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Abstract: This article reviews lectins of animal and plant origin that induce apoptosis and 

autophagy of cancer cells and hence possess the potential of being developed into anticancer 

drugs. Apoptosis-inducing lectins encompass galectins, C-type lectins, annexins, Haliotis 

discus discus lectin, Polygonatum odoratum lectin, mistletoe lectin, and concanavalin A, 

fucose-binding Dicentrarchus labrax lectin, and Strongylocentrotus purpuratus lectin, 

Polygonatum odoratum lectin, and mistletoe lectin, Polygonatum odoratum lectin, autophagy 

inducing lectins include annexins and Polygonatum odoratum lectin. 
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1. Introduction 

In a time when biotechnology is rapidly improving, researchers have found a plethora of natural 

resources to be potential panaceas against cancer. Among such compounds are the lectins family which 

hold great potential for cancer therapy. Lectins are highly specific proteins that bind to carbohydrates 

and are found in many plants, animals, and bacteria. Lectins found in animals are most often found to aid 

in cell interactions, while plant lectins are known to ward off potential predators or pathogens [1]. 

However, all lectins share the property of involvement in both normal and pathological biological 

processes and all have varying degrees of interaction with the immune system. Based on their defensive 
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properties and commonly known ability to induce apoptosis in cells, much research has been done to 

study the effects of plant and animal lectins as a prospective treatment option against cancerous cells. In 

this review, we will cover just a few of the many plant and animal lectins, including but not limited to 

Polygonatum odoratum lectin, Haliotis discus discus lectin, and galectins, that are able to halt growth of 

tumor cells through apoptotic induction. While a vast number of lectins also show the ability to inhibit 

cancerous growth through type-II programmed cell death, also known as autophagy, this review will 

focus primarily on apoptotic methods of inducing cell death in malignant cells in order to limit the 

amount of information presented. The effectiveness of the specific lectins on particular cancer cell lines 

and their corresponding pathways and mechanisms will be detailed to provide a basic foundation for 

prospective researchers. It is imperative to conduct further research on lectins, including clinical trials, to 

determine which one of these highly specific proteins holds the greatest prospects against the surfeit of 

malignant cell lines constantly threatening human health and well-being. 

While all experiments vary in specifics, there is a general guideline that most researchers follow in 

order to test the effectiveness and mechanisms of specific lectins on rapidly proliferating cells. Like 

other biological materials, any lectin to be tested must first be purified from its initial source. This step 

can vary from study to study but can be done through salting out, dialysis, or various chromatography 

methods including gel-filtration, ion exchange chromatography, affinity chromatography, and 

high-pressure liquid chromatography [2]. Gel electrophoresis can then be used to separate out the 

various proteins and isolate the single protein of interest after chromatographic purification.  

The gene encoding a lectin can be inserted into cancer cells using a variety of techniques. The most 

common method used in laboratories utilizes a virus vector containing the gene coding for a specific 

lectin. Gel blot hybridizations as well as transfections, a non-viral method of lectin introduction, are also 

used to insert lectin plasmids into cells to allow production of the lectin [3,4]. 

Apoptosis can be measured in cells by observing DNA fragmentation, loss of mitochondrial 

membrane potential, plasma membrane blebbing, shrinking of the cell, condensation of the nucleus, and 

detachment of the cell. These cellular observations can be determined through flow cytometry and 

microscopy while specific assays are performed to establish the mechanism of apoptosis induction [5]. 

Western blot and immunohistochemistry are also techniques employed to further examine mechanisms 

and gene expression. Lectins can induce apoptosis through different pathways, some being more 

effective than others in specific cell lines. This can be done by stimulating the production of caspases or 

other proteins involved in the molecular pathway. Such pathways can lead to down-regulation or 

up-regulation of certain genes involved in apoptotic suppression or induction, respectively. Certain 

miRNA act as inhibitors of ribosomal inactivating proteins (RIPs) and can be down-regulated through 

lectin activity thus allowing RIPs to function properly and inhibit neoplastic growth [6,7]. 

Research concerning lectins has aided in further discovery of their useful properties for cancer 

treatment. Not all proteins in the lectin family necessarily need to induce apoptosis to be considered for 

cancer therapy. Many lectins show potential as biomarkers indicating early detection of malignant 

growth or as autophagy inducers. Autophagy is a cellular mechanism that involves the catabolic 

breakdown of cytoplasmic components such as proteins or organelles via lysosomes. Its main function is 

to remove damaged or infected cells thus contributing to the body’s immune system. Autophagy, like 

apoptosis, can be induced through multiple pathways and mechanisms depending on the lectin used.  
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From here on, this review will focus on a few specific animal and plant lectins that have shown 

apoptotic inducing properties and their mechanisms as outlined in Table 1. 

Table 1. A list of the main groups of lectins mentioned in this review including the known 

cancer cell lines affected by each lectin and some of the known mechanisms involved.  

