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Some neurons are more equal than others: neuroscience relies heavily on the notion
that there is a division of labor among different subtypes of brain cells. Therefore, it is
important to recognize groups of neurons that participate in the same computation or
share similar tasks. However, what the best ways are to identify such collections is not
yet clear. Here, we argue that monitoring the activity of genetically defined cell types
will lead to new insights about neural mechanisms and improve our understanding
of disease vulnerability. Through highlighting how central cholinergic neurons encode
reward and punishment that can be captured by a unified framework of reinforcement
surprise, we hope to provide an instructive example of how studying a genetically
defined cell type may further our understanding of neural function.
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INTRODUCTION

In 2014 Mahlon DeLong and Alim-Louis Benabid got the Lasker prize for deep brain stimulation,
serving as a vivid reminder that one of neuroscience’s greatest clinical success stories was based
on diligent – and often tedious – recording of hundreds of basal ganglia neurons from monkeys
(DeLong, 1969, 1971; Wichmann and Delong, 2002, 2006). Although those recordings were done in
the seventies and eighties, similar electrophysiology experiments are still vital today. For instance,
amidst the gloomy mood ensuing the disappointing outcome of the phase 3 clinical trials of anti-
amyloid antibodies for treating Alzheimer’s disease, a commentary in Nature asserted that “the
biggest clues (for therapy) will come from monitoring collections of neurons” (Kosik, 2013).

As often as not, the devil is in the details: what defines a ‘collection’ of neurons? The way
we choose which neuronal pool to study will determine the interpretation and impact of our
experiments – and it is usually far from trivial to pick the ‘right’ collection. Indeed, sampling
random sets of brain cells results in what was coined the neuronal ‘response zoo’: the perplexing
complexity of individual activities lacking clear boundaries and not yielding clear answers.

MULTIPLE WAYS OF DEFINING ‘COLLECTIONS’ OF NEURONS

There are multiple ways of defining more specific – and thus often more useful – collections
(Figure 1). These collections may encode ‘low-level’ behavioral information in the form of
computationally tractable behavioral variables, like reward expectation, subjective value, expected
and unexpected uncertainty, temporal anticipation, etc. (Schultz et al., 1997; Yu and Dayan, 2005;

Frontiers in Neural Circuits | www.frontiersin.org 1 April 2017 | Volume 11 | Article 31

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
https://doi.org/10.3389/fncir.2017.00031
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncir.2017.00031
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2017.00031&domain=pdf&date_stamp=2017-04-27
http://journal.frontiersin.org/article/10.3389/fncir.2017.00031/abstract
http://loop.frontiersin.org/people/376642/overview
http://loop.frontiersin.org/people/16568/overview
http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


fncir-11-00031 April 25, 2017 Time: 15:50 # 2

Sviatkó and Hangya The Right Collection

FIGURE 1 | Multiple ways of defining ‘collections’ of neurons. (A) Collections of neurons may be defined by input or output connectivity. (B) Response to
external or internal events may identify a set of functionally similar neurons. (C) Neurochemical identity (e.g., neurotransmitter profile) defines cell types. (D) Certain
cell types may be specifically linked to disease.

Dayan, 2012). For instance, we can identify groups of neurons
that may mediate specific brain functions by selecting them
according to their connectivity (Figure 1A). One nice example
of such dissociation between hodology-based collections was
demonstrated between midbrain dopaminergic neurons with
different projection targets (Parker et al., 2016). It was
found that while both collections coded reward prediction
errors as typical for dopaminergic neurons (Schultz et al.,
1997), those projecting to the dorsomedial striatum responded
more to contralateral choice, whereas dopamine neurons with
projections to the nucleus accumbens responded prominently
to reward consumption and reward-predicting cues (Parker
et al., 2016). Another study defined collections of midbrain
dopaminergic neurons based on their afferent rather than
their efferent connectivity (Dautan et al., 2016). Dautan et al.
(2016) demonstrated that dopaminergic neurons receiving
cholinergic input from the laterodorsal tegmentum were excited,
whereas those innervated by the pedunculopontine cholinergic
neurons were inhibited by aversive stimuli. The prefrontal
cortex (PFC) also represents an important hub of the reward
processing circuitry. Projection-specific coding has recently
been demonstrated in the PFC: corticostriatal neurons show
excitatory, whereas corticothalamic projection neurons develop
inhibitory responses to reward-predicting cues during learning
(Otis et al., 2017). Bidirectional projection neurons between the
PFC and the amygdala also carry out target-specific functions
both from PFC to amygdala (Courtin et al., 2013) and vice
versa (Senn et al., 2014). In addition, functional differences
between corticopontine and commissural PFC neurons were also
demonstrated (Dembrow et al., 2010).

