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SUMMARY

We have identified metabolic targets that are consistently
altered in human hepatocellular carcinoma, and are of po-
tential clinical significance. This study exposes profound
genomic dysregulation that could shed new light on how
metabolism influences hepatocellular carcinogenesis.

BACKGROUND & AIMS: Cancer cells rely on metabolic
alterations to enhance proliferation and survival. Meta-
bolic gene alterations that repeatedly occur in liver cancer
are largely unknown. We aimed to identify metabolic
genes that are consistently deregulated, and are of potential
clinical significance in human hepatocellular carcinoma
(HCC).

METHODS: We studied the expression of 2,761 metabolic
genes in 8 microarray datasets comprising 521 human HCC
tissues. Genes exclusively up-regulated or down-regulated in
6 or more datasets were defined as consistently deregulated.
The consistent genes that correlated with tumor progression
markers (ECM2 and MMP9) (Pearson correlation P < .05)
were used for Kaplan-Meier overall survival analysis in a
patient cohort. We further compared proteomic expression of
metabolic genes in 19 tumors vs adjacent normal liver
tissues.

RESULTS: We identified 634 consistent metabolic genes,
w60% of which are not yet described in HCC. The down-
regulated genes (n ¼ 350) are mostly involved in physiologic
hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and
amino acid metabolism). In contrast, among consistently
up-regulated metabolic genes (n ¼ 284) are those involved in
glycolysis, pentose phosphate pathway, nucleotide biosyn-
thesis, tricarboxylic acid cycle, oxidative phosphorylation, pro-
ton transport, membrane lipid, and glycan metabolism. Several
metabolic genes (n ¼ 434) correlated with progression
markers, and of these, 201 predicted overall survival outcome
in the patient cohort analyzed. Over 90% of the metabolic
targets significantly altered at the protein level were similarly
up- or down-regulated as in genomic profile.

CONCLUSIONS: We provide the first exposition of the consis-
tently altered metabolic genes in HCC and show that these genes
are potentially relevant targets for onward studies in preclinical
and clinical contexts. (Cell Mol Gastroenterol Hepatol
2017;4:303–323; http://dx.doi.org/10.1016/j.jcmgh.2017.05.004)

Keywords: Liver Cancer; HCC; Tumor Metabolism.

http://dx.doi.org/10.1016/j.jcmgh.2017.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcmgh.2017.05.004&domain=pdf


304 Nwosu et al Cellular and Molecular Gastroenterology and Hepatology Vol. 4, No. 2
See editorial on page 283.

etabolism is an indispensable process in normal
Abbreviations used in this paper: EMT, epithelial to mesenchymal
transition; FA, fatty acid; HCC, hepatocellular carcinoma; logFC, log of
fold change; NAFLD, nonalcoholic fatty liver disease; NASH, nonal-
coholic steatohepatitis; NB, nucleotide biosynthesis; OXPHOS,
oxidative phosphorylation; PPP, pentose phosphate pathway; TCA,
tricarboxylic acid; TCGA, The Cancer Genome Atlas; XM, xenobiotics
metabolism.
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Mand cancer cells. In the early 20th century, Otto
Warburg discovered an alteration in tumor metabolic
phenotype. He observed that cancer cells highly depend on
aerobic glycolysis for energy production evenwhen oxygen is
abundantly available.1–3 This discovery, complemented later
by the dawn of the -omics era, has inspired several novel
insights in cancer cell metabolism. Today, metabolic alter-
ation is a recognized hallmark of cancer.4 It is nowknown that
in addition to relying on glucose (often called the Warburg
effect), cancer cells also depend on other metabolites such as
glutamine, serine, and fatty acids.5–9 Furthermore, the accu-
mulation of oncometabolites (eg, 2-hydroxyglutarate and
fumarate), deregulated nutrient transporters (eg, glucose and
monocarboxylate transporters), transcriptional regulators,
epigenetic factors, and signaling molecules all prominently
contribute to altered cancer metabolism.2,10,11 In line with
the rapidly evolving insights on tumor metabolism, a recent
review has grouped the emerging alterations into 6 hall-
marks, among which are deregulated uptake of glucose and
amino acids, increased demand for nitrogen, and altered gene
regulation caused by buildup of metabolites such as acetyl
coenzyme A and 2-hydroxyglutarate.12 Several molecular
mediators of aberrant metabolism (eg, carnitine palmitoyl-
tranferase 1, hexokinases, glucose transporter 1, gluta-
minase, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase,
and isocitrate dehydrogenases) have been studied in pre-
clinical and clinical trials as potential cancer drug targets.13,14

However, the extent and relevance of altered metabolism in
cancer cells is still unclear.12,14 This is partly due to the
complex regulation of biochemical pathways as well as mo-
lecular heterogeneity within and across tumor entities. In
addition, many studies have so far focused on the Warburg
effect, thus narrowing the opportunities to identify novel and
perhaps more relevant biochemical changes in cancer. Thus,
as concluded by Pavlova and Thompson,12 a detailed under-
standing of tumor metabolic features, especially for individ-
ual tumor types, will assist in better tumor classification and
improve the prospects of exploiting metabolism in cancer
therapy.

Liver cancer poses a global health challenge due to its
rising incidence coupled with a low survival rate, especially
in the developing world.15,16 Hepatocellular carcinoma
(HCC) accounts for over 80% of liver cancer cases, and is
highly malignant, recurrent, drug resistant, and often diag-
nosed at the advanced stage.17,18 For these reasons, the
need to identify molecular features that uniquely define or
contribute to HCC progression remains clinically urgent. To
exploit metabolic alterations in HCC as diagnostic and
prognostic indicators or as therapeutic targets, the alter-
ations that distinguish cancerous liver cells from function-
ally normal hepatocytes must be known. Therapeutic
interventions also need to consider that the liver is
responsible for systemic metabolism and detox-
ification—functions that must not be compromised in an
attempt to modulate pathways in adjoining cancerous liver.
It is known that metabolic gene networks are heterogeneous
in cancer (HCC inclusive).19 Nevertheless, there are strong
evidences that metabolic alterations have translational
relevance in HCC. For instance, differences in acetate utili-
zation have been reported as a possible phenotype for
stratifying HCC patients.20 Low betaine and propio-
nylcarnitine have been proposed as combinatorial serum
biomarkers in HCC.21 Several metabolic targets are detect-
able by proteomic methods, and thus could serve as bio-
markers in HCC.22 Furthermore, all liver function
parameters currently in clinical use reflect changes in either
metabolic activities or enzymes. One notable liver function
enzyme, aspartate transaminase, has also recently been
shown to predict future risk of HCC development from
primary biliary cirrhosis.23 Therefore, identification of the
consistently deregulated metabolic genes in HCC will
accelerate future mechanistic studies aimed at exploiting
specific candidates or pathways in diagnostic, prognostic or
therapeutic contexts. In this study, we zoomed into the
genomic landscape of human HCC with the aim of exposing
consistently altered metabolic genes (hereafter also called
targets) of potential clinical relevance. Across 8 datasets
published in the last decade, we found that many metabolic
genes are consistently deregulated regardless of the etio-
logical background of the different patient cohorts. Many
metabolic genes correlated with known markers of cancer
progression, predicted survival outcome, and were similarly
up- or down-regulated at the protein level in our analysis
and other prior studies. We have revealed robust changes in
metabolic gene expression in HCC to the extent that, to our
knowledge, has not been previously acknowledged.

