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Abstract

Proteomic signatures associated with clinical measures of more aggressive cancers could yield 

molecular clues as to disease drivers. Here, utilizing the Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) mass-spectrometry-based proteomics datasets, we defined differentially 
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expressed proteins and mRNAs associated with higher grade or higher stage, for each of seven 

cancer types (breast, colon, lung adenocarcinoma, clear cell renal, ovarian, uterine, and pediatric 

glioma), representing 794 patients. Widespread differential patterns of total proteins and 

phosphoproteins involved some common patterns shared between different cancer types. More 

proteins were associated with higher grade than higher stage. Most proteomic signatures predicted 

patient survival in independent transcriptomic datasets. The proteomic grade signatures, in 

particular, involved DNA copy number alterations. Pathways of interest were enriched within the 

grade-associated proteins across multiple cancer types, including pathways of altered metabolism, 

Warburg-like effects, and translation factors. Proteomic grade correlations identified protein 

kinases having functional impact in vitro in uterine endometrial cancer cells, including MAP3K2, 

MASTL, and TTK. The protein-level grade and stage associations for all proteins profiled—along 

with corresponding information on phosphorylation, pathways, mRNA expression, and copy 

alterations—represent a resource for identifying new potential targets. Proteomic analyses are 

often concordant with corresponding transcriptomic analyses, but with notable exceptions.

Introduction

Mass spectrometry-based proteomics can provide a window into cancer biology not possible 

using other -omics technologies. Cancers arise from DNA damage, including single 

nucleotide variants or indels. However, mutation events for a particular gene in a given 

cancer type tend to be sparse and would not necessarily capture the downstream gene 

expression alterations initiated by different mutations in different genes45. While gene 

transcript or mRNA levels often correspond to total protein levels for a given gene, there is 

also widespread decoupling between proteins and their mRNAs, due to differences in 

translation12, 31, 43, 44. Moreover, the stability, function, and activity of proteins are precisely 

regulated through posttranscriptional modifications, including the phosphorylation of 

kinases that regulate growth signaling pathways in cancers. By combining proteomic data 

with transcriptomic data, we can obtain a more comprehensive view of the complex 

regulatory mechanisms that underlie cancer. The National Cancer Institute’s Clinical 

Proteomic Tumor Analysis Consortium (CPTAC) is a national effort to accelerate the 

understanding of the molecular basis of cancer through the application of large-scale 

proteomics. CPTAC-generated proteomics data for human tumors of several different cancer 

types20, 25, 31, 40, 44, just recently provided to the research community, represent a resource 

for identifying protein correlates of interest, which may provide clues as to deregulated 

pathways.

Specific sets of differentially expressed proteins, or proteomic “signatures,” associated with 

clinical measures of advanced disease, could provide molecular clues as to the drivers of 

more aggressive cancers38, 42. Indicators of more aggressive disease, as used in the clinical 

setting, include grade and stage. Cancer grade is a histologic parameter assigning the degree 

of differentiation of the cancer cells, where high-grade cancers look poorly-differentiated 

and tend to grow and spread more quickly than low-grade cancers that look well-

differentiated (resembling the tissue of origin) and tend to have a more indolent clinical 

behavior. Cancer stage is a clinical parameter indicating how extensively the tumor has 

spread outside of its site of origin. Patient survival or time to adverse event represents 
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another indicator of aggressive disease. However, such information requires tracking patients 

over a long period, and such follow-up data are not present in the CPTAC cohorts, as freshly 

collected patient samples are required for proteomics research. Nevertheless, both grade and 

stage can predict patient survival to a high degree.

Our present study hypothesizes that grade and stage differences among cancer cases 

represent altered pathways manifested at the protein level, and that such data can also aid in 

the identification of functional targets. Pan-cancer molecular analyses seek to bring data 

from diverse cancer types together, to identify commonalities, differences, and emergent 

themes across tumor lineages2, 7, 10, 11, 34. Past pan-cancer efforts in proteomics, such as by 

The Cancer Genome Atlas (TCGA), have been limited to focused analysis of ~200 protein 

features as available by Reverse Phase Protein Array (RPPA) platform2. In contrast, mass 

spectrometry-based proteomics allows for profiling of thousands of proteins, representing a 

unique opportunity for CPTAC proteomics data. Our study follows a similar basic approach 

as that of a previous study examining grade-specific transcriptomic differences34. At the 

same time, here we expect some unique differences that would exist at the proteome level. 

We also utilize data on proteomic grade correlations to identify protein kinases having a 

functional impact in vitro in uterine endometrial cancer cells.

Results

Proteomic signatures of high grade or high stage cancers by cancer type

We sought to define differentially expressed proteins and mRNAs associated with higher 

grade or with higher stage, for each of seven cancer types (Table 1 and Supplementary Data 

1): breast invasive carcinoma (n=105 cases), colon adenocarcinoma (n=97), lung 

adenocarcinoma (lung AD, n=111), clear cell renal cell carcinoma (renal, n=110), ovarian 

serous carcinoma (n=169), uterine corpus endometrial carcinoma (n=100), and pediatric 

glioma (n=102). Mass spectrometry-based proteomic data were provided by CPTAC, with 

mRNA data on these cases provided using expression arrays (ovarian) or RNA-sequencing. 

