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Mechanisms of extracellular
vesicle-mediated immune
evasion in melanoma

Lothar C. Dieterich*

Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH)
Zurich, Zurich, Switzerland
Melanoma-derived extracellular vesicles (EVs) have been found to promote

tumor growth and progression, and to predict patient responsiveness to

immunotherapy. Consequently, EVs have been implicated in tumor immune

evasion, and multiple studies reported immune-regulatory activities of

melanoma EVs in vitro and in vivo. This review highlights mechanistic insights

in EV-mediated regulation of various immune cell types, including effects on

inflammatory, apoptotic, stress-sensing and immune checkpoint pathways as

well as antigen-dependent responses. Additionally, current challenges in the

field are discussed that need to be overcome to determine the clinical

relevance of these various mechanisms and to develop corresponding

therapeutic approaches to promote tumor immunity and immunotherapy

responsiveness in melanoma patients in the future.

KEYWORDS

exosome, immune checkpoint, immunotherapy, melanoma, lymph node, metastasis,
tumor immunity, extracellular vesicle (EV)
Introduction

Extracellular vesicles (EVs) are membrane-encapsulated, subcellular particles that are

released by virtually every cell type and have been ascribed various biologic functions,

ranging from waste disposal to molecular cell-to-cell communication (1). Traditionally,

EVs have been classified based on the membrane of origin and/or the mode of EV

generation, including exosomes derived from endosomal membranes, microvesicles

derived from the plasma membrane, and apoptotic bodies (2). However, due to

difficulties to specifically isolate and distinguish between these EV subsets, a

classification based on measurable, physical parameters (e.g. size, density) has been

proposed (3).
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Melanoma is an aggressive cancer type prone to invade and

metastasize, and melanoma-derived EVs have been implicated in

progression (4). EV plasma levels in melanoma patients are

increased compared to healthy individuals (5), and plasma EV

signatures correlate with immunotherapy outcome (6–8),

suggesting that melanoma-derived EVs might affect tumor

immunity. Congruently, inhibition and activation of various

immune cell types by melanoma EVs have been described (9).

In this review, I focus specifically on mechanisms of EV-

mediated immune regulation, such as innate immune-

regulatory pathways, immune checkpoints, as well as transfer

of tumor antigens and other immune-regulatory cargoes

(Figure 1). Furthermore, current challenges in the field,

including variability in experimental procedures, in vitro

experiments failing to reflect natural EV biodistribution, and a

lack of mechanistic in vivo studies are discussed.
EV-mediated effects on the nuclear
factor k B (NF-kB) pathway

The NF-kB pathway is a highly conserved signal

transduction pathway triggered by danger signals and

inflammatory cytokines and regulating inflammatory

responses in virtually every cell type. In melanoma, NF-kB
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activation has been linked to tumor initiation, progression and

inflammation affecting tumor immunity and cancer stemness

(10–12). Interestingly, several studies suggested that melanoma-

derived EVs can de-regulate NF-kB signaling in immune cells.

For example, EVs derived from the mouse melanoma cell lines

B16F1 and B16F10 could activate NF-kB in RAW264.7 and

primary macrophages, altering the release of inflammatory

cytokines and chemokines (13, 14). More recently, melanoma-

derived EVs isolated from plasma of melanoma patients using

CSPG4-binding antibodies were shown to activate NF-kB in

autologous, peripheral CD8+ T cells, while pharmacological NF-

kB inhibition could reverse EV-mediated suppression of T cell

proliferation (15). In contrast, Luong et al. found that

melanoma-derived EVs induce SOCS3, a negative regulator of

the NF-kB pathway, in bone marrow-derived monocytes (16).

However, this effect was observed after prolonged stimulation (4

days) of monocytes. Thus, SOCS3 upregulation might have been

due to a negative feedback response towards increased NF-

kB activation.