Methods
Collection of Liver Cancer Microarray Datasets,
Processing and Identification of Consistently
Altered Metabolic Genes

Eight liver cancer microarray datasets that have
accompanying scientific publications (Table 1)24–31 were
assembled via online databases, namely ArrayExpress32 and
the Gene Expression Omnibus (GEO) of the National Center
for Biotechnology Information (NCBI).33 To eliminate
analytical bias that might arise from data reprocessing, the
NCBI GEO2R tool was used to directly determine the
differentially expressed genes between healthy or adjacent
liver tissue control samples and HCC samples in each
dataset. In total, 521 human HCC gene expression profiles
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Table 1.Microarray Data Analyzed to Identify Altered Metabolic Targets in HCC Patients

Accession number Data compareda

Number of
samples

Main etiology reported ReferenceControl HCC

GSE14520b Paired NT vs HCC 220 225 HBV [24]

GSE39791 Matched NT vs HCC 72 72 HBV [25]

GSE57957 Adjacent NT vs HCC 39 39 HBV [26]

GSE36376 AJCC Stage 3: Adjacent NT vs HCC 32 38 HBV [27]

GSE60502 Adjacent NT vs HCC 18 18 NA [28]

GSE14323c Normal liver vs HCC 19 38 HCV [29]

GSE6764 Normal liver vs very advanced HCC 10 10 HCV [30]

GSE62232 Normal liver vs HCC 10 81 Mixed: alcohol, HBV, HCV, etc.d [31]

Total arrays 420 521

HBV/HCV, hepatitis B/C virus; HCC, hepatocellular carcinoma; NA, detail could not be accessed; NT, nontumor.
aDescription of the data compared as documented in the National Center for Biotechnology Information Gene Expression
Omnibus. Differential expression was analyzed with GEO2R tool. The overall design for each dataset can be found at https://
www.ncbi.nlm.nih.gov/geo/.
bData platform analyzed was GPL3921.
cData platform analyzed was GPL571.
dIncludes unknown etiology, hemochromatosis, metabolic syndrome and combinations of alcohol with the other etiologic
factors.
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were compared with 420 control liver samples (Table 1).
Thereafter, the GEO2R outputs were downloaded, and all
genes differentially regulated at P < .05 were selected. Next,
a previously published list of 2,752 metabolism-annotated
genes7 was updated with 9 additional genes
(Supplementary Table 1), and used to extract only the
deregulated metabolic genes in each of the 8 datasets
(Table 2). For this, the COUNTIF function was applied in
Microsoft Excel (Microsoft Corp, Redmond, WA), followed
by the removal of duplicate probes (eg, whereby a gene has
4 up-regulated probes, the one with the highest expression
value was retained). Furthermore, the average log of fold
change (logFC) of all differentially expressed genes as
determined by GEO2R was calculated, and used as reference
Table 2.Selection of Metabolic Targets From the List of Deregu

HCC microarrays

logFC generated via NCBI GEO2R

Mean SD
T use
met

GSE14520 0.0295 0.598

GSE39791 0.0102 0.3772

GSE57957 0.0225 0.415

GSE36376 0.275 0.484

GSE60502 0.000321 0.976

GSE14323 –0.015 0.563

GSE6764 0.0196 1.00129

GSE62232 0.0104 0.6383

Mean and SD were calculated from all probe sets with logFC
Metabolic genes with þlogFC at and above threshold (T) were se
T selected as down-regulated targets.
HCC, hepatocellular carcinoma; logFC, log of fold change; NC
to set cutoff threshold values for each dataset. This step
ensured the exclusion of metabolic gene probes with very
small expression changes—also including duplicate probes
of genes that in the same dataset are already among the top
differentially regulated. For onward analyses, metabolic
genes with þlogFC at or above the cutoff value in the
respective datasets were selected as up-regulated, whereas
those with –logFC at or below cutoff value were selected as
down-regulated. Few genes that had 2 probes with strongly
opposite expression patterns in the same dataset (ie, one
probe is up-regulated and the other down-regulated) were
left in the gene list and used to test for consistent alteration
across datasets. Following these prior steps, a metabolic
gene was identified as consistently altered if it has the same
lated Gene Probes in Each HCC Dataset Used in This Study

(P < .05) Number of metabolic genes selected

d for selecting
abolic genes

Up-regulated
(� þT)

Down-regulated
(� -T)

0.2 542 654

0.15 551 653

0.15 623 650

0.1 934 404

0.4 340 597

0.15 473 683

0.45 437 628

0.25 552 814

values at P < .05 (including metabolic and other genes).
lected as up-regulated targets; those with –logFC at or below

BI, National Center for Biotechnology Information.
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expression pattern (ie, exclusively in the up-regulated or
down-regulated category) in at least 6 of the 8 HCC datasets.

Selection of Progression Markers
Known markers of tumor invasion or metastasis, spe-

cifically extracellular matrix proteins and matrix metal-
loproteinases as well as epithelial-to-mesenchymal (EMT)
markers (eg, SNAIs, TWIST, ZEBs, cadherins, vimentin) were
manually curated from literature.34,35 The expression of
these genes was compared across 8 liver cancer microarrays
in Oncomine—an online repository of curated cancer tran-
scriptomics data.36 In the Oncomine platform, parameters
were set as follows— Analysis type: Liver Cancer vs Normal
Analysis, Threshold by: P ¼ .05, Fold Change ¼ All, and Gene
Rank ¼ All. Of the markers mentioned earlier, ECM2, CDH1,
VIM, and MMP9 were the most consistently deregulated.
Differential regulation of ECM2, MMP9, CDH1, and VIM as
observed in Oncomine was also confirmed in the GEO2R
output from the HCC datasets used to identify the metabolic
targets. Besides GSE6764 and GSE14323, the microarrays in
Oncomine include The Cancer Genome Atlas (TCGA) and
GSE14520 liver cancer data used in this study for correla-
tion with progression markers and overall survival analyses,
respectively. Based on their consistent expression, ECM2,
MMP9, CDH1, and VIM were selected as progression
markers for correlation analyses with the metabolic genes.