Lectin Cancer Cell Lines Affected Effector Mechanism(s) 

Galectins [8,9–12] 

Epidermal keratinocytes, 1299 lung cells, 

fibroblast cells, thyroid cells, colon cells, 

prostate cells 

T-cell binding, specific integrin 

binding, Ca2+-calpaincaspase-1 

pathway 

C-Type Lectins [13,14] SW1116 colorectal cells 

Le glycan recognition, perforin 

granzyme pathway, TRAIL and 

FAS ligand binding  

Annexins [15–20] Melanoma cells, lung cells 

NF-κB signal transduction 

pathway, Ras-Raf-MAPK 

pathway, p53 apoptotic pathway 

Sialic acid binding Haliotis 

discus discus lectin 

(HddSBL) [21,22] 

Hep3B hepatocellular cells, SW480 

colorectal cells, A549 and H1299 lung 

cancer cell line cells 

Bcl-2 down-regulation 

Polygonatum odoratum 

lectin (POL) [23–26] 

A549 lung cells, L929 murine  

fibrosarcoma cells 

Akt-mTOR pathway, Fas 

mediating apoptotic pathway,  

TNFα enhancement 

Mistletoe lectin [7,27–33] 

Hepatocarcinoma cells, breast cancer cells, 

NALM-6 acute lymphoblastic leukemia 

cells, glioblastoma cells, 

hepatomacarcinoma cells, peripheral blood 

mononuclear cells, A253 epidermoid cells 

Wnt signaling, miR-135a & b, 

NK-mediated cell lysis, interleukin 

mRNA activation 

Concanavalin A  

(ConA) [34–40] 

A375 and B16 melanoma cells, fibroblast 

3T3 cells, colorectal cancer cells 

Mitochondrial apoptotic pathway, 

caspase induction 

2. Galectin 

Galectin is a family of animal β-galactoside-binding proteins that has been found to have members 

that support cancerous cells by preventing apoptosis, but also some that promote apoptosis in these 

rapidly dividing cells. Intracellular galectin-3 has many identified pro-cancerous effects such as its 

interaction with a thyroid-specific transcription factor, TTF-1, subsequently promoting thyroid cell 

proliferation leading to tumorous growth [8]. Nevertheless, nuclear galectin-3 was discovered to promote 

apoptosis in human prostate cancer cells [41]. Intracellular galectin-3 is most known as an identifier for 

both thyroid and prostate cancer. Extracellular galectin-3 has also been found to be both inhibiting as 

well as promoting apoptosis. Extracellular galectin-3 can decrease T-cell activity by binding to the 

T-cell receptor complex or induce human T-cells to undergo programmed cell death through CD29 and 

CD7, two surface glycoproteins, binding which activates an apoptosis signal to the mitochondria [8]. 

This, therefore, promotes tumor growth as apoptosis of T-cells hinders the immune system.  

Suppression of Gal-3 by siRNA or Gal-3 antagonist GCS-100/modified citrus pectin (MCP) 

promoted cisplatin- triggered apoptosis of PC3 prostate cancer cells which may be mediated by the 

calcium-dependent protease calpain. Gal-3 inhibition enhances while Gal-3 overexpression inhibits 
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calpain activation. Calpain activation leads to cleavage of androgen receptor into an 

androgen-independent isoform in prostate cancer cells. Inhibition of calpain with calpain inhibitor 

and/or siRNA undermined the proapoptotic effect of Gal-3 inhibition, indicating that mechanism for the 

proapoptotic effect of Gal-3 inhibition may involve calpain activation. Hence the use of a non-toxic 

anti-Gal-3 agent in conjunction with a toxic chemotherapeutic drug may be a useful therapeutic strategy 

for chemoresistant prostate cancers [9]. 

Galectin-1 binding caused T cell surface glycoproteins to redistribute into segregated membrane 

microdomains on the cell surface. CD45 and CD3 were localized on large islands on apoptotic blebs 

projecting from the cell surface, which included externalized phosphatidylserine. CD7 and CD43 were 

localized in small patches away from the membrane blebs, which excluded externalized 

phosphatidylserine. Receptor segregation was not observed on cells that did not undergo apoptosis 

following exposure to galectin-1, including mature thymocytes, signifying that receptor redistribution 

into microdomains is crucial for eliciting apoptosis [42]. 

Galectin-1 (Gal-1) sensitizes human resting T cells to Fas (CD95)/caspase-8-mediated apoptosis 

involving a rise in mitochondrial membrane potential and the ceramide pathway. Gal-1 brings about 

mitochondrial coalescence, budding, fission and an upregulates and/or redistributes fission-associated 

molecules h-Fis and DRP-1 in resting as well as activated human T cells. This offers a basis for the 

immunomodulatory action of Gal-1 in experimental cancer models [43]. 