Exactly how melanoma EVs trigger NF-kB activation in

immune cells is not completely understood, but several pathways

have been implied. For instance, EVs derived from human

melanoma cell lines have been found to inhibit dendritic cell

(DC) maturation via S100A8 and S100A9 proteins, which signal

via TLR4, among others (17). TLR4 also mediated melanoma
FIGURE 1

Mechanisms of melanoma EV-mediated immune cell regulation Schematic representation of several molecular mechanisms how melanoma-
derived EVs can regulate immune cell behavior. Further explanations in the text. Dotted arrows indicate pathways that require EV uptake and
release of EV cargo. PS, Phosphatidyl-serine; PS-R, PS-receptor; TAA, tumor-associated antigen; PEDF, pigment epithelium derived factor.
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EV-induced upregulation of PD-L1 in immature myeloid cells

via EV surface-associated Hsp86 (18). Furthermore, mouse

melanoma cell-derived EVs could trigger TLR3 in bone

marrow-derived DCs (19). Another potential mechanism how

melanoma-derived EVs could affect NF-kB is via phosphatidyl-

serine (PS). PS is usually excluded from the outer face of the

plasma membrane but can be exposed on the surface of

apoptotic cells and EVs. Importantly, PS has broad immune-

inhibitory and tolerogenic functions, in part via regulation of

NF-kB (20). Blockade of EV PS ameliorated TGF-b1 induction

by B16F10-derived EVs in peritoneal macrophages (21) as well

as the inhibition of primary human T cells by EVs derived from

amelanoma xenograft (22). In contrast, EV PS has been reported

to bind CD300 in bone-marrow derived DCs, preventing their

activation of TLR3 (19).
Melanoma EVs trigger apoptotic
pathways

Melanoma-derived EVs might also impair tumor immunity

by inducing apoptosis in immune effector cells. EVs isolated

from human melanoma cell lines and from the serum of

melanoma patients were shown to contain FasL and to induce

apoptosis of patient-derived, melanoma-specific CD8+ T cells

(23). In a follow-up study, melanoma EVs isolated from plasma

of melanoma patients again consistently contained FasL as well

as TRAIL, and FasL-blocking antibodies partially reduced EV-

induced T cell apoptosis in vitro (15).
NK-activating receptors: NKG2D
and NKp30

NKG2D is an activating receptor expressed by NK cells and

subsets of CD8+ T cells recognizing stress signals such as MICA

and MICB on the surface of target cells. Secreted MICA on the

other hand impairs NK and CD8+ T cell responses, and a human

melanoma cell line expressing the MICA allele *008 has been

shown to release MICA in association with EVs (24). MICA (but

not MICB) was also present in melanoma EVs isolated from

plasma of melanoma patients and these EVs downregulated

NKG2D in primary human NK cells, suggesting functional

impairment (15).

Activation of the innate pattern recognition receptor RIG-1

in human melanoma cell lines induced the release of EVs

enriched for BAG6, a ligand for NKp30, another NK-

activating receptor. In this case however, RIG-1-induced EVs

activated the cytotoxicity of human NK cells in vitro and

impaired primary tumor growth in a mouse model of
Frontiers in Immunology 03
melanoma (HCMel12) (25). This effect was not mediated by

NKp30 though, since this receptor is not functional in mice (26).

Instead, BAG6 promotes generation and cargo-loading of

immune-stimulatory EVs released by stressed melanoma cells

(27), thus explaining their immune-stimulatory function in mice

lacking functional NKp30.
EV-associated cytokines

Transforming Growth Factor b (TGF-b) is a pleiotropic

cytokine that can inhibit tumor immunity in melanoma (28).

Whether or not TGF-b acts at least partially via EVs is

controversial. On the one hand, TGF-b was associated with

EVs derived from the human melanoma cell line A375, and

melanoma EV-induced inhibition of DC maturation could be

reversed using TGF-b-blocking antibodies (29). On the other

hand, melanoma EVs isolated from patient plasma were not

enriched for TGF-b compared to non-melanoma EVs derived

from the same patients, while EV-mediated suppression of T cell

proliferation in vitro could still be blocked by anti-TGF-b (15).