Correlation of Metabolic Genes With
Progression Markers

Liver cancer gene expression data from TCGA was used
as a reference for the correlation of metabolic genes with
the selected progression markers (ie, ECM2, MMP9, CDH1,
and VIM). The messenger RNA expression data for each
metabolic gene and the progression markers were obtained
for the completed tumor analysis (n ¼ 190 patients) via the
cBioPortal platform (http://www.cbioportal.org). The data
were log transformed and each metabolic gene was corre-
lated with each of the progression markers found to be
down-regulated in HCC (ie, ECM2 and CDH1) and those that
are up-regulated (ie, MMP9 and VIM). To be included for
further analysis, up-regulated metabolic genes were ex-
pected to correlate inversely with down-regulated pro-
gression markers, and directly with those up-regulated—the
reverse being the case for down-regulated metabolic genes.
Subsequently, a metabolic gene was selected if its Pearson
correlation with at least ECM2 and MMP9 was statistically
significant (P < .05).
Kaplan-Meier Overall Survival Analyses
For each metabolic gene that correlated with the pro-

gression markers (n ¼ 434), Kaplan-Meier overall survival
analysis was performed with log-rank (Mantel-Cox) test in
GraphPad Prism. The dataset GSE14520, which is the largest
of the cohorts analyzed (Table 1), is available with
published clinical data, and so was used for the survival
analysis. Prior to the analysis, the expression pattern of a
given gene was confirmed to be the same in GSE14520 as
generally described (ie, whether also up- or down-regulated
in GSE14520 as in the other datasets). Only 6 genes were
excluded from the survival analysis due to 1) lack of
expression data (CAD and CES3), 2) duplicate probes that
were strongly regulated in opposite directions (SLC16A3
and SMOX), 3) expression pattern that is not as generally
described (BCAT1), or 4) probe identification issue (eg,
CYP4A22 was excluded because the probe, 217319_x_at, is
identified as LOC654164///CYP4A22///CYP4A11). For all
other genes, the range of their expression from patients with
the lowest to those with highest values varied markedly,
and was very narrow for some genes. Specifically, for some
genes, several patients had expression values that were the
same or different by a slight margin, especially in interme-
diate range, and yet had different survival outcomes.
Therefore, to ensure that the analyzed overall survival can
be attributed to a difference in the expression of a given
gene, its expression values were used to rank the patients
into lower, intermediate, and higher groups. Subsequently,
patients with lower (n¼ 75) and higher (n¼ 75) expression
values for a given gene were adopted as a uniform inclusion
criterion for survival prediction. Based on this criterion,
overall survival was assessed using a total of 150 patients
for each gene separately analyzed, and a statistical
significance was accepted at P < .05.

Proteomics Analysis
To assess protein level alterations, our recently published

proteomics data were reanalyzed focusing on the candidates
corresponding to the consistent metabolic genes. The data
contained 2736 proteins derived from mass spectrometric
analyses of 19 fresh-frozen HCC samples and adjacent liver
tissue samples. For the current analyses, paired comparisons
of tumor and liver tissue samples were conducted irre-
spective of tumor stage and grade (n ¼ 19), or according to
the tumor stages T1 (n¼ 11) and T2-3 (n¼ 8) as well as the
histological gradings G1 (n ¼ 5), G2 (n ¼ 8), and G3 (n ¼ 6).
Statistical evaluation was performed as recently described
using a 1-way analysis of variance. Further details regarding
patient characteristics, sample preparation, mass spectrom-
etry, and proteomic data analysis have been extensively
described in our prior publications.37,38

Pathway Analysis
The Database for Annotation, Visualization and

Integrated Discovery39 was used to perform functional
annotation analysis of the top differentially expressed genes
(in metabolism and other processes) for each of the 8
datasets. For this analysis, the gene lists from each dataset
were first ranked by logFC. Thereafter, the top 1,500 up-
regulated and down-regulated genes per dataset were
used for a functional annotation with reference to pathway
database of the Kyoto Encyclopedia of Genes and Genome.

Other Analyses
GraphPad Prism version 6.0 (GraphPad Software, La

Jolla, CA) was used for Pearson correlation, overall survival
analysis, and analyzing the expression of the genes relative

http://www.cbioportal.org
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to tumor size. For the latter, a multiple t test, 1 per row, was
used. P < .05 was accepted as statistical significance
throughout the study. Targets were highlighted as novel
based on results from searching PubMed database for each
of the consistent metabolic gene (total n ¼ 634). The search
terms used were official gene symbol plus HCC or Liver
cancer or Cancer. All authors had access to the study data
and had reviewed and approved the final manuscript.

Results
Metabolic Genes Are Consistently
Altered in Human HCC

To gain a holistic insight on metabolic gene alterations in
clinical HCC (Figure 1A, Tables 1 and 2), we assessed the
expression pattern of almost all known human metabolic
genes and transporters previously compiled by Possemato
et al.7 In the HCC patient cohorts, the main reported etiol-
ogies were hepatitis B and C, alcohol, metabolic syndrome,
mixed etiologies, or unknown (Table 1). With the exception
of GSE62232, none of the other cohorts included data on
metabolic syndrome, which is associated with nonalcoholic
fatty liver disease (NAFLD) that predisposes to HCC. We
reasoned that regardless of etiology, the expression of
certain metabolic genes could be a consistent feature of liver
cancer. Accordingly, we identified 634 metabolic genes that
were deregulated in 6 or more datasets investigated
(Supplementary Table 1). A total of 350 of the genes were
down-regulated, of which 107, 158, and 85 were present in
8, 7, and 6 datasets, respectively. Assortment of the genes by
their associated biochemical pathways revealed a predom-
inant suppression of candidates involved in gluconeogen-
esis, urea cycle, ketogenesis, and xenobiotic, glutathione,
amino acid, and fatty acid (FA) metabolism (Figure 1B).
Several of these pathways also emerged in functional
annotation analyses of topmost down-regulated genes
(involved in metabolism and other processes) in each of the
8 datasets (Figure 2). Similarly, we found 284 consistently
up-regulated metabolic genes comprising of 53, 120, and
111 hits in 8, 7, and 6 datasets, respectively. The up-
regulated metabolic genes in HCC notably belonged to
processes such as glycolysis, pentose phosphate pathway
(PPP), tricarboxylic acid (TCA) cycle, glycan metabolism,
nucleotide biosynthesis (NB), membrane lipid biochemistry,
and several transporters (Figure 1B). NB and valine, leucine,
and isoleucine biosynthesis were the metabolic processes
that emerged in the functional annotation analysis of
topmost up-regulated genes in each of the datasets.

We observed that with the exception of few pathways
(eg, proton transport, ketogenesis, gluconeogenesis, urea
cycle), most others had a mixture of both consistently
up-regulated as well as down-regulated genes (Figure 1B).
To further highlight the consistency of metabolic gene al-
terations, we sought to identify the genes ranked in the top
or bottom 25 in at least 6 datasets. Consequently, we found
that the topmost down-regulated genes in HCC were
SLCO1B3, an organic anion transporter of bilirubin; CYPA12,
CYP2A6, CYP2C8, and CYP3A4 all of which are involved in
xenobiotics metabolism (XM); FBP1 and PCK1 involved in
gluconeogenesis, GLS2, among others (Figure 1C). On the
other hand, aldo-keto reductase family 1 member B10,
AKR1B10, emerged as the topmost up-regulated metabolic
gene, ranking first in all but 1 dataset (GSE60502). Other
topmost up-regulated genes were TKT, SQLE, ACLY, LYZ,
TYMS, TXNRD, ACSL4, NQO1, FADS1, PLCB1, and muscle
isoform of PKM (Figure 1C). Of the 8 datasets analyzed,
GSE14323 showed a slightly divergent gene expression
pattern (Figure 1C). In this dataset, SQLE and TKT were not
differentially expressed (ie, P > .05); FADS1 was down-
regulated, whereas CYP3A4, CYP2A6, and GLS2 were all
up-regulated instead of being suppressed as in other data-
sets (Figure 1C). Gene enrichment analysis also identified
XM and drug metabolism in the up-regulated gene category
only in the GSE14323 dataset (Figure 3). Nevertheless,
topmost deregulated targets, including AKR1B10, ACSL4,
NNMT, and SLCO1B3 were also top hits in GSE14323 and
were expressed in the same direction as in the other data-
sets (Figure 1C). Altogether, independent datasets reveal a
strong deregulation of several metabolic genes in human
HCC, and show that these alterations are broadly consistent
across clinical cohorts.
Altered Metabolic Genes Show Similar
Expression Patterns at Protein Level