Galectin-1 triggers apoptosis in specific thymocyte subsets and activated T cells. Galectin-1 exhibits 

binding to N- and O-glycans on CD7, CD43, and CD45. Galectin-1 signaling in cells expressing 

low-molecular-weight isoforms of CD45 differs from that in cells expressing a high-molecular-weight 

isoform of CD45 because the former, but not the latter, necessitates expression of core 2 O-glycans 

(high-affinity galectin-1 ligands). The findings indicate that the presence of a larger quantity of core 1 

O-glycans (low-affinity ligands for galectin-1) can offset the deficiency of core 2 O-glycans. Galectin-1 

signaling regulation by α-2,6-sialylation of N-glycans does not only rely on CD45 phosphatase activity. 

Modulation can be attributed to the relative expression of enzymes that attach sialic acid in  

an α-2,6- or α-2,3-linkage. The modulation of galectin-1 T cell death by N- and O-glycans takes place 

through different mechanisms. Thymocytes can be made either susceptible or resistant to galectin-1 by 

different glycosylation events [44]. 

Gal-1 demonstrates proapoptotic activity on T-cells. Radiotherapy-induced tumor Gal-1 secretion in 

mice implanted with Lewis lung carcinoma led to systemic lymphopenia and brought about progression 

of tumor by intratumoral immunosuppression and augmented angiogenesis. Patients who have received 

radiotherapy exhibited elevated plasma Gal-1 and reduction in number of T-cells [45]. 

Galectin-1 (GAL1) is upregulated in a variety of cancers, e.g., in osteosarcoma tissues, and in 

osteosarcoma patients demonstrates a positive correlation with distant metastasis. GAL1 knockdown 

inhibited cell proliferation and invasive potential and elicited apoptosis in osteosarcoma cells with 

attenuated expression of Ki-67, matrix metallopeptidase-9, p-ERK, p38MAPK, and heightened 

expression of caspase-3. A reduction in tumor size was observed in the MG-63 subcutaneous tumor 

models after GAL1 treatment compared with the negative control group. Thus GAL1 is a potential 

target for cancer treatment [46]. 

β-Galactoside binding protein, a physiological inhibitor of class 1A and class 1B phosphoinositide 

3-kinase, elicits apoptosis in aggressive BT474 and SKBR3 breast cancer cells where ErbB2 is 
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overexpressed. The relationship between ERK, akt mRNA, phosphoinositide 3-kinase and cell 

vulnerability to beta galactoside binding protein challenge was sustained both in MCF10A mammary 

ductal cells and in non-invasive MCF-7 breast cancer cells compelled to display an aggressive 

phenotype. β-Galactoside-binding protein has the potential to be safely tested in clinical trials [47]. 

In addition, galectin-1 overexpression is suspected to be involved in the initial stage of tumorigenesis 

as it is positively correlated with cell transformation [9]. Cell adhesion depends on interactions between 

proteins and carbohydrates, and galectin-8 has been found to negatively affect the adhesive ability of 

human carcinoma 1299 cells and also induce p53-independent cell apoptosis [10]. However, other 

galectins show no effect on cell adhesion suggesting a unique specific binding to complex cell surface 

carbohydrates by galectin-8. The capacity of galectin-8 to bind with integrins has been studied and is 

thought to be the cause of galectin-8’s regulatory ability of cell adhesion and apoptosis. Variation in 

effectiveness of galectins on cancerous cells depends on cell types as well as concentration. Galectin-1 

has been found to be more effective on various carcinomas including epithelial tumors, galectin-7 on 

thyroid tumors, galectin-8 on colon cancer, and galectin-12 on fibroblast cells [8,9]. While previously 

mentioned that galectin-1 has pro-cancerous effects, it has been also found to have anti-proliferative 

properties in epithelial carcinoma cells through binding to the α5β1 integrin. This specific integrin 

binding stimulates p21 transcription and stabilizes the p27 protein leading to G1 cell cycle arrest and 

thus inhibits growth [11]. Increased expression of galectin-7 was found in apoptotic human 

keratinocytes damaged by UVB radiation [12]. It is important to note that many galectins such as 

galectin-1 and -3 are known to have both anti-cancerous effects as well as pro-cancerous properties 

therefore warranting further studies in order for effective and correct therapeutically recommendations. 

3. C-Type Lectins 

Lectins such as Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin 

(DC-SIGN), Natural killer-receptors (NK-receptors), and selectins including P-selectin, L-selectin, and 

E-selectin are all part of the superfamily called C-type lectin. C-type lectins are known to be involved in 

immune response, cell proliferation, and programmed cell death making them expected targets for 

research. DC-SIGN is one important C-lectin that can be recognized by glycosylated ICAM-2 which 

binds to form a DC-SIGN-ICAM-2 complex. This complex begins the maturation of dendritic cells that 

are capable of generating a specific cytotoxic T lymphocyte-modulated immune response which 

promotes antitumor activity. Another study also found DC-SIGN can recognize and bind to certain Le 

glycans expressed in human colorectal carcinoma cells leading to increased immunofunctioning [13]. 