Responses to sensory stimulation as well as other characteristic
response properties may also be employed to define functional
collections (Figure 1B). For instance, there is an association
between tone-responsiveness and disinhibition by VIP
interneurons in the auditory cortex principal neuron population
(Pi et al., 2013). As another example, putative non-cholinergic
neurons of the basal forebrain that show stereotypical burst
responses to reward-predictive cues share a number of functional

properties (Lin and Nicolelis, 2008; Avila and Lin, 2014).
Naturally, these defining features may be strongly correlated,
in that cells with shared inputs likely have similar response
properties and may have overlapping efferent connectivity
(Varga et al., 2010; Gielow and Zaborszky, 2017).

One particularly useful trait for cell type identification is
by neurochemical profile (Figure 1C). For instance, neurons
of a given area that use different neurotransmitters are often
distinguished by local and long-range connectivity as well as
activity patterns in response to external stimuli or internal
variables, lending credibility to the notion of treating them as
a functional ‘collection’ (Varga et al., 2010; Do et al., 2016;
Gielow and Zaborszky, 2017). Nevertheless, neurotransmitters
alone may fall short in delineating practical functional groups.
In case of glutamatergic neurons, combination with efferent
connectivity (Dembrow et al., 2010; Otis et al., 2017) or more
detailed neurochemical identification (Ye et al., 2016) may
prove sufficient. In GABAergic interneurons, expression of other
genetically defined markers like calcium-binding proteins or
specific receptors provide effective genetic handles on functional
collections. For instance, interneurons that express the calcium-
binding protein parvalbumin show functional homogeneity in
PFC (Hartwich et al., 2009; Massi et al., 2012; Kvitsiani et al.,
2013; but see Lagler et al., 2016), motor cortex (Isomura et al.,
2009), somatosensory cortex (Sachidhanandam et al., 2016),
visual cortex (Atallah et al., 2012; Lee et al., 2012; Wilson et al.,
2012), auditory cortex (Moore and Wehr, 2013), or hippocampus
(Lapray et al., 2012; Viney et al., 2013). An association between
projection targets, genetic labels (NPAS4-expression) and coding
properties during behavior was elegantly demonstrated in the
PFC recently (Ye et al., 2016).

The notion of genetically defined functional collections is
underscored by observations of specific loss of neurotransmitter-
defined cell types in many neurological diseases (Figure 1D).
For instance, Alzheimer’s disease is characterized by the gradual
loss of basal forebrain cholinergic neurons (Whitehouse et al.,
1982; Arendt and Bigl, 1986). While the atrophy of the same
cells is associated with the cognitive symptoms developed in most
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Parkinson’s patients, the motor symptoms that define the disease
are a result of the loss of dopaminergic innervation (Gratwicke
et al., 2015). Other examples include the association between the
dysfunction of parvalbumin-expressing cortical interneurons and
schizophrenia (Sohal et al., 2009; McNally and McCarley, 2016),
or narcolepsy caused by the loss of orexin-signaling (Lin et al.,
1999; Peyron et al., 2000; Thannickal et al., 2000; Kohlmeier et al.,
2013).

CENTRAL CHOLINERGIC NEURONS AS
AN EXAMPLE COLLECTION TO STUDY

As mentioned above, Alzheimer’s disease is characterized
by the gradual loss of basal forebrain cholinergic neurons.
These neurons are situated at the bottom of the forebrain
and send extensive projections to all cortical areas (Saper,
1984; Zaborszky et al., 2012, 2013; Do et al., 2016), releasing
the neurotransmitter acetylcholine from their terminals.
Experiments with selective ablation of cholinergic neurons or
pharmacological blockade of acetylcholine suggest that these
neurons mediate important cognitive functions, including
learning and attention (Everitt and Robbins, 1997; Wrenn and
Wiley, 1998; Parikh et al., 2007). Indeed, cognitive deficits in
Alzheimer’s patients are strongly correlated with the extent of
cholinergic cell loss (Whitehouse et al., 1982; Arendt and Bigl,
1986).

Cholinergic neurons would thus appear like the ideal
‘collection’ of neurons to study; forming an anatomically and
neurochemically distinct group, having important functions
and a strong relevance to human disease (Figure 2). Given
this, it may come as a surprise that the activity of forebrain
cholinergic neurons during any behavior is largely unknown.
The reason for this has been the lack of tools to specifically
probe cholinergic neurons, which are intermingled with more
numerous cell types, in awake behaving animals. The game
changer is the recent advent of optogenetic methods that allow
the expression of light-sensitive ion channels in genetically
defined cell types – like those that express synthesizing enzymes
for acetylcholine and are therefore cholinergic (Boyden et al.,
2005; Rossi et al., 2011). Using optogenetics, one can activate
cholinergic neurons by light and in this way identify them
while the animal is awake and able to perform learned
behaviors.