We assessed the expression of metabolic genes at protein
level in 19 human HCC tissue samples. A considerable num-
ber of the targets (n ¼ 350), corresponding to 55% of the
consistent metabolic genes, could be detected and quantified
in the proteomics data (Figure 1A, Supplementary Table 2). Of
those quantified, more than 90% (n¼ 252)were significantly
expressed in the same direction as found at the gene level. For
instance, of 207 down-regulated proteins, 167 were signifi-
cantly decreased. Of these, 99%were also down-regulated at
gene level with the exemption of BPGM and ATP5H, both of
which are up-regulated in gene datasets. On the other hand,
143 targets were elevated at protein level—85 being signif-
icantly up. Of these, 79 (93%) were also consistently up-
regulated at the gene level, with the exemption of PRG2,
ST6GAL1, ACOX3, DHODH, TF, ABCD3 whose corresponding
genes are consistently down-regulated in HCC. Next, based on
common knowledge of biochemical pathways, we attempted
to map the portrait of liver cancer metabolism using the
consistently altered genes or their corresponding proteins
where detected in our analysis. The snapshot clearly depicted
the suppression of serine biosynthetic pathway, urea cycle,
and transamination as striking features of HCC (Figure 4).
Also represented were up-regulated targets in TCA cycle and
mainly in NB, most of which were detected at protein level. In
glycolysis, we found the novel hexokinase isoform, HKDC1 to
be up-regulated at gene and protein levels. Consistently, most
other glycolytic targets were similarly expressed at gene and
protein level, and have been identified and ormechanistically
investigated in previous HCC studies (Supplementary
Table 1). We show that notable genes that encode enzymes
at the initial and terminal steps in commonly studied
biochemical pathways are deregulated in HCC, and most
reflected in our proteomics analysis. These include HK2 and
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Figure 2. Functional annotation of the top 1500 down-regulated genes (whether in metabolic or other processes) in
each hepatocellular carcinoma dataset. FA, fatty acid metabolism; PPAR, peroxisome proliferator-activated receptor; XM,
xenobiotics metabolism.
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Figure 3. Functional annotation of the top 1500 up-regulated genes (whether in metabolic or other processes) in each
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PKM (in glycolysis), GLS and GLUD1 (in glutaminolysis), CPS1
and ASL (in urea cycle), ACACA and FASN (in lipogenesis),
HMGCS2 and SQLE (in cholesterogenesis), and PCK1 and FBP1
in gluconeogenesis (Figure 4, Supplementary Tables 1 and 2).
Furthermore, we uncovered about 40 family of metabolic
targets (mostly paralogues), whose members are frequently
expressed in the opposite direction in HCC (Table 3). Exam-
ples include ALDO1 and ALDO3, ENO1 and ENO3, and ACACA
and ACACB, whichwere also detected at protein level. Besides
strongly overlapping with genomic data, the protein level
expression of several metabolic targets varied significantly
with tumor stage and grade (Supplementary Table 2). Taken
together, metabolic gene expression changes in HCC reflect at
the protein level, and putting them in the contexts
of biochemical pathways could enhance the understanding of
their functional relevance.
Consistently Altered Metabolic Genes Correlate
With Progression Markers and Predict Survival
Outcome in HCC Patients

Correlation of metabolic targets with mediators of other
cancer hallmarks can help uncover a mutual relationship.
Through such analysis, Hu et al19 observed a high mutual
relationship between hypoxia inducible factor 1A and
oxidative phosphorylation (OXPHOS) in cancer. Invasion or
metastasis and EMT are crucial processes in tumor pro-
gression.34,35,40 Whether metabolic alterations have



Table 3.Family of Metabolic Targets Consistently Expressed in the Opposite Direction in HCC