Tumor death can be triggered by natural killer (NK) cells through the perforin granzyme pathway or 

death receptors on tumor cells surfaces like TRAIL and Fas ligands [14]. However, NK cells can only be 

effective cancer treatment options if they can be delivered to the area of the cancerous cells. Unlike the 

other two C-type lectins previously mentioned, selectins, another group of C-type lectins, are not known 

to have any apoptotic properties and are more often studied for their role in tumor metastasis through cell 

adhesion and expression in cancer cells [9]. Nevertheless, they are worth mentioning as they hold great 

potential for this different method of carcinoma treatment. 
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4. Annexin 

Annexins are Ca2+-regulated phospholipid-binding proteins that are engaged in regulation of cell 

growth as well as induction of apoptosis. Researchers have discovered that many animal proteins in the 

annexin family have apoptotic-inducing properties making them interesting subjects for cancer research. 

Annexin-1 has been shown to inhibit activation of the NF-κB signal transduction pathway in human 

cancer cells making it a possible cancer treatment option [15]. The NF-κB signal transduction pathway is 

often enhanced or constitutively active in cancerous cells and can increase their proliferation or protect 

them from cell death [16]. As a result, using Annexin-1 as a pathway inhibitor may be efficacious in 

cancer therapy. Annexin-6 also holds some prospects, acting as a tumor suppressor through negative 

regulation of the Ras–Raf–mitogen-activated protein kinase (Ras-Raf-MAPK) signaling pathway [15]. 

The Ras-Raf-MAPK pathway is recognized for its role in cell proliferation, and mutations can create 

oncogenes associated with the pathway leading to the development of certain cancers [17]. One 

investigation disclosed that annexin-6 impaired tumor growth in mice and another study showed 

down-regulation of annexin-6 in metastatic melanoma cells [18,19]. Annexin-7 has been shown to be 

associated with suppression of prostate cancer cells [20]. Additional research should be done in order to 

discover more about the mechanisms and pathways involved in restriction of cancer growth by annexins. 

The regulation of annexin expression in cancer cells such as the increased expression of Annexin-1 in 

prostate cancer cell lines, esophageal cancer, and hepato-carcinoma also merits further investigation of 

annexins [9]. 

5. Other Animal Lectins 

A wide variety of lectins found in invertebrates act as the first line of defense against pathogens 

through binding and neutralization or by promoting phagocytosis from other cells [48]. 

6. Marine Animal Lectins 

There are a few available studies that have shown isolated marine lectins with the ability to induce 

apoptosis in cancer cells. However, marine lectins show great potential for anti-cancer treatment due to 

the fact many of them possess the ability to bind to terminal sugars of glycolipids or glycoproteins, an 

essential role in marine innate immunity. 

6.1. Sialic Acid Binding Haliotis Discus Discus Lectin (HddSBL) 

Lectins, extracted and purified from Haliotis discus discus, also known as disk abalone, are important 

in the innate immunity process of cells including cell recognition and defense. HddSBL was found to 

have significant growth obstruction at high enough dosages on Hep3B—a hepatocellular carcinoma cell 

line, SW480—a colorectal cancer cell line, and A549 and H1299—both lung cancer cell lines [21]. 

Analysis through cell lysis and western blotting determined that HddSBL caused down-regulation of 

Bcl-2, an anti-apoptosis factor, but did not activate capases [22]. Capases, also known as 

cysteine-aspartic proteases or cysteine-dependent aspartate-directed proteases, are important proteins 

involved in inducing apoptosis in cells. 
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6.2. Fucose-Binding Dicentrarchus Labrax Lectin (DIFBL) 

Dicentrarchus labrax fucose-binding lectin (DIFBL) is a lectin found in Dicentrarchus labrax,  

more commonly known as the European seabass, and is present in the larvae one month following 

hatching [49]. In a similar experiment to the one conducted testing the anti-tumor abilities of HddSBL, 

DIFBL was tested against liver cancer cell lines—Hep3B and BEL-7404, A549 lung cancer cells, and 

SW480, a colorectal carcinoma cell line. Results showed suppressed in vitro proliferation of all the cell 

lines though effectiveness was dependent on the dosage of DIFBL and length of culture time. The 

mechanism of apoptosis induction, the cause of proliferation suppression in the cell lines, was found to 

be through down-regulation of Bcl-2 and XIAP, anti-apoptosis factors, in Hep3B cells which were 

chosen to be the model studied. Further examination suggested involvement of the PRMT5-E2F-1 

pathway in DIFBL induced apoptosis in Hep3B cells despite no up-regulation of caspases [50].  