Thus, further studies are necessary to establish whether

(respectively how) TGF-b is associated with melanoma EV

surfaces, or whether it is induced de novo in recipient cells of

melanoma EVs and thereby inhibits immune responses (21).

Interestingly, EVs derived from non-metastatic melanoma

cell lines and plasma of patients with non-metastatic melanoma

have been found to activate patrolling monocytes, macrophages,

and NK cells and thereby to suppress melanoma lung metastasis

in vivo. This effect was mediated by pigment epithelium-derived

factor (PEDF), a secreted cytokine that was found to be

associated with melanoma EV surfaces (30).
Immune checkpoints: Do melanoma
EVs inhibit T cells via PD-L1?

Immune checkpoints such as the CD80/86-CTLA and the

PD-L1-PD-1 axes have recently gained much attention, since

their therapeutic targeting elicits immune responses, particularly

in melanoma that is characterized by a high mutation rate and

occurrence of tumor (neo-) antigens. In melanoma, PD-L1 is

expressed by immune, stromal, and tumor cells, enabling them

to evade attacks by tumor antigen-specific CD8+ T cells in the

tumor microenvironment. Importantly, several studies have

shown that melanoma cells also release functional PD-L1 via

EVs, potentially inhibiting T cells beyond the local

microenvironment. Wei Guo’s team found surface PD-L1 on

EVs isolated from several human and mouse melanoma cell

lines, with higher levels in metastatic cell lines compared to non-
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metastatic ones (31). Furthermore, increased levels of PD-L1+

EVs could be detected in the plasma of patients with metastatic

melanoma compared to healthy donors (31, 32). Functionally,

EVs from melanoma cell lines could inhibit proliferation and

cytotoxicity of CD8+ T cells in vitro in a PD-L1- (or PD-1-)

dependent manner (15, 31, 32). Subsequently, this mechanism of

EV-mediated T cell suppression was shown to depend on

ICAM-1 on the EV surface (33). In the B16F10 model,

melanoma EVs furthermore promoted primary tumor growth

and systemically inhibited CD8+ T cell proliferation in vivo (31).

Similar observations have been made using the B16F10 tail vein

model of lung metastasis (32).

Somewhat contradictory to the above-mentioned studies,

other groups failed to detect significant PD-L1 levels on

melanoma-derived EVs. For instance, PD-L1 was neither

detectable in melanoma cell line- and melanoma patient-

derived EVs using mass spectrometry (34–36) nor was it

enriched in melanoma-derived EVs compared to non-

melanoma EVs isolated from the plasma of melanoma patients

using a flow cytometry-based approach (15). Thus, the amount

of PD-L1 in melanoma EVs might be low. Furthermore, PD-L1

blockade could not revert melanoma EV-mediated inhibition of

cytokine production in patient-derived, NY-ESO-1-specific T

cells unless it was combined with IL-10 blockade (37). Thus, the

relevance of EV-associated PD-L1 compared to cellular PD-L1

for melanoma immunity and immunotherapy responsiveness is

not entirely clear yet.
Horizontal transfer of immune-
modulatory cargo

Apart from ligands on the EV surface that trigger

immune-regulatory receptors upon contact with or uptake

by their recipient cells, EVs carry complex payloads including

cytosolic proteins and nucleic acids such as miRNA, which

they can transfer from one cell to another. Especially EV-

mediated transfer of miRNAs has been studied to

considerable extent, and there are reports that in the case of

melanoma, this phenomenon can contribute to tumor-

associated immune inhibition. Huber et al. identified several

miRNAs (miR100, miR125b, miR146a and miR155), that,

when transferred by melanoma EVs to monocytes, induced

the conversion of monocytes into myeloid-derived suppressor

cells (MDSCs), resulting in the downregulation of MHC-II

and concomitant upregulation of IL-6 and CCL2 (38). More

recently, Vignard and colleagues identified another set of

miRNAs in human melanoma cell line-derived EVs that

could downregulate TCR responses and effector functions in

CD8+ T cells in vitro (39).
Frontiers in Immunology 04
Another potential immune-regulatory cargo of melanoma