Metabolic processes Up-regulated Down-regulated

ABC transporters ABCC4, ABCC5, ABCC10 ABCC6, ABCC9

Cholesterol trafficking NPC1, NPC2 NPC1L1

Fatty acid biosynthesis ACACAa ACACBa

O ACSL3a, ACSL4a ACSL1a, ACSL5a

O ELOVL5 ELOVL6

Fatty acid/phospholipids PLA2G4C, PLA2G7 PLA2G16

Folate metabolism MTHFR MTHFD1a, MTHFSa

Glutaminolysis GLS GLS2a

Glutathione metabolism GSTA4 GSTA1, GSTA3, GSTZ1

Glycerophospholipid biosynthesis ABHD4 ABHD2, ABHD6, ABHD10

Glycogenesis G6PC3 G6PC

O GYG1a GYG2

Glycolysis ALDOAa ALDOBa

O ENO1a ENO3a

O PFKP PFKFB1

Glycolysis-TCA cycle junction MPC2 MPC1

Glycoprotein/glycolipids Metabolism B4GALT3, B4GALT7 B4GALT1

Glycosaminoglycan metabolism B3GAT3 B3GAT1

O NDST1 NDST3

O PAPSS1 PAPSS2a

Lysophosphatidic acid synthesis ENPP2, ENPP4 ENPP1

Oxidative stress PON2 PON1a, PON3a

Phospholipid AGPAT1 AGPAT2

Purine biosynthesis NUDT1, NUDT2 NUDT7

S-adenosylmethionine MAT1Aa MAT2A

Sphingolipid metabolism PPAP2A PPAP2B

Steroid biosynthesis ACBD3a ACBD4

Second messenger molecule synthesis PDE6D PDE2A, PDE7B

O PLCG1 PLCG2

Xenobiotics NAT9, NAT10 NAT2

O SULT1C2 SULT1A1a, SULT1A2, SULT2A1a

Transporters SLC16A3 SLC16A2, SLC16A10, SLC16A4

O SLC22A5 SLC22A1

O SLC25A6a, SLC25A3a SLC25A15, SLC25A16
SLC25A20a, SLC25A37

Glucose transporters SLC2A5, SLC2A6 SLC2A2

Transporters SLC38A1, SLC38A6 SLC38A2, SLC38A4

O SLC39A1, SLC39A6 SLC39A14, SLC39A8

O SLC4A2, SLC4A7 SLC4A4

O SLC6A8 SLC6A12, SLC6A13, SLC6A16

O SLC7A1, SLC7A6, SLC7A11 SLC7A2, SLC7A8

Organic anion transport SLCO2A1 SLCO2B1

Lipid binding/unclear STARD7 STARD5

ABC, adenosine triphosphate–binding cassette; HCC, hepatocellular carcinoma; TCA, tricarboxylic acid.
aAlso detected to be significantly deregulated at protein level in our analysis.
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association with tumor progression is largely unexplored in
HCC. To reveal metabolic targets that may play a role in HCC
progression, we correlated each of the 634 identified
metabolic genes with 4 consistent progression markers,
namely ECM2 and MMP9, which are related to invasion or
metastasis, and CDH1 and VIM, which are related to EMT
processes (Figure 5A). We selected metabolic targets that
correlated at least with ECM2 and MMP9, leading to the
identification of 285 consistently down-regulated genes, and
149 hits in the up-regulated category (Pearson correlation
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P < .05) (Figure 1A, Supplementary Table 1). Genes that
performed best in the correlation analysis were those in
gluconeogenesis, metabolism of glutamine and other amino
acids, ketogenesis, urea cycle, adenosine triphosphate–
binding cassette transporters, PPP and XM (Figure 5B),
suggesting metabolic processes most likely associated with
cancer progression. On the other hand, fewer genes in
proton transport and OXPHOS correlated with the pro-
gression markers. Next, we wondered whether genes that
correlated with the progression markers could also predict
overall survival of liver cancer patients. We searched for
currently available literature on each correlated gene, and
found that although many of the genes are not yet described
in HCC, about 20 candidates were previously reported to

https://www.oncomine.org/
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predict prognostic outcome (Supplementary Table 1). We
analyzed patient overall survival data from 1 of the HCC
cohorts, and identified 201 genes whose expression pre-
dicted survival outcome (Tables 4 and 5). Of these genes,
61% were also among those whose expression significantly
varied with tumor size (n ¼ 186), implying that consistently
altered metabolic genes are strongly associated with clini-
copathological variables. In terms of the genes associated
with overall survival and tumor size, fewer targets in
OXPHOS, glycan metabolism as well as adenosine triphos-
phate–binding cassette transporters were statistically
significant— none were significant among proton transport
genes (ATP5SL, ATP6V1E1, ATP5E, ATP5G2, ATP6AP1,
ATP6V0B, and ATP6V1F) (Figure 5C, Supplementary
Table 1). In contrast, the metabolic processes with the
best-performing candidates were notably gluconeogenesis,
urea cycle, detoxification, amino acid metabolism, FA
metabolism, PPP, and small molecule transport (Figure 5C,
Supplementary Table 1). Taken together, our study reveals
that altered expression of metabolic genes are broadly
consistent in HCC, correlate with clinical parameters, and
hold yet untapped prospects in liver cancer research.
Discussion
Identification of the consistently altered metabolic tar-

gets is an indispensable step toward exploiting metabolism
in basic, translational, and clinical cancer studies. We have
exposed for the first time, metabolic genes that are consis-
tently deregulated in human HCC. The metabolic genes,
when put in the context of their associated biochemical
pathways, reveal the suppression of well-known hepatocyte
metabolic functions (eg, XM), and the up-regulation of
energy-yielding processes (eg, glycolysis), as consistent
features of HCC. XM genes are among the topmost down-
regulated candidates in HCC and prominently emerged in
pathway annotation analysis that took into account non-
metabolic genes in each dataset. Previous genomic study
reported down-regulation of XM genes across 22 cancers,
HCC inclusive, and suggested it may be associated with
sensitivity to chemotherapies.19 Therapeutic resistance is
currently an intractable problem in cancer, and has
contributed to the failure of several drug trials in
HCC.18,41,42 Although it is still unclear how down-regulated
XM genes may influence drug sensitivity, studies suggest
they are induced by therapy and cause a depletion of the
systemic drug level. One example is cytochrome P450 3A4
(CYP3A4), which is down-regulated in HCC. In non–small
cell lung cancer, it has been suggested that to ensure
bioavailability, Erlotinib should not be used in combination
with inducers of CYP3A4.43 In a xenograft model of HCC,
treatment with Sorafenib caused the induction of CYP3A4,
which coincided with reduced systemic level of the drug and
the onset of resistance.44 Thus, our study could help in
further identification of targets in XM or other metabolic
processes that are down-regulated, but are prone to be
re-expressed to mediate resistance.

Besides XM, the predominant down-regulation of genes
in urea cycle, glutathione, FA, amino acid, gluconeogenesis,
ketogenesis, and transamination are also consistent features
of HCC (Figure 2). Notably, genes in urea cycle and gluco-
neogenesis scored very high in their correlation with pro-
gression markers, variation with tumor size, and prediction
of overall survival. Reasons for the profound down-
regulation of critical biochemical pathway targets could be
multifactorial, including, among others, 1) lack of key
pathway substrates; 2) products that are detrimental to HCC
cell proliferation or survival, hence warranting pathway
inhibition; 3) diversion of substrates into other pathways of
higher priority for the tumor; or 4) transcriptional and
epigenetic controls, or mutations that repress gene expres-
sion. Using urea cycle as an example, the supplementation of
HCC cells with recombinant arginase, which hydrolyzes
arginine to produce ornithine and urea, inhibited prolifer-
ation and induced cell cycle arrest.45 This implies a possible
availability of substrate (in this case, arginine), but a lack of
the enzymatic machinery for urea production. It also offers
hint that intracellular urea as a product is detrimental to
HCC cells. However, detrimental products may not explain
why gluconeogenesis genes are suppressed given that can-
cer cells rely on its end product (glucose). As such, there is
currently no molecular information to sufficiently explain
why the down-regulation of these genes is crucial for
orchestrating the global metabolic activities of HCC.
Regarding FA biosynthesis, it is known that conditions such
as nonalcoholic steatohepatitis (NASH) arise from FA accu-
mulation and can lead to HCC. In line with our finding in
human HCC, the down-regulation of FA genes has been
reported in mice exposed to chronic choline-deficient high-
fat diet in which NASH transited to HCC.46 Thus, impaired
FA metabolism may represent an early event in HCC
development that is consistent even across species, but yet
unappreciated. In amino acid metabolism, we uncovered a
striking suppression of serine pathway genes (PHGDH,
PSAT1, SHMT1, SHMT2, GLDC) in HCC —with the exception
of PSPH. The serine pathway branches from glycolysis at the
level of 3-phosphoglycerate, with PHGDH catalyzing the first
step.6,7 Serine deficiency, and the down-regulation of the
serine pathway genes, has been reported in patients with
NAFLD.47 Thus, similar to FA metabolism discussed above,
the down-regulation of serine pathway may also represent
an early event in HCC development or progression. Sup-
pressed serine pathway in HCC could also expose inter-
esting contrasts when compared with breast cancer, where
up-regulated serine pathway via PHGDH is essential in
tumorigenesis.6,7 PSPH, the only member of serine pathway
we found to be up-regulated in HCC, has been reported to be
critical for cMyc-driven cancer progression upon nutrient
deprivation.48 Interestingly, the serine pathway genes
mentioned earlier—except GLDC that was not shown—were
all induced in HCC cell lines upon glucose or glutamine
deprivation.48 Downstream of glycolysis, the down-
regulation of the mitochondrial pyruvate carrier MPC1 is
also notable in HCC. MPC1 has been reported to be down-
regulated in NASH patients,47 and has been identified as a
repressor of Warburg effect in cancer.49 MPC1 was also
previously shown to be consistently down-regulated in HCC
and several other cancers, and is induced upon glutamine