6.3. Rhamnose-Binding Strongylocentrotus Purpuratus Lectin (SpRBL) 

Rhamnose-binding Strongylocentrotus purpuratus lectin (SpRBL) was also found to undergo  

a mechanism similar to DIFBL to induce apoptosis in Hep3B cells involving the same PRMT5-E2F 

pathway and likewise down regulating Bcl-2 and XIAP [50]. However, SpRBL was found to be more 

effective than DIFBL after 72 h of incubation, and while DIFBL has been seen to concentrate in 

membranous areas and organelles of cells, SpRBL does not show the same localization. Little literature 

concerning the effects of SpRBL as a cancer therapy option is available, but as it shows consistent  

results as with other marine lectins, it is an area of lectin research that should be considered for  

further experimentation. 

7. Other Plant Lectins 

The greatest amount of research on lectin proteins concerns plant lectins due to their widespread 

occurrence and relatively similar defensive properties. Here we cover the plant lectins that have been 

found to hold the greatest potential for anti-cancer growth including Polygonatum odoratum lectin, 

mistletoe lectin from a variety of sources, and concanavalin A (Con A). Plant lectins affect both 

apoptosis and autophagy by modulating representative signalling pathways involved in Bcl-2 family, 

caspase family, p53, PI3K/Akt, ERK, BNIP3, Ras-Raf and ATG families, in cancer [51]. 

7.1. Polygonatum Odoratum Lectin (POL) 

Polygonatum odoratum lectin (POL) is a lectin categorized as part of the GNA-related family—a 

group of lectins all sharing a common three dimensional structure despite having differences in primary 

amino acid sequence. All GNA-related family lectins specifically bind to the monosaccharide mannose 

due to a specific amino acid sequence that is present in all such lectins which might be linked to their 

anti-cancerous properties [23]. POL has been found to induce signs of apoptosis in A549 lung cancer 

cells without affecting healthy HELF lung cells which did not exhibit signs of membrane blebbing, 

volume reduction, and DNA fragmentation. The selectivity of apoptosis induction in the malignant 

A549 cells but not standard HELF cells portends potential tumor suppression. In an experiment, the 

inhibitory rate was almost 50% after incubating A549 cells for 24 h when a concentration of 23 µg/mL of 
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POL was used and it was determined that apoptosis was induced by means of suppressing a 

mitochondrial-mediated pathway known as Akt-NF-κb pathway. In addition, autophagy, another form 

of stopping cancer cell proliferation, was found to be induced by blocking the Akt-mTOR pathway [24]. 

Another experiment also found POL’s 50% inhibitory rate of L929 murine fibrosarcoma cells to be at a 

concentration of 25 μg/mL after 24 h of incubation. It was further determined that POL induced 

apoptosis in the L929 rodent cells through the involvement of a caspase-dependent pathway—consistent 

with the results found using A549 cells, Fas mediating apoptotic pathway—a death-receptor pathway, 

and a mitochondrial pathway [25]. Even more promising, POL was shown to enhance the effects of 

TNFα, a tumor necrosis factor, in the same experiment. POL triggered apoptosis and autophagy in 

human MCF-7 breast cancer cells by targeting epidermal growth factor receptor-mediated 

Ras-Raf-MEK-ERK signaling pathway [26]. 

7.2. Mistletoe (Viscum Album) Lectin 

Extracts of lectins from mistletoe plant species have been well studied due to their widespread 

effectiveness on a variety of neoplastic cells, yet it is one of the more controversial lectins when 

regarding cancer treatment. Many studies show pro-apoptosis effects when certain dosages of mistletoe 

lectins are given, while other concentrations produce anti-apoptotic consequences [27]. Genes 

implicated in glioblastoma progression and malignancy including transforming growth factor-β and 

matrix-metalloproteinases manifested downregulation and tumor growth in glioblastoma xenograft 

bearing mice was retarded after treatment with the lectin-containing mistletoe extract ISCADOR[28]. 

Mistletoe lectin extracts are composed primarily of mistletoe lectin I, II, and III though the differences in 

each one have yet to be studied thoroughly. Research studies have found that lectin purified from the 

Korean mistletoe, known as Viscum album var. coloratum agglutinin (VCA), has positive effects when 

trials were carried out on human breast cancer cells. Even stronger programmed cell death results were 

found when the VCA lectin was combined with doxorubicin (DOX), though its clinical uses are limited 

as DOX is known to have toxic side effects including cardiotoxicity and myelosuppression [29]. 

Stimulation of proteins inducing apoptosis such as Bax and Puma and inhibition of Bcl-2 was seen when 

using the combination of VCA and DOX [41]. Korean mistletoe lectin (Viscum album L. coloratum 

agglutinin) elicited apoptosis in SK-Hep-1 (p53-positive) and Hep 3B (p53-negative) human 

hepatocarcinoma cells through p53- and p21-independent pathways, by down-regulation of Bcl-2 and 

telomerase and up-regulation of Bax functioning upstream of caspase-3 in both cell lines [30]. 