EVs is SHP2. Wu et al. reported that EVs derived from mouse

B16F0 melanoma cells contained both SHP2 protein and

mRNA, and could transfer it to primary CD8+ T cells

resulting in reduced T cell viability upon stimulation.

However, it remained unclear whether this effect was due to

mRNA or protein transfer, and significant SHP2 induction

required rather high concentrations of EVs in vitro (40).
EVs and tumor antigens

EVs contain a large variety of proteins derived from their

donor cells, including potential tumor-associated antigens,

which, if transferred to appropriate recipient cells, can be

presented to the immune system. Indeed, more than two

decades ago, it was shown that EVs derived from melanoma

cell lines as well as malignant effusions of patients with

metastatic melanoma contain classic melanoma antigens such

as gp100 and Tyrp2 (41, 42). Subsequently, other studies

confirmed these findings in human and mouse melanoma cell

lines (23, 43). In addition, peptides derived from melanoma

antigens might be transferred directly by EVs in association with

MHC-I molecules (29, 44).

When transferred to immune-stimulatory antigen-presenting

cells (APCs) such as mature DCs, melanoma EVs can induce

tumor antigen presentation and T cell activation (41). However, if

melanoma EVs deliver their cargo to tolerogenic APCs such as

immature DCs, a state of “tumor tolerance” might ensue (45).

Notably, melanoma EVs have been shown to inhibit DC

maturation as discussed above (17, 29). Another tolergenic type

of APC are lymphatic endothelial cells (LECs), particularly those

lining lymph node (LN) sinuses. Previously, LN LECs have been

shown to present self-antigens such as tyrosinase (which is also

highly expressed in many melanomas) and inhibit T cells specific

for it, possibly via PD-L1 which is constitutively expressed by LN

LECs (46). We recently found that lymphatic PD-L1 can also

impair tumor-specific T cell responses in melanoma-draining LNs

(47), and that in the B16F10 melanoma model, EVs can transfer a

model antigen from primary tumor cells to draining LN LECs,

resulting in impaired CD8+ T cell responses (36). Thus,

depending on the recipient cell type and state, melanoma EV-

mediated transfer of tumor antigens can have either immune-

stimulatory or tolerogenic effects.
Location, location, location…

The majority of the studies discussed above investigated

mechanisms of EV-mediated immune regulation using highly
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reductionistic in vitro systems, typically co-culturing immune

cells directly with EVs isolated from cell culture or plasma

samples. Although these approaches are useful to explore the

overall immune-regulatory capacity of EVs, they do not reflect

the aspect of EV biodistribution in vivo, which is very important

regarding the question which immune cell types (and in which

functional state) are most likely affected by melanoma EVs

in vivo.

Within a growing melanoma, malignant cells release EVs

into the surrounding interstitial space, enabling them to interact

with tumor-infiltrating leukocytes in a paracrine manner.