Table 4.Consistently Down-Regulated Genes Associated With Hepatocyte Metabolic Functions Correlate With Expression of
Progression Markers and Predict Survival Outcome in HCC Patients

Metabolic process Gene symbol # of datasets Expression

Correlationa

Predicts overall survivalbCDH1 VIM

Xenobiotics CYP4A11 7 Down c .0001

CYP4F3 8 Down c c .0007

CYP3A4 7 Down c .001

CYP2J2 7 Down c .0012

-HSD17B6 8 Down c .0018

CYP2C8 8 Down c .0022

-SRD5A1 7 Down c .0038

CYP2A6 7 Down c .0051

HSD11B1 7 Down c .0307

CYP2A7 6 Down .0346

CYP3A43 7 Down c <.0001

Detoxification -FMO4 6 Down c .0011

-EPHX2 7 Down c c .0032

-TPMT 8 Down c .0032

CAT 7 Down c .0053

FMO3 6 Down c .0065

Urea cycle OTC 7 Down c .0055

ASL 6 Down c c .0074

CPS1 7 Down c .011

Redox -FDX1 7 Down c .0081

-DHRS12 6 Down c .0141

-DHTKD1 6 Down c .0167

-DHRS1 7 Down c <.0001

CYB5A 8 Down c .0026

Glutathione -HAGH 7 Down c .0015

-MGST2 6 Down c .0493

Fatty acid ACOX2 7 Down c .0003

-ECHDC2 8 Down c .0004

-ACADM 7 Down c .0007

-ACBD4 8 Down c .0012

-FAAH 6 Down c .0015

-ACAA2 7 Down c .0018

-ACSM3 7 Down c .002

-PECR 6 Down c .0022

-ETFDH 8 Down c .0028

-ACSM5 7 Down c .0104

EHHADH 7 Down c .0115

ACADVL 6 Down .0127

MTTP 6 Down c .0134

-ACADSB 8 Down c .0212

-SCP2 8 Down c .0227

-HADH 7 Down c .0228

-ACAT1 8 Down .0264

-PHYH 7 Down c c .0302

-ACSL3 6 Up .0426

-MLYCD 8 Down c <.0001

Gluconeogenesis G6PC 6 Down c c .0015

PCK1 7 Down c .0245
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Table 4.Continued

Metabolic process Gene symbol # of datasets Expression

Correlationa

Predicts overall survivalbCDH1 VIM

PCK2 7 Down c <.0001

FBP1 7 Down c .0013

Ketogenesis -BDH1 7 Down c .0082

Amino acid -GCDH 8 Down c .0005

-PIPOX 7 Down c .0007

-AGXT 8 Down c .0011

CDO1 7 Down c .0014

-FAHD2A 8 Down .0015

-AASS 7 Down c .0018

FTCD 7 Down c .002

ADI1 6 Down c .0029

DAO 6 Down c .0038

CTH 7 Down c .0039

-HAAO 7 Down c .0039

HPD 7 Down c .0052

HGD 7 Down c .0052

BHMT 7 Down c .0057d

SARDH 8 Down c .0079

-BCKDHA 7 Down .0081

MSRA 8 Down .0086

-HIBCH 7 Down c .009

-BHMT2 6 Down c .0128

-BCKDHB 8 Down c .0135

CBS 8 Down c .0141d

MAT1A 8 Down c .0167d

PAH 7 Down c .0205

-THNSL1 6 Down c .0256

FAH 7 Down c .0444

SUOX 7 Down c <.0001

-ALDH18A1 7 Up c .02

-ASNS 7 Up c .0103d

ABC transporter -ABCA6 7 Down c .0015

-ABCC6 8 Down c c .0106

Ion transport -KCNJ8 7 Down c .0109

-CNGA1 7 Down c c .0002

-ATP1B3 7 Up c .0008

-P2RX4 7 Up c .0466

-SLC39A1 7 Up .0235

CLIC1 8 Up c <.0001

S.M. transport -SLC25A15 7 Down c c .0003

-SLC27A5 7 Down c .0003

-SLC16A2 8 Down c .0007

-SLC25A20 8 Down c .001

-AQP7 7 Down .0013

-SLC6A12 7 Down c .0015

-STARD5 8 Down .0023

-SLCO2B1 7 Down c .0042

-SLC46A3 8 Down .0057

-SLC1A1 6 Down c .0266
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Table 4.Continued

Metabolic process Gene symbol # of datasets Expression

Correlationa

Predicts overall survivalbCDH1 VIM

-SLC27A2 8 Down c .0421

-SLC47A1 7 Down c .0467

SLC38A4 8 Down c .0066

SLC28A1 6 Down c .0467

AQP9 6 Down c .0001

SLC2A2 7 Down c .0002

SLC10A1 7 Down c .0005

SLC22A7 7 Down c c .0008

SLC23A2 7 Down c .0096

SLC22A1 8 Down .0129d

-SLC2A6 6 Up c .0094

-SLC36A1 7 Up c .0338

SLC38A1 6 Up c .0047

SLC29A2 6 Up .0142

SLC7A1 8 Up c .0163

Multipurpose -ADH6 7 Down c .0001

-GOT2 7 Down c .0001

-MAOB 6 Down c c .001

-ALDH7A1 6 Down c .0011

-CBR4 8 Down .004

ALDH2 8 Down c .0062

-ALDH9A1 7 Down c .0477

ADH1B 7 Down c .0008

ALDH6A1 8 Down c .0062

ADH1C 6 Down c .0071

AKR7A3 7 Down c .0169

-CA12 8 Up c .0027

Others -SORD 7 Down c .0003

-MMACHC 6 Down c .0006

-HAO1 7 Down c .0009

-DCXR 7 Down c .002

-QDPR 7 Down c .0035

-PCCB 6 Down c .0058

-GFOD2 7 Down .0059

-AGL 8 Down c .009

-GNE 8 Down c .0238

-MTHFD1 7 Down c .0254

-RBKS 7 Down c .0351

-ADCY1 8 Down c .0375

-GAMT 8 Down c .0386

UGP2 7 Down c .0014

ALAS1 6 Down c .0027

PON3 7 Down c .0047

RDH16 7 Down c .0089

ABAT 8 Down c .0093

HAO2 8 Down .0152d

GRHPR 7 Down c <.0001

MTHFS 8 Down c c .0028

-NNT 6 Down c .0046
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Table 4.Continued

Metabolic process Gene symbol # of datasets Expression

Correlationa

Predicts overall survivalbCDH1 VIM

-MUT 7 Down c c .0067

GLYAT 7 Down c .0002

SULT2A1 6 Down c .0002

CRYL1 7 Down c .0045

GNMT 8 Down c .0009

PON1 7 Down c .0072

-NANS 6 Up c .0009

-DDAH2 8 Up c .001

-MFSD10 7 Up c .0057

-LTA4H 8 Up .0087

-GYG1 7 Up c .0267

SULT1C2 8 Up .0064

AACS 7 Up c .0069

NOX4 7 Up c .0422

SMS 6 Up c c .0328

SRM 7 Up c .0006

Genes categorized as other or multipurpose are those with functions either not yet well defined or not directly connected to a
particular metabolic process. Kaplan-Meier overall survival was calculated for each gene and statistical significance analyzed
by log-rank (Mantel-Cox) test. Square (-) indicates novel targets in liver cancer as determined by searching PubMed.
#, number of datasets in which each gene is expressed at P < .05.
aAll listed metabolic genes correlated with ECM2 and MMP9.
bDenotes P value.
cIndicates those that also correlated with CDH1 and or VIM (Pearson correlation was considered significant at P < .05).
dPreviously identified as a survival predictor in hepatocellular carcinoma (HCC) (see the referenced study and other similarly
described targets in Supplementary Table 1).
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deprivation as observed in colon cancer cells.49 These
evidences strongly support that HCC have a predominant
down-regulation of metabolic genes involved in physiolog-
ically relevant biochemical pathways. It further offers hint
that several of the down-regulated targets could be
re-induced to mediate resistance or stress response when
cellular homeostasis is challenged, thus highlighting novel
aspects of liver cancer metabolism for further investigation.