Both total protein and phosphoprotein features were profiled, involving 14586 total proteins 

(by unique gene) and 44763 phosphoproteins detected across the various projects, where for 

each cancer type the average number of total proteins detected was ~9700. Histologic grade 

information was available for lung AD, renal, ovarian, uterine, and glioma cancer types. 

Clinical or pathological stage information was available for breast, colon, lung AD, renal, 

ovarian, and uterine cancer types (as pediatric gliomas are not typically staged but instead 

are classified using World Health Organization guidelines30). To facilitate access to CPTAC 

proteomic results by the general biomedical research community, we integrated CPTAC data 

with the UALCAN data portal8, allowing users to query proteins of interest for associations 

with grade or stage (http://ualcan.path.uab.edu/). To determine differential levels for a given 

gene or protein according to increasing tumor grade or stage, we took the Pearson’s 

correlation between the log-transformed gene-level molecular values and the grade or stage 

as translated into a numerical value (e.g., translating grade categories such as “G1”, “G2”, 

and “G3” into 1, 2, and 3, respectively).

For most cancer types studied, we found on the order of hundreds of total proteins and of 

phosphoproteins to be differentially expressed with higher grade or with higher stage at a 
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nominal significance level of p<0.01 (Pearson’s, Fig. 1a and Fig. S1 and S2 and 

Supplementary Data 2-6). Except for stage correlates in the instance of breast and colon 

cancers, the numbers of nominally significant proteins exceeded that expected in a 

randomized proteomic dataset for which no relation between grade or stage and protein 

expression would be expected (Fig. S3). Protein correlates of grade in ovarian cancer were 

also notably low. Even in instances of nominally significant proteins not exceeding or only 

moderately exceeding chance expectations, the nominally significant proteins may still 

contain molecular information. Such information would represent real biological 

differences, which may be revealed by downstream analyses, as described below. For 

example, we could also find widespread patterns involving gene transcripts or mRNAs 

associated with grade or stage (Fig. 1b), and, for all cancer types, there were significant 

overlapping gene features between the total protein signatures and the mRNA signatures 

(Fig. 1c). Most phosphoprotein signatures also overlapped significantly with their 

corresponding total protein signatures (Fig. S2b). At the same time, an appreciable fraction 

of proteins in the proteomic signatures—on the order of half—were not included in the 

corresponding mRNA signature (Fig. 1c). Except for ovarian cancer, for each cancer type, 

the global proteomic and mRNA patterns associated with grade were respectively broadly 

similar to proteomic and mRNA patterns associated with stage (Fig. 1d, taking the t-

statistics for all profiled features for the respective grade/stage associations and then 

correlating them to each other).

Proteomic signatures predict patient survival

As another indication of the biological information contained in our proteomic signatures of 

grade or stage, the mRNAs represented by the signatures for a given cancer type could 

significantly predict patient survival in that cancer type. For each cancer type, we examined 

an independent dataset of primary tumor sample transcriptomic profiles of that cancer type, 

for which sufficient patient follow-up information was available (taken from previously 

published datasets, see Supplementary Methods). We applied each proteomic signature of 

grade or stage (from Fig. 1a) to the corresponding independent dataset, to score patient 

profiles based on overall similarities of the mRNA patterns with the direction of change 

associated with grade (Fig. 2a) or stage (Fig. 2b) at the protein level. Lung AD grade and 

stage proteomic signatures9, renal grade and stage signatures38, uterine grade and stage 

signatures6, ovarian stage signature4, 18, 19, 21, 39, 41, breast stage signature33, and pediatric 

glioma grade signature could all stratify patients of the corresponding cancer type to high-, 

low-, and intermediate-risk groups representing significant differences in outcome. The 

ovarian grade and colon stage27 proteomic signatures could not successfully stratify patients 

in this way (Fig. 2 and Fig. S4a). For the other signatures, in most instances, the actual 

differences in patient outcomes were not enough to be able to potentially guide treatment 

decisions, as all stratified groups would have a risk of death. However, for the pediatric 

glioma signature, the low-risk group of patients (2 high grade and 79 low grade, out of 281 

cases) had no adverse events, and the intermediate-risk group consisted mostly of low-grade 

cases (66 out of 80, Supplementary Data 7). As another reflection of the proteomic 

signatures containing information on disease aggressiveness, significant numbers of proteins 

within most of the signatures were for genes individually associated with patient survival 

(Fig. S4b and 4c and Supplementary Data 7). Transcriptomic signatures of stage or grade, as 
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well as the intersection of the above proteomic and transcriptomic signatures, yielded similar 

levels of prognostic power as the proteomic signatures (Figs. S5 and S6).

