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Parasites can cause enormous damage to their hosts. Studies have shown that
antiparasitic peptides can inhibit the growth and development of parasites and even
kill them. Because traditional biological methods to determine the activity of
antiparasitic peptides are time-consuming and costly, a method for large-scale
prediction of antiparasitic peptides is urgently needed. We propose a
computational approach called i2APP that can efficiently identify APPs using a
two-step machine learning (ML) framework. First, in order to solve the imbalance
of positive and negative samples in the training set, a random under sampling method
is used to generate a balanced training data set. Then, the physical and chemical
features and terminus-based features are extracted, and the first classification is
performed by Light Gradient Boosting Machine (LGBM) and Support Vector Machine
(SVM) to obtain 264-dimensional higher level features. These features are selected by
Maximal Information Coefficient (MIC) and the features with the big MIC values are
retained. Finally, the SVM algorithm is used for the second classification in the
optimized feature space. Thus the prediction model i2APP is fully constructed. On
independent datasets, the accuracy and AUC of i2APP are 0.913 and 0.935,
respectively, which are better than the state-of-arts methods. The key idea of the
proposed method is that multi-level features are extracted from peptide sequences
and the higher-level features can distinguish well the APPs and non-APPs.

Keywords: antiparasitic peptides, feature representation, maximum information coefficient, feature selection,
T-distributed stochastic neighbor embedding

INTRODUCTION

Parasites are a very common source of disease. Parasitic diseases can affect almost all living things,
including plants and mammals. The effects of parasitic diseases can range from mild discomfort to
death (Momčilović et al., 2019). It is estimated that one billion people worldwide are infected with
ascariasis, although it is usually harmless. Necator americanus and Ancylostoma duodenale can
cause hookworm infections in humans, resulting in anemia, malnutrition, shortness of breath and
weakness. This infection affects about 740 million people in the developing countries, including
children and adults (Diemert et al., 2018). Malaria is very harmful to humans. It causes 300 to 500
million illnesses and about 2 million deaths each year, with about half of those deaths occurring in
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children under the age of 5 (Barber et al., 2017). Themainmethod
of treating parasitic diseases today is the use of antibiotics
(Zahedifard and Rafati, 2018). However, frequent use of
antibiotics can increase parasite resistance and even have some
undetected side effects (Ertabaklar et al., 2020). Studies have
found that anti-parasite peptide (APP) can effectively inhibit the
growth of parasites and even kill them (Lacerda et al., 2016). Anti-
parasite peptides are usually composed of 5–50 amino acids and
are relatively short in length. They are usually changed by
antimicrobial peptides (AMPs) (Mehta et al., 2014). APPs can
kill parasites by destroying the cell membrane of the parasite or
inhibiting the reductase in the parasite (Bell, 2011; Torrent et al.,
2012). Therefore, it is very important to be able to identify APPs.

In the past few years, many methods for predicting
functional peptides based on machine learning have been
proposed, such as AAPred-CNN (Lin et al., 2022) for anti-
angiogenic peptides, mAHTPred (Manavalan et al., 2019) for
anti-hypertensive peptides, AVPIden (Pang et al., 2021) for
anti-viral peptides. PredictFP2 can predict fusion peptide
domains in all retroviruses (Wu et al., 2019). AMPfun
(Chung et al., 2020) and PredAPP (Zhang et al., 2021) are
proposed for antiparasitic peptides identifiction. Based on
random forests, the AMPfun tool can be used to identify
anticancer peptides, APP, and antiviral peptides. AMPfun can
be used to characterize and identify antimicrobial peptides
with different functional activities, but the prediction results
for APPs are not very good. In 2021, (Zhang et al., 2021)
proposed PredAPP, a model for predicting antiparasitic
peptides using an under sampling and ensemble approach.
A variety of data under sampling methods are proposed for
data balance. This model adopts an ensemble approach,
combining 9 feature groups and 6 machine learning
algorithms, and finally achieves good results, but there is
still room for improvement.