The consistently up-regulated metabolic genes in HCC
mostly belong to processes such as glycolysis, PPP, NB, TCA
cycle, OXPHOS, proton transport, membrane lipid, glycan
metabolism, and small molecule transport. Whereas the
prospects of novel insights still abound in known alterations
(eg, glycolysis, TCA, OXPHOS, NB),12 similar opportunities
also exist in processes least studied in HCC (eg, NB, proton
transport, membrane lipid, glycan metabolism). For
instance, nucleoside transporters and metabolizing enzymes
(eg, uridine-cytidine kinases) modulate sensitivity to
nucleoside analogues in leukemia.50–53 UCK2 is up-regulated
in HCC, but there are currently no data on its function. In
addition, we identified other NB genes with yet unclear role
in HCC (eg, TYMS [up-regulated], CDA and DPYD [both
down-regulated]). In colorectal cancer, sequence variants of
TYMS, CDA, and DPYD were found to be clinically relevant
predictors of toxicity to fluoropyrimidine drugs (eg,
5-fluorouracil) and the prodrug capecitabine.53 Therefore, it
might be interesting to investigate the role of NB targets in
drug sensitivity in HCC. Similarly, the up-regulation of genes
in glycan metabolism could broaden the chances of finding
new drug targets, given that glycans have been considered
prospective agents in cancer therapy.54 In addition, given
their strategic expression on cell membranes, the proteins
encoded by genes in glycan metabolism may represent
important biomarkers in HCC. Altogether, the consistently
up-regulated targets and their associated pathways could
shed light on drug resistance mechanisms as well as the
molecular mechanisms of metabolic reprogramming.
Indeed, as was previously noticed in cancer,19 we observed
a mixture of both up-regulated and down-regulated genes in
most of the metabolic pathways. For example, although
glycolytic targets are predominantly up-regulated, ALDOB,
ENO3, and PFKFB1 are down-regulated, as are some glucose
transporters (Figure 4). Although it is unclear if HCC actu-
ally require the down-regulation of these genes for optimal
glycolysis, their suppressed expression seem to be beneficial
for cancer cells. For instance, previous study show that low
ALDOB expression influence aggressiveness and predict
patients survival outcome in HCC.55 In our analysis, low
expression of ALDOB and also PFKFB1 predicted overall
survival. We detected ALDOB at protein level and its
expression varied with tumor size. Therefore, the relevance
of the up-regulated genes in metabolic pathways with



Table 5.Genes in Mainly Up-Regulated Pathways That Correlated With the Expression of Progression Markers and Predicted
Survival Outcome in HCC Patients

Metabolic process Gene symbol # of datasets Expression

Correlationa

Predicts overall survivalbCDH1 VIM

Glycolysis -PFKFB1 6 Down c .0202

ALDOB 8 Down c c .0022d

ALDOA 8 Up c .0001d

HK2 6 Up c .0001d

PKM 8 Up c .0003d

PDK4 7 Down .0177

PPP -DERA 7 Down c .0075

TKT 7 Up c .0132

G6PD 7 Up .0021d

TCA cycle -ACO1 7 Down c c .0211

ACLY 7 Up .0054

ME2 7 Up c .0257

OXPHOS NDUFA4L2 7 Up .0003

Nucleotide -DPYS 7 Down c .0455

XDH 7 Down c c .0047

UPB1 7 Down c .0053

-GMPS 7 Up .0056

-ADSL 7 Up c .0183

-IMPDH2 8 Up c .0085

-NT5DC2 8 Up c .0206

RRM2 8 Up .0422

UCK2 7 Up c .0005

ADA 6 Up c .0328

Membrane lipid -PLCB1 8 Up .0006

-GPD1L 8 Up c .0029

-LPIN2 7 Down c .0154

-PLCE1 8 Up c .0459

LPCAT1 7 Up c .0001

PTDSS2 6 Up .0005

Glycan -CTBS 8 Down .0203

-GAL3ST1 6 Up c .0026

-B3GALNT1 8 Up c .013

-NAGPA 7 Up c .0325

-DDOST 7 Up .0401

SULF1 7 Up c .0291

Cholesterol -HMGCS2 7 Down c .0002

LCAT 8 Down .0165

-LBR 7 Up .0269

Kaplan-Meier overall survival was calculated for each gene and statistical significance analyzed by log-rank (Mantel-Cox) test.
Square (-) indicates novel targets in liver cancer as determined by PubMed search.
#, number of datasets in which each gene is expressed at P < .05.
aAll listed metabolic genes correlated with ECM2 and MMP9.
bDenotes P value.
cIndicates those that also correlated with CDH1 and or VIM (Pearson correlation was considered significant at P < .05).
dPreviously identified as a survival predictor in hepatocellular carcinoma (HCC) (see the referenced study and other similarly
described targets in Supplementary Table 1).
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predominantly down-regulated targets and vice versa
cannot be overlooked. Similarly, isoforms of metabolic genes
that are consistently expressed in the opposite direction (eg,
GLS and GLS2, MPC1 and MPC2, MAT1A and MAT2A) (see
Table 3, Supplementary Table 1) represent alterations that
could be of clinical importance in liver cancer.
Conclusions
We have revealed metabolic targets that are consis-

tently deregulated and so can be further studied as
potential clinical biomarkers, therapeutic targets, or prog-
nostic indicators in liver cancer. Several of the targets
reflect at protein level, correlate with the progression
markers, vary with tumor size, and predicted patient
overall survival. Moreover, 54% (n ¼ 343) (Supplementary
Figure 1) were represented in the recent list of gene mu-
tations identified in HCC by exome sequencing analysis.31