Melanoma EVs are also present in the blood, implying that

they may affect immune responses systemically. Additionally,

there is considerable evidence that melanoma EVs can be taken

up by tumor-associated lymphatic vessels and are transported to

draining LNs, important sites not only for early melanoma

metastasis but also for the initiation (and inhibition) of tumor-

specific immune responses (48, 49). In fact, initial lymphatic

vessels, in contrast to blood vessels, are very permeable for

particles up to 100-200 nm in diameter due to a specific

junctional organization (“Button-like junctions”) between

adjacent LECs. Furthermore, interstitial fluid dynamics

facilitate EV transport towards lymphatic vessels within or

around the tumor site (49). Indeed, in a seminal study in

2011, Joshua Hood and colleagues found that after interstitial

injection, fluorescently labeled B16F10-derived EVs specifically

and efficiently homed to draining LNs where they accumulated

(50). Later on, several other groups confirmed efficient transport

of both injected EVs as well as EVs released endogenously from

primary B16 melanomas, to draining LNs in mice (34, 36, 51,

52). Using EV-associated luciferase activity for quantification,

one of these studies furthermore found that the relative

accumulation of melanoma-derived EVs was much higher in

draining LNs compared to any other tissue in the body,

including the blood (51). Similarly, melanoma-derived EVs

were enriched in lymph-rich wound exudate collected after

lymphadenectomy in melanoma patients in comparison to

plasma, and lymph-borne EVs were larger than those from

plasma, suggesting qualitative (and potentially, functional)

differences between them (34, 35, 53).

Prominent uptake of melanoma EVs in vivo was noted

especially in macrophages in the tumor microenvironment

and in tumor-draining LNs (36, 51, 52), and this uptake has

been suggested to prevent tumor growth-promoting B cell

responses (51). While none of these studies found a significant

uptake of melanoma EVs by other immune cell types,

including DCs, NK cells, and T cells, melanoma EVs might

still interact with them and affect their phenotype or function

via cellular receptors as discussed above. Another cell type

with a strong capacity to take up EVs are LN-resident LECs,

and this uptake appears to depend on EV-associated integrins
Frontiers in Immunology 05
(36, 52). Recent advances in single-cell RNA sequencing

allowed the identification of LN LEC subsets in human and

mice (54, 55), and it were particularly LECs lining the floor of

the subcapsular sinus that took up melanoma EVs (36),

consistent with EV transport to LNs via afferent lymphatic

vessels. In conclusion, melanoma derived EVs appear to have

profound effects on tumor-draining LNs, primarily interacting

with macrophages and LECs and thereby regulating adaptive

T- and B-cell responses indirectly.
Discussion

Clearly, melanoma-derived EVs have broad immune-

regulatory capacities, triggering innate and checkpoint

receptors in immune cells, transferring immune-modulatory

cargoes including miRNAs, and delivering melanoma

antigens to APCs, all of which may ultimately affect

adaptive, tumor-specific immunity and immunotherapy

responsiveness (Figure 1). However, there are considerable

discrepancies between individual studies, both regarding the

reported mechanisms as well as the direction of EV-mediated

immune regulation. These divergent results are at least in part

due to differences in the starting material (cell lines,

individual patient samples) and experimental approaches

such as EV isolation methods (resulting in varying EV

subtypes and co-contaminants), EV dosing and choice of

controls (e.g. empty liposomes or normal melanocyte-

derived EVs). While there are efforts in the fields to

standardize methods and quality controls (3), it will be an

important challenge for future EV functional studies to

identify experimental set-ups and conditions that yield the

most clinically relevant results.

One important although experimentally challenging aspect

in this regard is to validate in vitro observations of EV-

mediated immune cell regulation using appropriate in vivo

systems, particularly those reflecting endogenous EV release

from a growing tumor. Those systems most faithfully represent

“natural” EV doses, biodistribution, access to different tissues

and immune cells within, and interplay between varying

immune and stromal cells in response to melanoma-derived

EVs. Also, patterns of cellular uptake of EVs are strikingly

different in vitro and in vivo. However, such systems require

elaborate approaches to allow tracking and modulation of

endogenously secreted EVs, for instance using genetic EV

tags and methods to modify EV (subset) release and/or

composition in vivo. In the long run, such functional studies

will be key to develop novel therapeutic approaches, targeting

the release, uptake or effector functions of melanoma EVs,

which could ultimately enhance endogenous as well as

immunotherapy-induced immune responses in melanoma
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patients, for instance in unresectable disease or in a neo-

adjuvant setting.
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