In this work, we propose a new model named i2APP for
identifying APPs, which uses a two-stage machine learning
framework. In the first stage, we extract dozens of feature groups
for each peptide sequence, and then build the first-layer classifiers with
these feature groups. The outputs of the first-layer classifiers are used
as the higher-level features. What’s more, MIC (Kinney and Atwal,
2014; Ge et al., 2016) is used here to filter out the insignificant features.
In the second stage, with the higher-level features, we build the second-
layer classifier, whose outputs are the final results of identifying APPs.
Through independent test, we will find that the proposed model is
better than the state-of-arts methods in most metrics. The tool i2APP
is available at https://github.com/greyspring/i2APP.

MATERIALS AND METHODS

Datasets
Abenchmark dataset is the premise for an effective and reliablemodel.
To train our model and compare it with others, the dataset studied by
(Zhang et al., 2021) were used in this work, in which 301 APPs were
used as positive samples and 1909 non-APPs were negative ones. For
the positive samples, 301 APPs were taken out as positive training
samples, and the remaining 46 APPs were used as positive testing

samples. 46 non-APPs were randomly selected from the negative
samples as negative testing samples, and the remaining 1863 non-
APPs were used as negative training samples. In this way, 255 APPs
and 1863 non-APPs constituted the original training set, and 46 APPs
and 46 non-APPs constituted the testing set. Since the samples in the
training set are very unbalanced, we use random under sampling
(Tahir et al., 2012; Stilianoudakis et al., 2021) on the training set and
get 255 APPs and 255 non-APPs to constitute the final training set.
For the sake of simplicity, thefinal training dataset ismarked as T255p
+ 255n, and the testing dataset is marked as V46p + 46n.

We take out the 5 amino acids at the N-terminus and
C-terminus of each peptide sequence to compare the
differences between positive and negative samples by Two
Sample Logo application (Schneider and Stephens, 1990;
Crooks et al., 2004), which calculates and visualizes the
differences between two sets of aligned samples of amino acids
or nucleotides. At each position in the aligned groups of
sequences, statistically significant amino acid symbols are
plotted using the size of the symbol that is proportional to the
difference between the two samples. It can be seen from the
comparison in Figure 1 that the amino acid composition at both
ends of the APPs and non-APPs sequences have some differences,
so it can be considered to extract features from both ends of
peptide sequence to distinguish the two types of samples.

Features Representation
Good features are beneficial to the training of machine learning
models and obtain good prediction performance. The
classification of peptides mainly depends on the feature set
constructed by the structural and functional properties.
Extracting features from peptide sequences that effectively
reflect their sequence pattern information is a challenging
problem. In this study, we extract 18 kinds of physicochemical
features from the peptide sequences, some of which contain very
important information, such as functional domains, gene
ontology and sequential evolution, etc (Liu et al., 2015; Liu
et al., 2017). Thus 18 groups of sequence-based features will
be obtained for each peptide sequence.

In addition, the N-terminus and C-terminus of a protein or
peptide often have very important biological function, so we also
extract features from the both ends of peptide sequence. In this
study, we take out a fragment with three or five amino acids at the
N-terminus or C-terminus of a peptide sequence, and use 12
types of feature extraction method for this fragment (Jing et al.,
2019). In such a way, 48 groups of terminus-based features will be
obtained for each peptide sequence.

All these feature extraction methods are listed in Table 1.

Computational Models
As shown in Figure 2, the overall framework of i2APP includes
four main steps. As a first step, the benchmark datasets are
collected from various databases and literates, and then
divided into training dataset and testing dataset. To get a
balanced training dataset, the random under sampling
procedure is performed on the negative training samples. In
the second step, we adopt 18 types of feature extraction
methods on the whole peptide sequence to get 18 groups of
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sequence-based features, and 12 types of feature extraction
methods on the N-terminus and C-terminus of peptide
sequence. Considering that all peptide sequences are at least 5
residues in length, we take 3 and 5 residues at both ends of the
sequence. So, a total of 48 groups of terminal-based features are
extracted. For each feature group, SVM and LGBM are trained
respectively, and 132 probability outputs are got for each peptide
sequence. These probabilities can be seemed as higher-level
features for further classification. What’s more, the probability

greater than 0.5 is recorded as 1, and the probability less than 0.5
is recorded as 0. These binarized values help remove noise from
the model. Stacking the probabilities and their binarized values, a
total of 264 higher-level features are obtained. However, these
higher-level features may have information redundancy, so a
feature selection method is needed here to filter out the
superfluous ones. In this study, the maximum information
coefficient (MIC) is calculated for each feature, and the
threshold is set to 0.4, that is, only the feature with the MIC

FIGURE 1 | Different distribution between APP and non-APP sequences. (A) V46p+46n (B) T255p+1863n.