We believe these metabolic targets are broadly of prom-
ising clinical relevance in HCC. Consistent with this notion,
most of the identified metabolic targets already described
in the literature were proposed as biomarkers, therapeutic
targets, or prognostic indicators in HCC. Examples include
AKR1B10, CLIC1, PKM, ASNS, GLS, LPCAT1, NDUFA4L2,
SLC39A6, and VDAC1, which are all up-regulated, and
CYP1A2, ASS1, MAT1A, GLS2, and ALDH1L1, which are all
down-regulated in HCC (see Supplementary Table 1).
Hence, our findings are in agreement with several inde-
pendent studies that have relied on various HCC patient
cohorts. It gives strong impetus for detailed mechanistic
studies on metabolic targets and their associated pathways
in HCC. It is worthy to note that, a potential limitation of
our work is the probability that some metabolic genes
were not captured, for instance, due to gene probes not
currently annotated. Also, although several targets are well
known for their involvement in specific biochemical path-
ways, our assortment of some others to pathways should
be used as a guide especially for those with yet unknown
biological roles. Furthermore, due to technical limitations,
we did not detect all proteins corresponding to the meta-
bolic genes. Nevertheless, given the consistency of the
genes we identified from several independent HCC data-
sets, and their correspondingly similar expression pattern
where detected at proteomic level, this study is to date the
most extensive exposition of the metabolic genes often
deregulated in human HCC. Whether these alterations are
specific to liver cancer or also present in other liver dis-
eases, especially those related to metabolism such as NASH,
should be an interesting subject of future investigation
contingent on the accumulation of a comparable amount of
genomic data for the clinical disease in question. For such
study, the targets herein reported will serve as useful
reference.

Our findings are also important in other aspects of liver
cancer metabolism. For example, it will assist future studies
in deciding on specific metabolic pathways to modulate
therapeutically, and could increase the chances of identi-
fying alternative metabolic pathways or targets that are
used by HCC to evade therapy. It will also assist in
identifying unique metabolic gene pattern in liver cancer
compared with other cancers. In addition, the consistently
altered targets represent a powerful tool for determining
the in vitro or in vivo experimental HCC models that best
depict the human HCC situation, especially from metabolism
perspective—this knowledge is currently lacking and if
obtained can help fine-tune future prospects of under-
standing liver cancer metabolism. In the context of
personalized medicine, we hope that the consistently
altered targets, including those most deregulated, as shown
in Figure 1C, will be relevant for the identification of
patients whose liver tumors have divergent expression
patterns that might warrant individualized interventions.
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Supplementary Material

FASN CAD SLC33A1 MFSD1
ABCC4 CHKA SLC38A6 NAGPA
NPC1 CHPF2 SLC4A7 NDUFA4L2
ACACA DOLK SPTLC1 NEU1
OAS3 GNPTAB AACS NQO1
B4GALT7 HK2 ABCC5 NUDT1
CDS1 IMPAD1 ABCF2 NUDT2
LBR LPCAT1 ACBD3 P2RX4
SLC4A1AP SLC2A6 ACLY PIGF
ABCC10 SLC4A2 ACOT9 PIGO
ACSL3 SLCO2A1 ACSL4 PIGT
ATP2C1 SULF1 ADA PIK3CB
CTPS2 ABCF1 ALG3 PLA2G7
FLAD1 ACOT7 ASNS PPAT
GART ALDH3A1 ATIC PPOX
GLS ALG8 ATP1B3 PTDSS2
GNS ATP2A2 ATP5H PYCR1
PI4KB ATP6V1H ATP6AP2 PYGB
SLC2A5 ATP8B2 ATP6V1C1 RRM1
SLC36A1 BCAT1 ATP6V1D RRM2
SLC7A11 CA12 B3GAT3 SCD
STARD7 CLIC5 BCAT2 SEPHS1
ALDH18A1 ELOVL5 BPGM SLC10A3
ALG6 ENOX2 CLCC1 SLC1A4
COX11 ENTPD1 COX6C SLC22A5
ENPP2 FADS1 CYB561 SLC29A2
PGK1 GFPT1 DCK SLC38A1
SLC26A6 GMDS DDOST SLC39A6
UGDH IDH3B ENOPH1 SLC7A6
CS IDI1 ENTPD6 SMOX
PLCE1 IP6K1 FDPS SMS
EXT2 LPGAT1 GALNT11 SQLE
HMBS PAPSS1 GAPDH SRM
IDUA PFKP GLTP SULT1C2
NDST1 PIGC GSTA4 SYNJ2
ADSL PIP4K2C GUK1 TALDO1
ADSS PLA2G4C GYG1 TAP1
ALG13 PLCB1 HEXB TXNRD1
ATP1A1 PLCG1 HKDC1 TYMS
ATP5G2 PYCRL MDH2 VDAC3

HMGCS2 HPD B3GAT1 LIPG
FTCD MTHFS BAAT MAN1C1
GPHN NNT BCKDHA MMACHC
MAOB SLC16A4 CDA MME
RDH16 A1CF CES3 MUT
TF ACAA2 CHST7 NADK
ACOX3 ADCY1 COMT NAT2
ENPP1 ADK CYP1A2 NIT2
PCK1 BCHE CYP26A1 PAH
SLC47A1 BHMT2 CYP2A7 PAOX
ACSL1 CTH CYP2C18 PAPSS2
AKR7A3 CYP2C8 CYP2C19 PC
ALAS1 DAK CYP4F3 PCBD1
ALDH9A1 DPYD DDAH1 PCK2
AOX1 DPYS DHRS1 PDE2A
CNGA1 EDEM1 DSE PDK4
CYP2E1 GNE FAAH PGM1
CYP4A11 GRHPR FAH PIK3C2G
EHHADH HSD17B2 FDX1 PIK3R1
KCNMA1 KDSR FMO4 PON1
ALDOB NDST3 FOLH1 PON3
CP NPC1L1 FUT6 PPAP2B
CYP2C9 PCCA GATM PRG2
GYS2 PECR GGT5 PTS
HIBCH PTGS2 GK SCP2
SARDH RBKS GLDC SDS
SDHA SLC25A16 GLUD1 SHMT1
SLC22A1 SLC37A4 GNMT SLC16A10
SLC6A16 SLC39A14 HAAO SLC17A1
ADH1A SLCO2B1 HAL SLC17A2
CPT2 ABCA8 HAO1 SLC22A7
CYP2A6 ABCC6 HAO2 SLC31A1
CYP4F2 ABCC9 HGD SLC38A2
ECHS1 ABCD3 HMGCL SLC38A4
HSD11B1 ABHD6 HPGD SLC6A12
NNMT ACADM IVD SLC6A13
PCCB ACO1 KCNAB1 SLC7A8
SLC27A5 ACOX1 KCNJ16 SOD1
UPB1 ACSM5 KCNN2 ST6GAL1
PLCG2 ADH1B LGSN SULT1A2
SLC2A2 ADH6 SULT2A1
SRD5A1 AKR1D1 SUOX
ABCA6 ALDH2 UGP2
ACACB ALDH6A1
ACADVL ALDH7A1
AGL ALDH8A1
ALDH1L1 AQP7
CFTR ASL
CPS1 ASPA
DHTKD1 ASS1

Mutated genes 
identified in HCC1

Consistently
up-regulated

metabolic genes
identified in our 
study (n=284)

10,486 160 124 10,463 183 167
Mutated genes 

identified in HCC1

Consistently 
down-regulated 
metabolic genes
identified in our 
study (n=350)

Supplementary Figure 1. Consistently Altered Metabolic Targets Among List of Mutations in Published Exome Sequencing
Analysis of Hepatocellular Carcinoma.
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