures [X2
(9)
= 8.67, p =

0.013 < 0.05] and our learning structure (MTL-10) outperforms

the traditional learning structures (TL-10: p = 0.0039 < 0.05,

ML: p = 0.019 < 0.05) by a margin of 0.4–5.4% on accuracy

through horizontal comparison and the improvement is much

more evident when the data provided by the user for fast

adaption (number of shots) is fewer in most cases. Furthermore,

DeepConvNet gains much more improvement (about 3–5% in

Sch2017) through MTL learning strategy than EEGNet and

SPD-CNN net with shallow layers and little parameters. It

suggests that the SS operation of MTL can effectively avoid the

problem of “catastrophic forgetting” (Lopez-Paz and Ranzato,

2017) (It means forgetting general patterns when adapting to

a specific task) and as a result, the performance advantage of

large-scale CNN is unleashed thoroughly, especially facing with

large-scale data.

Nevertheless, there is no free lunch, DeepConvNet required

complex network design, and this kind of large-scale network

architecture needs a high level of hardware, which consumes lots

of time on the design and calibration in the BCI system. To be

specific, the comparison of time complexity and the scale of data

of neural networks are shown in Table 5. Table 5 shows that SPD-

CNN has a high speed of convergence and shorter training time,

which are attributed to the small-scale input data and the plain

network structure with little parameter.

As described above, it can be concluded that the proposed

SPD-CNN with few learnable parameters has a stronger feature

extraction ability to find an approximate boundary to separate

TABLE 6 The averaged Euclidean distance among di�erent subjects of

SPD matrices and EEG data in the feature space.

Class Euclidean Euclidean

distance distance

(SPDmatrices) (EEG data)

Right hand 8.85 13.85

Feet 8.71 13.72

Left hand 8.90 13.86

Tongue 8.33 13.96

different samples from different labels, when the datasets

are well described in the SPD manifold. Moreover, with the

improvement coming from the MTL learning structure, the

CNN-based model would rapidly adapt to the target domain

with efficient usage of target data without forgetting key features

learned from the source domain.

4. Discussion

4.1. Analysis of the SPD descriptor

Extensive experiments above show that the SPD matrices

are capable of retaining the discriminative information of brain

activity and the information can be effectively extracted by the

proposed network.

To study the impact of different data descriptions in the

cross-subject learning scenario, the raw EEG data and the SPD

matrices of different subjects in BNCI2014001 were reduced

to two dimensions by Principal Component Analysis (PCA)

and all the samples from the same class were projected to

this 2D feature space (Zhang et al., 2018). Consequently,

the sample distributions of the different subjects could be

visualized in Figure 6. Then we use averaged Euclidean distance

to quantitatively measure the distance among different subjects

in the feature space, and the result are shown in Table 6.

The results of Figure 6 and Table 6 revealed that the gaps in

the sample distributions among different subjects were closed by

transforming the EEG data into SPD matrices.

4.2. Limitations and future directions

Though the proposed network and learning strategy have

achieved great performance in the cross-subject scenario, the

limitation is still involved in the current study. For the

experiments, we only validate our method on the paradigm of

motor imagery and the effectiveness of our method on the other

paradigm in the EEG-BCI system is still unclear. Therefore,

in future studies, we will focus on the other paradigm such

as Steadystate Visually Evoked Potential (SSVEP) datasets and

further explore the potential of the proposed approach.
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5. Conclusion

In this study, we represent a brand-new model to extract

cognitive information from EEG data. Compared with the two

famous EEG networks, which utilize different convolutional

layers to learn specific filters, we transform EEG signals into

SPD matrices and design a plain CNN to learn the essential

features from it. Considering the shifting problem between

different subjects, we use theMTL training strategies to train our

model and related experiments show that our training strategy is

capable of keeping the adaptation ability of the networks while

significantly reducing the number of parameters to transfer. It

can be concluded that our proposed model performs well in the

cross-subject learning scenario.

Our contribution is part of a larger effort in the BCI

learning research, intending to design robust algorithms which

use the experience of deep learning in image recognition to

mitigate inter-subject variability (Xu et al., 2021) and extract

shared information between different subjects. Besides, it is

easy to notice that we could use more complex CNN-based

models, which have the powerful feature extraction ability for

SPD data. Given that, the topic considered here also opens

several important questions to be investigated in the future. For

instance, considering the feasibility of the network to extract the

characteristics of the SPD data, to determine how to design the

specific network architecture for this kind of data is promising

research. Furthermore, with the feature expression based on the

SPD form, data formats of different experiments in the same

paradigm can be unified, and it allows us to gather information

from several databases and use the CNN-based model to form a

more robust classifier in the future.
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