Chinese mistletoe lectin-1 (CM-1) is an additional lectin that can induce apoptosis in colorectal 

cancer cells through down-regulation of miR-135a&b expression and up-regulation of expression of 

the adenomatous polyposis coli (APC) gene leading to reduced activity of Wnt signaling, a gene 

downstream of APC. Wnt signaling controls β-catenin levels thus affecting gene expression and 

interference with this signal has been linked to 90% of colorectal cancer cases [7]. Other human cancer 

cell lines affected by mistletoe lectins include acute lymphoblastic leukemia cells (NALM-6), 

glioblastoma cells through NK-mediated cell lysis, hepatoma carcinoma cells through a p53- and 

p21-independent mitochondrial controlled pathway, peripheral blood mononuclear cells via enhanced 

pro-apoptotic proteins, monocytic tumour cell lines via activating expression of individual interleukin 

mRNA, and epidermoid carcinoma cells (A253) by inducing dephosphorylation of Akt [31,32]. 
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Recombinant mistletoe lectin increased the survival rate and survival time of severe combined 

immunodeficient (SCID) mice which had received transplantation of human ovarian cancer cells [33]. 

7.3. Concanavalin A (ConA) 

Concanavalin A is a legume lectin that can be extracted from Jack bean seeds. Con A has been found 

to induce caspase-dependent apoptosis in human melanoma A375 cells. In A375 cells treated with Con 

A, cytochrome c levels were increased which stimulated caspace-9 and caspase-3 levels thus indicating 

involvement of a mitochondrial apoptotic pathway in Con A-generated apoptosis. This is further 

supported through findings of mitochondrial transmembrane potential collapse in A375 cells. Also 

discovered is Con A’s ability to induce autophagy in hepatoma cells through a mitochondrial pathway 

and glioblastoma cells. Clinical use of Con A is still questionable due to its strong cytotoxic effects that 

include the induction of hepatitis which would undoubtedly be unsafe for cancer patients. Research 

findings indicated that a low, non-toxic concentration of Con A inhibited hepatic metastasis of Colon-26 

colon cancer cells through an NK-mediated mechanism. In vivo murine experiments have also found 

successful proliferation inhibition using Con A on B16 melanoma cells and fibroblast 3T3 cells [34–39].  

Con A inhibits the membrane-mediated phosphatidylinositol 3 kinase/Akt/mTOR (mammalian target 

of rapamycin) pathway and upregulates the MEK/Extracellular signal-regulated kinases (ERK) pathway 

in HeLa cells resulting in autophagy [40]. Con A elicits autophagy in hepatoma cells through 

internalization and mitochondrion- mediated pathway which entails a mitochondrial interacting protein 

designated as Bcl2/E1B-19kDa protein-interacting protein 3 [52]. 

7.4. Soybean (Glycine Max) Lectin 

Soybean lectin elicited apoptosis, autophagy, and DNA damage in HeLa cells via the generation of 

reactive oxygen species. N-acetylcysteine which scavenges scavenger, reactive oxygen species attenuated 

the action of soybean lectin [53]. 

7.5. Clematis Montana Lectin 

Modification of tryptophan and arginine residues and sulfhydryl groups of Clematis montana lectin,  

a mannose-binding lectin resulted in reduction of its anti-proliferative and hemagglutinating  

activities [54,55]. 

7.6. Sclerotium Rolfsii Lectin 

The lectin from the phytopathogenic fungus Sclerotium rolfsii strongly inhibited proliferation and 

induced apoptosis of MCF-7 and ZR-75 human breast cancer cells but only weakly inhibited proliferation 

of non-tumorigenic MCF-10A and HMEC human breast cells. Botin-labelled Sclerotium rolfsii lectin 

showed little binding to normal human breast tissue but intense binding to cancer issues [56]. 

8. Cellular Targeting of Lectins 

The basis for cancer therapy using lectins stems from the ability of these proteins to target multiple 

cellular components allowing for a wide range of potential cancer treatments. With most lectins, a key 
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component of targeting is cell surface carbohydrates. This is shown in immune defense systems where 

most lectins follow a general pathway involving carbohydrate recognition of receptors leading to a 

cascade activation of enzymes such as MBL-associated serine proteases [57]. However, while important, 

membrane surface carbohydrates are not alone sufficient for lectin-induced apoptosis as shown in a 

study using BL6-8 melaonma cells and GSIB4 lectins. Even after transfection of the galactosyltransferase 

(α1,3GT) gene and cell surface α-galactosyl epitopes known to interact with the GSIB4 lectin, the 

GSIB4 lectin did not induced apoptosis in the BL6-8 cells. Through further testing, the study showed 

that lectin-induced apoptosis occurs through binding of lectin molecules to a specific receptor, 

internalization into the cell via endocytosis, and further pathway cascades leading to apoptosis [4]. 

Oncogenic and tumour suppressive microRNA (miRNA) are also cellular targets of lectins [58]. It has 

been found that lectins can block carbohydrate-containing receptor EGFR-mediated survival pathways 

ultimately affecting autophagic hub proteins and miRNAs and inducing autophagy or apoptosis [6]. 