TABLE 1 | Peptide sequence features.

Features

Sequence-based Basic Kmer (kmer)
Distance-based Residue (DR)
Distance Pair (DP)
Auto covariance (feature-AC)
Auto-cross covariance (ACC)
Cross covariance (feature-CC)
Physicochemical distance transformation (PDT)
Parallel correlation pseudo amino acid composition (PC-PseAAC)
Series correlation pseudo amino acid composition (SC-PseAAC)
General parallel correlation pseudo amino acid composition (PC-PseAAC-General)
General series correlation pseudo amino acid composition (SC-PseAAC-General)
Select and combine the nmost frequenct aminoacids according to their frequencies (Top-n-gram)
Profile-based Physicochemical distance transformation (PDT-Profile)
Distance-based Top-n-gram (DT)
Profile-based Auto covariance (AC-PSSM)
Profile-based Cross covariance (CC-PSSM)
Profile-based Distance-based Top-n-gram (PSSM-DT)
Profile-based Auto-cross covariance (ACC-PSSM)

Terminus-based One_hot
One_hot_6_bit
Binary_5_bit
Hydrophobicity_matrix
Meiler_parameters
Acthely_factors
PAM250
BLOSUM62
Miyazawa_energies
Micheletti_potentials
AESNN3
ANN4D
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value greater than 0.4 is retained. The third step is to use ten-fold
cross-validation to select the best classifier based on the reduced
higher-level feature set. The candidate include the popular
classifiers, such as SVM, Bayes (Jahromi and Taheri, 2017),
Decision Tree (DT) (Wang et al., 2019), K-Nearest Neighbor
(KNN) (Wang et al., 2017), Random Forest (RF), Adaboost (Ada)
and so on. In the fourth step, we test the effect of the proposed
model on an independent test dataset, and compare its
performance with other models. In this work, we used the
scikit-learn package (Pedregosa et al., 2011) to implement all
classifiers.

Evaluation
In order to evaluate the results of the final classification and
facilitate comparison with other models, we used five commonly
used indicators in bioinformatics research (Luo et al., 2019; Yang
et al., 2021), including specificity (SP), sensitivity (SN), F1 score
(F1), Matthew correlation coefficient (MCC) and accuracy
(ACC). The specific calculation formula of these measured
values is as follows:

Sp � TN

TN + FP

FIGURE 2 | The whole model consists of four parts. The first part is the collection, division and down sampling of the dataset. The second part is feature extraction
and feature selection for each peptide sequence. The third part is to analyze the effect of different classifiers through 10-fold cross-validation. In the fourth part, the
proposed model is evaluated through independent test.
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Sn � TP

TP + FN

F1 � 2TP
2TP + FP + FN

Acc � TP + TN

TP + TN + FP + FN

MCC � TP · TN − FP · FN
�����������������������������������������(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)√

Where TP means the number of APPs correctly predicted by the
model; TN means the number of non-APPs that the model
correctly predicts; FP means the number of non-APPs that the
model mispredicts; FNmeans the number of APPs that the model
mispredicts. In addition, we also use other metrics to evaluate the
performance of i2APP, including receiver operating characteristic
(ROC) curve (Fawcett, 2006), the area under the ROC curve
(AUC) (Lobo et al., 2008), precision-recall (PR) curve (Davis and
Goadrich, 2006), and the area under the PR curve (AUPR).

RESULTS

Effects of Different Classifiers
First, we fix the classifier of the second layer as SVMbecause it is very
effective in small sample learning, and then compare the different
classification models in the first layer. Through cross-validation
experiments, it is found that the effects of SVM and LGBM are
better, so we use these two classification models in the first layer.
Now we can compare different classifiers in the second layer. As can
be seen from Table 2, different classifiers are tested on the training
dataset T255p + 255n through ten-fold cross-validation, and the
final result is the average of ten evaluations. After parameter tuning,
SVM is higher than other classifiers in most metrics, and reaches

90.0%, 0.952, 93.2%, 86.9%, 0.803, and 0.900% in ACC, AUC, SN,
SP, MCC, and F1, respectively. Among all classifiers, ACC, AUC,
SN,MCC, and F1 obtained by SVMachieved the first position. Sowe
also focused on using SVM as a classifier for the independent test set.