UNIQUE ACTIVITY PATTERNS OF
CHOLINERGIC NEURONS HINT AT
FUNCTIONS IN COGNITION

We and others set out to tackle the long-unanswered question
of when cholinergic neurons fire, to reveal how their activity
patterns may support various aspects of normal and diseased
cognition (Hangya et al., 2015; Harrison et al., 2016). To
simultaneously probe aspects of learning and attention, the
two leading theories of cholinergic function, we trained mice
to respond to unpredictable quiet tones embedded in loud

noise – a difficult sensory detection task that involves associative
learning and demands sustained attention. To crack the identity
of basal forebrain neurons, we turned to optogenetics: we
rendered cholinergic neurons light-sensitive by combining the
ChAT-Cre mouse line in which Cre-recombinase is expressed in
cholinergic neurons with viral vectors that allow Cre-dependent
expression of the light-sensitive channelrhodopsin. We placed
microelectrodes into the basal forebrain, home to the cholinergic
neurons, along with an optical fiber capable of delivering
laser light into brain tissue. In our mice, cholinergic neurons,
and only those, were activated by blue light, revealing their
neurochemical identity. Finding the cholinergic cells still proved
to be difficult, as over 90% of the neurons in the sparsely
inhabited basal forebrain are non-cholinergic (Gritti et al.,
2006).

Previous studies suggested that cholinergic neurons might be
involved in controlling attention. First, lesions to basal forebrain
cholinergic neurons caused impairments in tasks that require
sustained attention like the five-choice serial reaction time task,
during which rodents have to detect and respond to visual cues
(Everitt and Robbins, 1997; Turchi and Sarter, 1997; Wrenn
and Wiley, 1998; McGaughy et al., 2002; Dalley et al., 2004).
Second, measures of acetylcholine release suggested that choline-
transients appear in association with cue-detections in attention
tasks (Parikh et al., 2007; Hasselmo and Sarter, 2011; Howe et al.,
2013; Sarter et al., 2014). Third, cholinergic inputs to sensory
cortices influence receptive field properties and stimulus tuning
of sensory neurons, which may serve as a basis for attentional
functions of the cholinergic system (Kilgard and Merzenich,
1998; Disney et al., 2007; Froemke et al., 2007; Herrero et al., 2008;
Thiele et al., 2012). If cholinergic neurons controlled attention
at a fast, trial-by-trial time scale, we would expect them to fire
vigorously when mice anticipate the tone stimuli, that is, when
they have to pay the most attention. Furthermore if these neurons
indeed regulated attention levels, their stronger activity should
foretell faster or more accurate behavioral responses. However,
we found that cholinergic neurons, as a collection, did not show
these patterns. Nevertheless, we observed gradual changes in the
firing rate of cholinergic neurons throughout behavioral sessions,
suggesting that attentional regulation by the cholinergic system
demonstrated in previous studies may be mediated by slower
modulation of cholinergic firing (Lee et al., 2005; Paolone et al.,
2012; Teles-Grilo Ruivo et al., 2017).

On the other hand, basal forebrain cholinergic neurons were
promptly activated by reward and punishment, with unexpected
speed and precision (Figure 2). This finding is consistent with
three studies in which calcium imaging or voltammetry was
used to track cholinergic responses (Lovett-Barron et al., 2014;
Harrison et al., 2016; Teles-Grilo Ruivo et al., 2017); however,
the low temporal resolution of these methods prevented the
appreciation of the speed of cholinergic firing. Our results are in
line with an elegant recent report on the dissociation of tonic and
phasic release of acetylcholine using choline-sensitive biosensors
(Teles-Grilo Ruivo et al., 2017).

Moreover, we found that the extent of cholinergic activation
was proportional to the unexpectedness, or ‘surprise,’ of the
behavioral feedback: cells fired more to reward if it was delivered
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FIGURE 2 | Central cholinergic neurons as an example collection to study. Basal forebrain cholinergic neurons release acetylcholine as neurotransmitter
(bottom), share afferent (top left) and efferent (top right) connectivity, display uniform activation kinetics in response to aversive air puffs (middle left) and show cell
type specific degeneration in Alzheimer’s disease (middle right).

after an ambiguous auditory cue. Such activation patterns
support the role of the cholinergic system in controlling learning:
after behavioral feedback such as reward and punishment, there is
a unique opportunity to form associations between the stimulus
perceived, the action performed and the outcome received. This
aspect of cholinergic neurons is notably similar to midbrain
dopaminergic neurons, which represent reward prediction errors
important for reinforcement learning (Schultz et al., 1997; Bayer
and Glimcher, 2005). Nevertheless, reward prediction error is
defined in the context of cued outcome tasks, therefore a
difference in the behavioral paradigms studied prevents a direct
comparison of the two cell types. We expect that understanding
how these and other neuromodulatory cell types are coordinated

to support learning will be an area of intense research in the near
future (Ogawa et al., 2014; Varazzani et al., 2015; Matias et al.,
2017).

CONCLUSION

These are only the first steps toward understanding how
functional collections of neurons may contribute to behavior.
Nevertheless, cholinergic neurons can serve as an instructive
example of a genetically defined cell type that broadcasts
a computationally tractable behavioral variable. As a next
step, it will be important to understand how such ‘low-level’
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information coded by cell types is combined into behaviorally
relevant complex information, probably mediated by ensembles
composed of the appropriate cell types and interconnections.
Eventually, the study of genetically defined cell types and
cell type-ensembles may lead to one of those elusive
clues for future clinical investigations of neurodegenerative
diseases.
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