While wide ranging, Table 2 summarizes a few of the specific cellular targets of the specific lectins 

discussed in this review involved in apoptosis. 

The antiproliferative activity of galectin-1 in various epithelial cancer cell lines necessitates 

carbohydrate-dependent interaction with the alpha5beta1 integrin. Suppression of the Ras-MEK-ERK 

cascade by Gal-1 enhances Sp1 transactivation and DNA owing due to diminished threonine 

phosphorylation of Sp1. Gal-1 stimulates p21 transcription and augments p27 protein stability. Gal-1 

mediates accumulation of p27 and p21 suppresses cyclin-dependent kinase 2 activity eventually leading 

to G(1) cell cycle arrest and growth inhibition [11]. 

Con A binds to cell membrane glycoproteins, gains entry into the cells and is preferentially located in 

the mitochondria, leading to alterations in mitochondrial membrane permeability and a pathway of 

autophagy comprising LC3-II formation, double-layer vesicle, BNIP3 induction, and acidic vesicular 

organelle formation is triggered. Either 3-MA or siRNA for BNIP3 and LC3, but neither beclin-1 nor 

ATG 5, partially inhibited the Con A-elicited cell death [59]. 

Table 2. Cellular targets of lectins leading to apoptosis. 

Lectin Cellular Target 

Galectins [11,60,61] 

Galectin 1: α5β1 integrin 

Galectin 3: oncogenic K-Ras protein 

Galectin 9: antigens presented on T-cell, Ca2+ levels, 
calpain and caspase-1 

C-Type Lectins [62] Myeloid C-type lectin receptors 

Annexins [63] Bax and caspase-3 

Sialic acid binding Haliotis discus discus lectin 
(HddSBL) [22] 

Bcl-2 

Polygonatum odoratum lectin (POL) [26] Bcl-3 and LC3 

Mistletoe Lectin [30,64] 
Caspase-8, caspase-9, caspase-3, Bcl-2, and 
telomerase activity 

Concanavalin A (ConA) [36,65] 
Surface glycoproteins such as mannose sugars, 
matrix metalloproteinase, cytochrome c, and 
caspase-3 and -9 
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9. Lectins for Apoptosis-Induced Chemotherapy 

With the many natural sources of lectins and the wide supporting evidence for their anti-cancer 

properties, it seems unwise not to further current research on using lectins for cancer treatment. In this 

review, we have discussed only a few of the many lectins that researchers have found to have the ability 

to halt tumor growth through type-I programmed cell death, also known as apoptosis. Cells that have 

been mutated in a way such that they lose their ability to undergo apoptosis are unable to die and maintain 

cell homeostasis [66]. These cells are likely to become malignant tumors and will continue to proliferate 

uncontrollably. Lectin insertion, however, can induce cellular pathways that allow apoptosis to occur 

and therefore are a viable option for terminating neoplastic growth. Studying the mechanisms by which 

specific lectins induce apoptosis in cancer cells is important for understanding their effectiveness on 

different cancer cell lines and should be further examined. Further research on how lectins can be 

implemented as a drug to patients is also just as important for successful treatment as clinical trials are  

a necessary step in developing lectins as an anti-cancer drug. Apoptotic means are not the only way to 

inhibit harmful proliferation. Type-II programmed cell death, more commonly referred to as autophagy, 

has been documented as a mechanism by which certain lectins prevent further cancerous growth as well 

as through ribosomal deactivation. This review not only aims to support the necessity for further 

investigation of specific lectin potential, but to also aid in starting the foundation for studies on lectin 

effects on malignant cell growth. 

Understanding the process and mechanisms by which lectins affect cancerous cell growth is 

impertinent if we are to use lectins in future clinical cancer therapy. It is important to realize the 

discrepancies between animal model experiments and the results found in humans when considering the 

use of lectins for cancer treatment. Lectins are known to have some toxic effects at high concentrations 

creating some complications when regarding their use for therapy. Mistletoe lectins are a standard 

example of a potential anti-tumor compound that produces debatable effects when examined in cancer 

patient prospective studies. While research studies in vivo and in vitro involving mistletoe lectins both 

show anti-tumor effects, clinical studies have yet to support such findings. Positive trends have been 

seen in studies using mistletoe lectins on breast cancer patients, but literature reviews of earlier studies 

have shown little conclusive evidence for the benefits of mistletoe lectins on survival or quality of life of 

patients but data from recent years tend to suggest a benefit [67–77]. However, this does not mean we 

should refute all experimental lectin trials as many such prospective studies lacked proper 

methodological practices and were possibly subjected to potential bias. Furthermore, as previously 

stated, all lectins are known to have varying degrees of effectiveness based on dosage or specific type of 

lectin extracted which must be taken into consideration when reviewing the literature of human clinical 

trials. Investigations using in vivo lectin experiments may provide a better indication on how a specific 

lectin may react in a clinical setting and what cytotoxic effects the lectin may hold. Con A is a case in 

which the lectin has anti-neoplastic effects but can also have toxic effects on cells [78].  