Proteomic patterns shared or not shared across cancer types

We found some differential protein expression patterns associated with grade or stage shared 

across multiple cancer types. Still, at the same time, each cancer type showed a proteomic 

signature that was distinctive from those of the other cancer types. In comparing the 

respective proteomic signatures of grade from each cancer type (from Fig. 1a) to each other, 

we observed significant levels of gene set overlap (Fig. 3a), in particular between lung AD 

and renal cancers, between lung AD and glioma, between lung AD and uterine, and between 

renal and glioma. For the proteomic signatures of stage (from Fig. 1a), only lung AD and 

renal signatures significantly overlapped (Fig. 3a). A set of 1056 total proteins associated 

significantly with grade (p<0.01) with the same direction of change for two or more cancer 

types (Fig. 3b and Supplementary Data 2), revealing many shared patterns between lung 

AD, renal, and glioma cancer types in particular. Most of the 1056 proteins had differential 

expression patterns represented at the mRNA level. However, for a subset of 142 proteins, 

we found no significance (p<0.05) at the mRNA level for any of the involved cancer types. 

We examined protein and mRNA patterns in our data for a set of genes previously identified 

as part of a transcriptome-based meta-signature of undifferentiated cancer34 (i.e., mRNAs 

associated with high-grade cancers). We found that this mRNA-based signature was highly 

reflected in the mRNA patterns and mostly reflected but to a somewhat lesser extent in the 

protein patterns (Fig. 3c). In contrast to the grade associations, fewer total proteins, 60, were 

significantly associated with stage (p<0.01) with the same direction of change for two or 

more cancer types (Fig. 3d and Supplementary Data 3), mostly reflecting shared patterns 

between lung AD and renal cancers. As compared to the above regarding total proteins, 

phosphoproteins associated with stage or grade showed similar patterns of overlap between 

cancer types (Fig. S7).

Proteomic signatures involve copy number alterations

We hypothesized that some of the proteins associated with grade or stage might reflect 

somatic copy number alterations (CNAs) in the cancer genome. We collected CNA data on 

each of the cancer types in our study, and for each cancer type, we compared the proteins 

associated with grade or stage with the genes showing higher or lower copy numbers with 

increasing grade or stage. For both the proteomic and transcriptomic grade signatures (from 

Figs. 1a and 1b), significant numbers of genes showed CNA changes in the same direction 

(Fig. 4a, Fig. S8, and Supplementary Data 8). In particular, proteins having lower expression 

with higher grade involved genes more frequently lost with higher grade. In contrast, gene 

set overlap involving the proteomic stage signatures and CNA patterns were not significant 

or not as markedly significant (Fig. 4a).

Focusing on the genes showing both protein under-expression and lower copy numbers with 

higher grade in renal, ovarian, uterine, or glioma cancer types, we could identify 

significantly enriched cytoband regions associated with each cancer type (Fig. 4b). (Our 

focus here was on those cancer types for which CNA data with grade information were 

available.) Genomic regions associated with copy loss and corresponding protein changes 
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with higher grade included 9q21-q34, 13q14-q22, 14q11-q32, and 18q14-q21 for renal 

cancers; 16q22-q23 for ovarian cancer; 15q15-q24 for uterine cancers; and 10q26 and 11p15 

for pediatric gliomas (Fig. 4b and 4c). The above regions showed loss at the copy number 

level at a higher frequency in higher grade versus lower grade cancers for the given type 

(Fig. 4c). For clear cell renal cell carcinoma, lower average levels of genes in the 13q14-q22 

region—either CNA or mRNA—were associated with worse patient outcomes in two 

separate patient cohorts (Fig. 4d)38, 46. Similarly, lower average levels of 15q15 genes and 

15q24 genes were associated with worse patient outcomes in uterine corpus endometrial 

carcinoma6 (Fig. 4e).

Proteomic signatures represent common pathways across cancer types

The information contained within the proteomic signatures can represent altered pathways or 

functional gene categories. In terms of functional gene categories, we found significantly 

enriched Gene Ontology (GO) annotation terms for each proteomic signature of grade or 

stage (Fig. 5a and Fig. S9 and Supplementary Data 9 and 10, signatures taken from Fig. 1a). 

However, we found markedly fewer significant GO terms for the proteomic stage signatures 

as compared to the corresponding grade signatures (Fig. S9). GO terms significant for the 

proteomic signatures for multiple cancers included “extracellular exosome,” “immune 

system process,” “response to stress,” “cadherin binding,” “cell cycle process,” and 

“translational initiation” (Fig. 5a). GO terms significant for one or more proteomic 

signatures were often but not always significant in the corresponding mRNA-based 

signatures, and vice versa. GO terms significant for proteomic but not transcriptomic 

signatures of grade included “Golgi subcompartment,” “MHC protein binding,” and 

“ribosome” for renal cancers, and “p53 binding” and “euchromatin” for gliomas (Fig. S9a). 

GO terms significant for transcriptomic but not proteomic signatures of grade included “T 

cell receptor signaling pathway,” “regulation of Wnt signaling pathway,” and “protein 

ubiquitination” for renal cancers, and “tricarboxylic acid cycle” and “electron transport 

chain” for gliomas (Fig. S9b).