As can be seen from Table 3, SVM has a huge advantage over
other classifiers on the independent test set V46p + 46n. The
values of ACC, AUC, SN, SP, MCC, and F1 are 91.3%, 0.935,
97.8%, 84.8%, 0.833, and 0.918%, respectively. The values of ACC,
AUC, SN, MCC, and F1 obtained by SVM all rank first among all
classifiers. Especially MCC and AUC by SVM is 0.033 and 0.025
higher than the second-ranked classifier. The comparison of these
results shows that SVM is the most suitable classifier in our work.

Figure 3 shows the ROC curves and PR curves of different
classifiers on the independent test set. The ROC curve of SVM is
closest to the upper left corner, surpassing other classifiers. The
AUC value of SVM is 0.935, which is the highest and 0.025 higher
than the second-ranked classifier KNN. Although the AUPR
value of SVM is not the largest, when the recall rate is 1, the
precision rate of SVM reaches 0.836, which is the highest.

Comparison With Other Methods
Our model is compared with others through ten-fold cross-
validation on the training dataset, and the results are shown in
Table 4. NM-BD and RUS-BD are both proposed in (Zhang
et al., 2021), and the imbalanced training set was down
sampled using NearMiss method (Mani and Zhang, 2003;
Li et al., 2021) for the former, while the random under
sampling method was used for the latter, which is also
adopted in this study. Compared with RUS-BD, our model
outperforms it on all metrics, with improvement of 1.8% on
ACC, 0.7% on SN, 3% on SP, 1.8% on SP, 0.013 on F1, and
0.035 on MCC. When compared with NM-BD, our model is
also the winner on nearly all metrics except SP. These results
show that the performance of our model on the training set is
better than the others on the whole.

To further verify the validity of the proposed model, we
compare it with other models on an independent test dataset,
and the results are shown in Table 5, from which we can see
that the metrics of i2APP are nearly all better than that of other
models. The values of ACC, SN, MCC and F1 are 17.4, 45.6,
0.302 and 0.251% higher than AMPfun, and the values of ACC,
MCC, F1, and SP are 178 3.3, 0.107, 0.027, and 6.5% higher
than PredAPP. All these results show that the proposed model
has better generalization ability than the state-of-the-art
models for APP prediction.

TABLE 2 | The results of cross-validation on the training set with different classifiers.

Model ACC (%) SN (%) SP (%) AUC MCC F1

Training Set SVM 90.0 93.2 86.9 0.952 0.803 0.900
Bayes 86.5 83.2 87.9 0.865 0.729 0.838
Knn 86.3 93.0 80.5 0.893 0.736 0.867
DT 82.7 82.0 84.5 0.833 0.660 0.824
RF 87.5 91.9 83.7 0.951 0.753 0.877
Ada 82.2 84.8 79.8 0.823 0.645 0.822

The bold values indicate the best performance.

TABLE 3 | The results of independent test on the testing set with different
classifiers.

Model ACC (%) SN (%) SP (%) AUC MCC F1

Testing Set SVM 91.3 97.8 84.8 0.935 0.833 0.918
Bayes 85.9 84.8 87.0 0.868 0.718 0.857
Knn 89.1 97.8 80.4 0.910 0.800 0.900
DT 82.6 80.4 84.8 0.826 0.653 0.822
RF 88.0 93.5 82.6 0.931 0.765 0.887
Ada 88.0 91.3 84.8 0.880 0.762 0.884

The bold values indicate the best performance.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8845895

Jiang et al. Antiparasitic Peptides Identification

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Impact of Dataset Balancing
We performed 10-fold cross-validation on the original dataset
containing 255 APPs and 1863 non-APPs, and the results
were listed in Table 6. It can be found that compared with the
balanced dataset, the SP, MCC and ACC metrics have a
greater improvement on the unbalanced dataset. However,

because there are too few positive samples, the SE metric
decreases a lot. In addition, our model achieves large
improvements in various metrics compared to the model
PredAPP (IMBD) (Zhang et al., 2021) using the same
unbalanced dataset.