Besides being vital areas for drug testing, lectins also hold potential for use as cancer markers and 

predictors. Certain single nucleotide polymorphisms found in the genes coding for C-type lectins have 

been found to be associated with increased risk of developing colorectal cancer and its severity if 

established though further studies are warranted [79]. Many galectins including galectin-1 and galectin-3 

have also shown a correlation with tumor development and can be used as markers of potential 
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cancerous growth [80]. Both galectin-1 and galectin-3 interact with oncogenic Ras, a proto-oncogene 

known to be mutated and constantly expressed in tumor cells rendering these two galectins to be 

favorable targets for therapy [81]. Thus, directing research at such lectins for cancer treatment can be 

potentially significant and merits further research not only to determine the use of lectins for apoptotic 

induction, but also to predict and prevent malignant cell growth. 

10. Autophagy: Another Possibility for Lectin-Mediated Cancer Therapy 

Autophagy is an important component in lectin research as a mechanism for inhibiting neoplastic 

growth. Though this review is concerned mainly the mechanisms of apoptosis induction, it is important 

to consider the possibilities autophagy presents in lectin cancer therapy. Autophagy is the process by 

which a cell will destroy its organelles through the use of autophagosomes and lysosomes. While there 

are two main types of autophagy—microautophagy and macroautophagy—the general term autophagy 

is commonly used to refer to the process of macroautophagy. In microautophagy, cytoplasm is engulfed 

directly at the surface of lysosomes, whereas macroautophagy creates autophagosomes by isolating part 

of the cytoplasm to create a separate vesicle. This autophagosome then fuses with a lysosome for 

degradation. Autophagy is not only associated with cancer and has been shown to play an important  

role in anti-aging, cell development, and antigen presentation thus linking autophagy with immune 

response [82–86].  

Studies have shown autophagy defects are linked to tumorous growth through various genes. Beclin 

1, a gene in mammals similar to the Atg 6 gene in yeast, is a part of a type-III phosphatidylinositol 

3-kinase complex that is necessary for autophagic vesicle formation for tumor suppression. DNA 

sequencing of human breast and ovarian cancer has shown that Beclin 1 is often lost leading to  

neoplasm [87]. Tumor suppressor genes, p53 and PTEN, both stimulate autophagy and are common 

targets for cancer therapy. Autophagic mechanism damage leads to genome instability which often 

further proceeds to the uncontrolled and malignant cell growth of tumors. In some cancer cell lines that 

are apoptosis-resistant or defective, autophagy-induced cell death can be stimulated through 

chemotherapy treatments such as arsenic trioxide, resveratrol, and tamoxifen [88].  

In reference to specifically discussed lectins in this review, autophagy can play a key role in their 

success in inducing cancerous cell death. Con A can bind to mannose glycoproteins and inhibit growth 

and is suspected to take on an autophagic pathway in heptatoma ML-1 cells [37]. Formation of LC3-II, 

an autophagy marker, and double-layer vesicles and induction of BNIP3, a protein associated with 

autophagy, support such conclusions [59,89]. The animal lectin, Annexin-5, has been shown to induce 

autophagy as well as inhibit endocytosis [90]. Though not discussed in this review, another lectin, 

9Polygonatum cyrtonema lectin (PCL), was found to induce both autophagy and apoptosis through  

a mitochondria-mediated ROS–p38–p53 pathway in human melanoma A375 cells [91]. 

Another approach involving the use of autophagy in cancer treatment involves the connection 

between autophagy and apoptosis. Atg5, a specific autophagic protein, has been found to active  

an apoptotic program when cleaved [92]. Thus the study of autophagic mechanisms may be instrumental 

in determining successful mechanisms of neoplastic cell death. Figure 1 presents the mechanisms of 

apoptosis and autophagy induced by lectins in cancer cells. 
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Figure 1. Mechanisms of apoptosis and autophagy induced in tumor cells by lectins. 

11. Conclusions 

In summary, the use of lectins obtained from natural plant and animal sources shows great promise 

and potential for use in future cancer therapy. Current research has found strong anti-cancer effects of 

many lectins as shown in this article. Both apoptosis and autophagy are important factors that influence 

the success of lectin chemotherapy. Additional research should be funded in order to better understand 

the mechanisms of lectins in both apoptosis and autophagy and aid in the transition from research to 

clinical application. In vitro laboratory and in vivo animal studies show promising results, but it is clear 

that clinical studies are necessary to advance cancer research in utilizing lectins for chemotherapeutic 

treatment. Mistletoe extract containing lectin has been used clinically at low doses in the treatment of 

different cancers without serious side effects and the action seems to be beneficial in some cases [93–96]. 
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