In terms of represented pathways, we searched the wikiPathway35 gene sets with the 

respective sets of proteins/phosphoproteins and mRNAs over-expressed (p<0.01, Pearson’s, 

from Figs. 1a and 1b) with tumor grade for each cancer type (Supplementary Data 11). Out 

of 417 pathways considered, 49 were significant by one-sided Fisher’s exact test with 

FDR<10% for at least one cancer type (Fig. 5b). Pathways significant by protein analysis 

were often significant by corresponding mRNA analysis, but with some exceptions. One 

example pathway of particular interest, significant for four of the five cancer types, involved 

core metabolic pathways (Fig. 5c), including glycolysis, lipid synthesis, Krebs cycle, and 

Warburg effect (Fig. 5d). For the above pathways, different cancer types had higher 

expression of different sets of proteins with higher grade, and differences at the protein level 

were often reflected at the mRNA level though not always. Another example pathway of 

interest involved translation factors, significantly associated at the protein level with higher 

grade for four out of five cancer types yet significant at the mRNA level for only two of 

these four cancer types (Fig. 5b and 5e).
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Proteomics reveals kinases having functional impact

Proteomic correlates of stage or grade would include proteins having a functional impact in 

cancer cells. To identify such proteins, we focused on protein kinases, as these would 

represent stronger candidates for therapeutic targets36. As each cancer type showed a 

distinctive proteomic signature of higher grade or stage (Fig. 3), we chose to examine the 

uterine data for potential targets for functional studies in uterine endometrial cell lines. 

Taking a set of 347 protein kinases with available uterine data, we compared the protein-

level associations with higher tumor grade, against the corresponding mRNA associations 

(Fig. 6a), paying particular attention to the proteins associated with grade in more than one 

cancer type. Of the 347 kinases, 37 associated (p<0.05, Pearson’s) with higher grade in 

uterine cancer, and 20 of these proteins were associated with grade in three or more CPTAC 

cancer types (including uterine). From these 20 kinases, we selected four for functional 

studies—MAP3K2, MASTL, SCYL1, and TTK—although other selection criteria and 

cutoffs could reveal other candidates. Of these four kinases, three had a corresponding 

mRNA association with grade, while MAP3K2 did not (Fig. 6a). We surveyed the 

expression of these kinases at the mRNA and protein level in five different malignant human 

uterine cell lines, with expression detected for all four kinases by qRT-PCR and Western blot 

(Fig. 6b and Fig. S10). We transfected Ishikawa and HEC-1-A cell lines with non-targeting 

siRNA (siNT) or siRNA targeting TTK (siTTK), MASTL (siMASTL), MAP3K2 

(siMAP3K2), and SCYL1 (siSCYL1). After 48 hours of siRNA treatment, the transfected 

cells were lifted and seeded for cell viability assays (schematically depicted in Fig. S11a). In 

parallel, we evaluated transfected cells for knock-down efficiency by qRT-PCR and Western 

blot (Fig. S11b-11e).

To evaluate the potential role of the selected kinases in malignant processes of sustained 

proliferation and activated invasion26, we evaluated cell viability and 2-D migration (wound-

healing) in Ishikawa and HEC-1-A cell lines following siRNA-mediated depletion (Fig. 

6c-6h). Ishikawa cells treated with siSCYL1 demonstrated increased viability compared to 

control cells treated with siNT. In contrast, treatment with siMASTL significantly decreased 

cell viability five days after seeding (Fig. 6c). Noticeably, siTTK treatment potently 

suppressed Ishikawa cell viability beginning at day 3 (Fig. 6c). In HEC-1-A cells, both 

siTTK and siMASTL treatments robustly and significantly decreased cell viability. 

siMAP3K2 led to a slight but significant increase in HEC-1-A cell viability on the last day 

of analysis (Fig. 6d). To assess the candidate kinases' contribution to cell migration, we 

measured the wound-healing capacity of Ishikawa and HEC-1-A cells 72 hours after siRNA 

treatment (Fig. 6e-6h). Compared to siNT-treated Ishikawa cells, cells treated with siTTK 

demonstrated a significant reduction in wound closure (60.64% ± 11.46 vs. 14.11% ± 12.32) 

(Fig. 6e and 6f), indicating the critical contribution of this kinase to the migratory potential 

of the Ishikawa endometrial cancer cell line. HEC-1-A cells on the other hand, showed a 

significant reduction in wound-closure capacity compared to siNT after treatment with 

siMAP3K2 (75.78% ± 9.36 vs. 43.66 ± 5.34), siMASTL (75.78% ± 9.36 vs. 28.44 ± 9.22) 

and siTTK (75.78% ± 9.36 vs. 29.58 ± 4.13). These results suggest that compared to 

Ishikawa cells (representative of grade I), the migratory potential of HEC-1-A cells (grade 

II) is more sensitive to siRNA knock-down of MAP3K2 and MASTL. Notably, although cell 

viability was not affected by siMAP3K2 treatment in HEC-1-A cells (Fig. 6d), a significant 
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reduction in wound-healing capacity was observed, suggesting a unique role for MAP3K2 in 

cell migration.