With the unbalanced dataset as the training set, we tested the
proposed model on the independent test set including 46 APPs
and 46 non-APPs and listed the results in Table 7, from which we
can see that whether using balanced or unbalanced training sets,
i2APP has good generalization ability.

Impact of Shuffled Sequence
After shuffling the sequence of negative samples in the
training set, we randomly sampled 255 new negative
samples to form the training set together with 255 positive
samples. The results of independent test are shown in
Figure 4. It can be seen that the performance of the model
decreases after using the shuffled negative samples, probably
because the effect of the terminus-based features is reduced
after the sequence is shuffled.

Interpretability Analysis
T-distributed stochastic neighbor embedding (t-SNE) (Van
der Maaten and Hinton, 2008) is a very popular data
visualization tool that can reduce high-dimensional data to
2-3 dimensions, so as to draw samples on a plane or 3D space
and observe the sample distribution. Figure 5 shows the

FIGURE 3 | The performance of different classifiers through cross-validation on the training set.

TABLE 4 | Comparison of our model with the existing methods through cross-
validation on the training set.

Method ACC (%) SN (%) SP (%) MCC F1

NM-BD 88.8 85.5 92.2 0.778 0.884
RUS-BD 88.2 92.5 83.9 0.768 0.887
i2APP 90.0 93.2 86.9 0.803 0.900

The bold values indicate the best performance.

TABLE 5 | Comparison of our model with the existing methods through
independent test on the testing set.

Method ACC (%) SN (%) SP (%) MCC F1

AMPfun 73.9 52.2 95.7 0.531 0.667
PredAPP 88.0 97.8 78.3 0.776 0.891
i2APP 91.3 97.8 84.8 0.833 0.918

The bold values indicate the best performance.

TABLE 6 | The results of ten-fold cross-validation on the balanced or unbalanced
datasets.

Method ACC (%) SN (%) SP (%) MCC F1

PredAPP (unbalanced) 91.9 52.5 97.3 0.574 0.609
i2APP (balanced) 90.0 93.2 86.9 0.803 0.900
i2APP (unbalanced) 96.5 76.7 99.3 0.826 0.839

TABLE 7 | The results of independent test using the balanced or unbalanced
datasets as the training set.

Method ACC (%) SN (%) SP (%) MCC F1

i2APP (balanced) 91.3 97.8 84.8 0.833 0.918
i2APP (unbalanced) 93.5 100.0 87.0 0.877 0.939
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visualization results of the test dataset V46p + 46n after
dimensionality reduction on the higher-level features,
which are the outputs of the first layer classification. The
orange points in the figure are APPs, and the blue points are
non-APPs. As can be seen from the figure, the two types of
samples can be well distinguished with the higher-level
features, so that our model can achieve better performance.
What’s more, it can be found that the aggregation degree of

APPs is higher than that of non-APPs, indicating that it is
easier to identify APPs than non-APPs, so the metric SN in
our model will be higher than SP.

CONCLUSION

In this study, we propose a novel model named i2APP to
identify APPs efficiently. The main structure of this work
consists of four steps. Firstly, the random under sampling
method is used to balance the training set. Secondly, a variety
of sequence-based and terminus-based features are extracted
from any peptide sequence, and then enter these raw features
into the first layer classifiers, SVM and LGBM, to get the
higher-level features. The maximum information coefficient
(MIC) is calculated for each higher-level feature, and only the
significant features are retained. Thirdly, based on the optimal
feature subset, several popular classifiers are evaluated
through cross-validation on the training dataset, and SVM
is chosen as the second layer classifier. Finally, independent
test is performed on the proposed model and the others, and
we can see that i2APP has better generalization ability than
the state-of-the-art models for APP prediction. The sequence
features used in this paper are all extracted by hand, and some
of them are quite complex. Although we simplify the model by
two-step learning and feature selection, the overall model still
looks complicated. In the future, as the amount of data
increases, the RNN or Transformer model can be used for
automatic feature learning, which may further improve the
accuracy of APP recognition.

FIGURE 4 | The effect of shuffling the sequence.

FIGURE 5 | t-SNE visualization results of the testing set after
dimensionality reduction of the higher-level features.
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