Discussion

Using CPTAC proteomic data, we explored protein features and associated pathways of 

aggressive cancers, which associations may cut across multiple cancer types at the protein 

level in addition to the mRNA level. Results from protein analysis were often concordant 

with corresponding mRNA analysis. However, proteomic patterns were often not observable 

in transcriptomic patterns or vice versa. This aspect demonstrates the need for proteomics in 

capturing biological information that may not be present within transcriptomics data, where 

the vast majority of gene expression profiling studies to date have dealt with only the 

transcriptome. Interestingly, we found more proteins differentially expressed with higher 

grade than with higher stage, suggesting that grade as a clinical measure could be capturing 

more in terms of biological differences. Simultaneously, significant associations for both 

grade and stage signatures were identified in downstream analyses integrating protein results 

with other modalities such as pathway associations, demonstrating the signatures as enriched 

for real biological correlations. Our results are consistent with previous studies involving 

multiple cancer types identifying widespread transcription patterns associated with tumor 

grade15, 29, 34. The associations of a subset of the proteomic grade signatures with CNA 

patterns may represent proteins that are selectively amplified or lost in the more aggressive 

cancers. Numerous pathways of interest are associated with the grade- or stage-associated 

proteins, including pathways of altered metabolism and Warburg-like effects. This particular 

finding substantiates previous findings from other studies utilizing mRNA or protein 

analysis of clear cell renal cell carcinoma14, 38 and lung adenocarcinoma13.

Gene-level and protein-level results of the present study, for all proteins profiled, are 

provided as supplementary data, with the intention that these would provide a resource to the 

research community. Supplementary data tables offer not only differential statistics by grade 

or stage for each protein across multiple cancer types, but also corresponding differential 

patterns at the mRNA or phosphoprotein levels, corresponding differential gain or loss at the 

copy number level, and corresponding patient survival associations in independent cohorts. 

By integrating differential protein expression with the other modalities offered here, one 

may be more confident of a given association or obtain more information as to what the 

association may represent. Besides the supplementary data, we have added the CPTAC 

datasets to the user-friendly UALCAN data portal8, facilitating differential analyses by 

protein. These data would facilitate exploration for potential and novel targets for therapy. 

Also, genes studied extensively in the laboratory setting, using experimental models that 

may not entirely reflect human tumors, may be examined in our results, thereby reinforcing 

the gene’s potential relevance to disease in the patient setting. The potential of these 

proteomic signatures to form the basis of a molecular assay to guide clinical decision 

making represents future work. However, this would be conceivable given analogous efforts 

with mRNA-based testing32.

Results from our functional studies indicate that identifying overexpressed kinases using 

proteomic analysis of tumor tissues is a useful and tractable approach for the identification 
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of novel therapeutic drug targets. The experimental results provide a proof-of-concept 

regarding the resource value of our compiled results. We observed impacts on either cell 

viability or 2-D migration in uterine endometrial cancer cells or both for kinases MAP3K2, 

MASTL, and TTK. The kinase MAP3K2 (MEKK2) activates the MEK5/ERK5 cell 

signaling pathway and is thought to play an important role in tumor growth and metastasis1. 

MASTL, or microtubule-associated serine/threonine kinase like, is an important mitotic 

kinase that regulates mitotic progression of normal or transformed cells by blocking tumor 

suppressor protein phosphatase 2A (PP2A) activity, where MASTL deregulation has been 

detected in multiple cancer types and associated with aggressive clinicopathological 

features24. The spindle assembly checkpoint kinase TTK (Mps1) is a key regulator of 

chromosome segregation, with functional roles demonstrated for multiple cancer types28. 

Inhibitors exist for MAP3K2, MASTL, and TTK1, 24, 28. Previously studied in other cancer 

types, these kinases may represent therapeutic targets for uterine endometrial cancer in 

particular. Additional proteins of interest remained to be uncovered and explored for uterine 

and other cancer types, using the CPTAC proteomic datasets.

Methods

Additional details are provided in Supplementary Materials.

Molecular profiling datasets—Results are based in part upon data generated by CPTAC, 

by The Cancer Genome Atlas (TCGA) Research Network (http://cancergenome.nih.gov/), 

and by the Children’s Brain Tumor Tissue Consortium (CBTTC). CPTAC23 generated the 

mass spectrometry-based proteomic data used in this publication. Molecular profiling data 

were generated through informed consent as part of CPTAC efforts and analyzed per CPTAC 

data use guidelines and restrictions. We obtained processed protein expression data from the 

supplementary tables of the associated CPTAC publications or from the CPTAC Data Portal 

(https://cptac-data-portal.georgetown.edu/cptacPublic/)22.

Statistical Analysis—All p-values were two-sided unless otherwise specified. We 

performed all tests using log2-transformed expression values. To determine differential 

levels for a given gene or protein according to increasing tumor grade or stage, we took the 

Pearson’s correlation between the log-transformed gene-level molecular values and the 

grade or stage as translated into a numerical value. When converting tumor grade into a 

numerical variable, grade categories such as “G1”, “G2”, and “G3”, for example, were 

translated as 1, 2, and 3, respectively, for differential analyses. When converting clinical or 

pathological stage into a numerical variable, stage categories such as “1A”, “1B”, “II”, “III”, 

and “IV”, for example, were translated as 1, 1, 2, 3, and 4, respectively, for differential 

analyses. For a given cancer type, we considered for differential analyses only proteins and 

mRNAs for which the protein was detected in over half of the cancer cases by mass 

spectrometry. For each cancer type, we selected for downstream analyses the set of 

differential genes or proteins with Pearson’s p-value<0.01. The FDR that may be associated 

with each differential gene or protein set was estimated by both Story and Tibshirani 

method37 and by permutation testing. Even in instances of nominally significant proteins not 

exceeding or only moderately exceeding chance expectations by FDR, the nominally 

significant proteins may still contain molecular information that would represent real 
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biological differences. Therefore, we used the nominally significant p<0.01 cutoff for 

downstream analyses, in which most of the protein lists examined showed significant 

enrichment patterns involving mRNA expression, patient survival, results from other cancer 

types, copy number alterations, and pathways. We evaluated enrichment of GO annotation 

terms3 and wikiPathways35 within sets of differentially expressed genes using SigTerms 

software16 and one-sided Fisher’s exact tests, with FDRs estimated using the method of 

Storey and Tibshirini37.

Functional studies—Cell lines were routinely monitored for mycoplasma contamination 

and grown in sterile conditions and validated by Short Tandem Repeat DNA fingerprinting 

test. SMARTPool siRNAs were obtained from Dharmacon, Inc. Cells were transfected with 

siRNAs using the Lipofectamine RNAiMAX Transfection Reagent per manufacturer’s 

instructions. For cell viability assays, cells were lifted 48 hours after siRNA transfection and 

seeded at a density of 5000 cells per well in BioLite 96 well plates (Thermo Scientific). A 

second preparation of siRNA transfection media was applied to the cells. Cell growth was 

monitored daily following the second transfection treatment using the CellTiter-GLO® 

Luminescent cell viability assay (Promega, G7570) per manufacturer’s instructions. The 

experiments were performed three times, and plotted as mean ± SEM. For wound healing 

assays, cells were lifted 48 hours after siRNA transfection and seeded 2.0x105 cell/mL in 

12-well plates. A second preparation of siRNA transfection media was applied to the cells. 

Two perpendicular wounds were made through the center of the well using a sterile P200 

pipette tip 24 hours after seeding. To measure wound healing, the same regions of each well 

were photographed using an Axiovert A1 Tissue Culture microscope attached to an 

Axiocam 208 camera (Zeiss). The area of the scratch in each image was measured using the 

Zeiss Blue microscopy software and averaged across the 4 areas measured. The experiments 

were performed three times, and plotted as mean ± SEM Data was analyzed using an 

ordinary one-way ANOVA and Dunnett’s multiple comparisons test.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Proteomic and transcriptomic signatures of high grade or high stage cancers, according to 
cancer type.
(a) For each of the indicated cancer types, numbers of top differentially expressed proteins 

(p<0.01, Pearson’s using log-transformed data), associated with higher cancer grade (left) or 

with higher cancer stage (right). Numbers of unique genes tested are indicated for each 

comparison (involving proteins for which measurements were made in over half of samples 

profiled). (b) Similar to part a, but for differentially expressed mRNAs. Numbers of unique 

genes tested are indicated for each comparison (involving mRNAs with available data for 

which proteins were considered in part a). (c) Overlapping top protein and mRNA features 

(p<0.01 for protein and p<0.05 for mRNA, based on shared gene) by comparisons according 

to grade (left) or according to stage (right). P-values for significance of overlap by one-sided 

Fisher’s exact tests. (d) For each cancer type, overall concordance or discordance in 

differential gene feature patterns between grade (columns) and stage (rows) comparisons for 

both protein data (left) and mRNA data (right). For all gene features examined, correlations 
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between t-statistic by grade comparison versus t-statistic by stage comparison were 

computed (based on all profiled features). R-values by Pearson’s are shown. Red square 

denotes overall concordance between grade and stage results for the given cancer type, and 

blue square denotes discordance. Breast, Breast invasive carcinoma; Colon, Colon 

adenocarcinoma; Lung AD, Lung adenocarcinoma; Renal, Clear cell renal cell carcinoma; 

Ovarian, Ovarian serous carcinoma; Uterine, Uterine corpus endometrial carcinoma; 

Glioma, Pediatric glioma. See also Figs. S1, S2, and S3 and Supplementary Data 1-6.
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Fig. 2. For specific cancer types, the corresponding proteomic signatures of grade or stage are 
associated with worse patient survival across independent patient cohorts.
(a) For each of the indicated cancer types (Lung adenocarcinoma, Clear cell renal cell 

carcinoma, Ovarian serous carcinoma, Uterine corpus endometrial carcinoma, Pediatric 

glioma), the corresponding proteomic signature (“sig.”) of higher grade (from Fig. 1a) was 

applied to an independent set of primary tumor sample mRNA profiles of the same cancer 

type5, 6, 9, 38 (using datasets for which sufficient patient follow-up data were available). 

Across the sample mRNA profiles in the independent set, the grade signature similarity 

scores (t-statistic as derived from the “t-score” metric5, 17, 38) were correlated with patient 

survival. P-values by log-rank test (comparing patients with top third or middle third or 

bottom third of signature scores) or by univariate Cox, as indicated. (b) Similar to part a, but 

for proteomic signatures of higher stage (Lung adenocarcinoma, Clear cell renal cell 

carcinoma, Ovarian serous carcinoma, Uterine corpus endometrial carcinoma, Breast 

invasive carcinoma)5, 6, 9, 38. See also Figs. S4, S5, and S6 and Supplementary Data 7.
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Fig. 3. Proteins shared among the cancer type-specific grade or stage proteomic signatures.
(a) For both the proteins over-expressed or under-expressed with higher grade for at least 

one cancer type (left, proteins from Fig. 1a) and the proteins over-expressed or under-

expressed with higher stage for at least one cancer type (right, proteins from Fig. 1a), the 

numbers of overlapping proteins between any two cancer types are indicated, along with the 

corresponding significances of overlap (using color map, p-values by one-sided Fisher’s 

exact test). (b) Heat map of differential t-statistics (Pearson’s on log-transformed data), by 

cancer type, comparing higher grade versus lower grade (red, higher expression with higher 

grade; white, not significant with p>0.05), for 1056 proteins significant for two or more 

cancer types (p<0.01). Differential t-statistics by grade for the mRNA corresponding to the 

1056 proteins are also shown. Proteins significantly over-expressed (p<0.01) with higher 

grade for three or more cancer types are indicated by name. (c) For both protein and mRNA, 

differential t-statistics by grade are shown for a set of genes previously identified as part of a 
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transcriptome-based meta-signature of undifferentiated cancer34. (d) Similar to part b, but 

for a set of 60 proteins significant for two or more cancer types (p<0.01) when comparing 

higher stage versus lower stage cancers. See also Fig. S7.
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Fig. 4. Copy Number Alterations (CNAs) associated with proteomic signatures of higher versus 
lower grade cancers.
(a) For both the proteins altered with higher grade for at least one cancer type (left) and the 

proteins altered with higher stage (right), the numbers of overlapping gene features with 

protein expression and copy number changes in the same direction (using Pearson’s p<0.01 

for each comparison), along with the corresponding significances of overlap (using color 

map, p-values by one-sided Fisher’s exact test). TCGA LUAD9 CNA data do not include 

grade information. (b) For the sets of overlapping genes showing both protein under-

expression and lower copy numbers with higher grade for renal, ovarian, uterine, or glioma 

cancer types, significantly enriched cytoband regions (FDR<1%37, one-sided Fisher’s exact 

test). (c) For the sets of overlapping genes showing both protein under-expression and lower 

copy numbers with higher grade for renal, ovarian, or uterine cancer types, heat maps 

represent t-statistics according to increasing grade (blue, lower with higher grade) for 

differential protein expression, differential mRNA expression, and differential CNA, as well 
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as CNA patterns (blue, copy loss) by cancer type. (d) Taking all of the genes in the 13q14-

q22 region (region associated in part b with both copy loss and protein under-expression in 

high grade renal cancers), overall patient survival in TCGA KIRC38 patient cohort is 

assessed for cases with copy loss on average for these genes (left) and for cases with low 

(bottom 5%) average mRNA expression (middle). Overall patient survival is also assessed 

for low average mRNA expression of 13q14-q22 genes in an independent clear cell renal 

cell carcinoma dataset46 (right). P-values by log-rank test. (e) In the TCGA UCEC6 patient 

cohort, overall survival is assessed for cases with copy loss on average for all 15q15 genes 

(left), for cases with copy loss on average for all 15q24 genes (middle), and for cases with 

low average mRNA expression of genes (bottom 20%) in 15q15 or 15q24 cytoband regions. 

P-values by log-rank test. Copy loss for parts d and e defined as average log2 (tumor/

normal) less than −0.4. See also Fig. S8.
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Fig. 5. Pathways associated with proteomic or transcriptomic signatures of high grade cancers.
(a) Selected significantly enriched Gene Ontology (GO) terms, involving the top set of 

proteins or mRNAs either over-expressed (left) or under-expressed (right) with higher grade 

for each cancer type represented. Differential gene features selected using p<0.01 by 

Pearson’s (Figs. 1a and 1b). Enrichment p-values by one-sided Fisher’s exact test. (b) 
Significance of enrichment (by one-sided Fisher’s exact test) for wikiPathway35 gene sets 

with the respective sets of proteins and mRNAs over-expressed (p<0.01, Pearson’s) with 

tumor grade for each cancer type represented. The set of pathways represented were 

significant (FDR<10%37) within the over-expressed proteins for at least one cancer type. (c) 
Heat map of differential protein t-statistics (Pearson’s on log-transformed data), by cancer 

type, comparing higher grade versus lower grade (red, higher expression with higher grade; 

white, not significant with p>0.05), for proteins in the wikiPathway “Metabolic 

reprogramming in cancer” (full name “Metabolic reprogramming in colon cancer”). (d) 
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Pathway diagram representing core metabolic pathways (“Metabolic reprogramming in 

cancer”), with differential protein and mRNA expression patterns represented, correlating 

expression with increasing tumor stage for Lung AD, Renal, and Glioma cancer types. RNA 

features are indicated using italics. Phosphoprotein features are indicated by residue. Red 

denotes significantly higher expression with higher grade and blue denotes significantly 

lower expression. (e) Heat map of differential protein and mRNA t-statistics (Pearson’s on 

log-transformed data), by cancer type, comparing higher grade versus lower grade, for genes 

in the wikiPathway “Translation factors”. See also Fig. S9 and Supplementary Data 9-11.
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Fig. 6. Functional Evaluation of Kinases in Malignant Uterine Cancer Cells.
(a) Proteomic identification of significantly expressed kinases in uterine endometrial cancer. 

For 347 protein kinases with available data, protein abundance correlates with tumor grade 

are plotted against corresponding mRNA expression correlates (Pearson’s correlation). 

Genes associated with grade in three or more CPTAC cancer types (including uterine) are 

indicated by red data points. Proteins selected for functional studies (MAP3K2, SCYL1, 

MASTL, TTK) are labeled by name. (b) Western blot analysis of basal protein expression in 

malignant uterine cell lines. (c) Time-course evaluation of cell viability in Ishikawa cells 

following siRNA-mediated depletion of kinases. Data normalized to luminescence signal in 

control transfection (siNT) at day 1 (Mean ± SEM, n=4 biological replicates, 2-way 

ANOVA, with Dunnett’s multiple comparisons post-test). (d) Time-course evaluation of cell 

viability of HEC-1-A following siRNA-mediated depletion of kinases. Data normalized to 

luminescence in control transfection (siNT) at day 1 (Mean ± SEM n=4 biological 
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replicates, 2-way ANOVA, with Dunnett’s multiple comparisons post-test). (e) 
Representative brightfield images at 0 and 72 hours post-scratch in Ishikawa cells following 

siRNA-mediated depletion of kinases. Size-bar = 200μm. (f) Quantification of 3 biological 

replicates for wound-healing in Ishikawa cells at 72 hours (Mean ± SEM, One-way ANOVA 

with Dunnett’s multiple comparisons post-test). (g) Brightfield images of representative 

wounds at 0 and 72 hours post-scratch in HEC-1-A cells following siRNA-mediated 

depletion of kinases. (h) Quantification of 3 biological replicates for wound-healing in 

HEC-1-A cells at 72 hours (Mean ± SEM). RLU, relative luminescence units. For parts c, d, 

f, and h, p-values are represented as follows: 0.033 (*), 0.002(**), and <0.001 (***). See 

also Figs. S10 and S11.
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Table 1.

Cancer types included in the study.

Type Description
Tumors
by grade

Tumors
by stage

Number
of genes
in
proteomic
dataset†

Globally
significant
protein
patterns††

Association
with
patient
survival*

Breast Breast invasive carcinoma --- I:10, II:66, III:27, IV:2 12328 no yes

Colon Colon adenocarcinoma --- I:10, II:39, III:40, IV:8 7423 no no

Glioma Pediatric glioma
low grade: 83, high 
grade: 19 --- 7166 yes yes

Lung AD Lung adenocarcinoma G1:7, G2:59, G3:39 I:59, II:30, III:21, IV:1 11304 yes yes

Ovarian Ovarian serous carcinoma G1:1, G2:28, G3:138 I:3, II:10, III:128, IV:28 9146 yes
yes (stage 
signature only)

Renal
Clear cell renal cell 
carcinoma

G1:7, G2:53, G3:41, 
G4:9 I:52, II:13, III:33, IV:12 9969 yes yes

Uterine
Uterine corpus endometrial 
carcinoma

grade 1:34, grade 
2:32, grade 3:8 I:74, II:8, III:15, IV:3 10708 yes yes

†
By mass-spectrometry-based proteomic profiling of total protein features.

††
Denotes whether more proteins were found significantly associated with grade or stage (p<0.01, Pearson's) in the actual dataset, as compared to 

>95% of the individual results from 1000 random permutations of the sample labels.

*
Denotes whether a signature of the top differential proteins could stratify patients in an independent cohort (using mRNA data) by prognosis.
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