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Abstract
The PE and PPE protein family are unique to mycobacteria. Though the complete genome

sequences for over 500M. tuberculosis strains and mycobacterial species are available,

few PE and PPE proteins have been structurally and functionally characterized. We have

therefore used bioinformatics tools to characterize the structure and function of these pro-

teins. We selected representative members of the PE and PPE protein family by phylogeny

analysis and using structure-based sequence annotation identified ten well-characterized

protein domains of known function. Some of these domains were observed to be common

to all mycobacterial species and some were species specific.

Introduction
Tuberculosis (TB) caused byMycobacterium tuberculosis (Mtb), remains a major global health
problem and one of the main causes of death around the world [1]. About one third of the
world’s population has latent TB infection. TB kills about two million people annually and is
the second leading cause of death from an infectious disease worldwide, after the human
immunodeficiency virus (HIV) [2,3]. As a result of reduced immunity in HIV patients, there is
a greater risk of infection with TB [4,5] and significant increase in number of deaths. Despite
the availability of effective short course chemotherapy, Directly Observed Treatment Short
(DOTS) and theMycobacterium bovis Bacille de Calmette et Guérin (BCG) vaccine, the tuber-
cle bacillus continues to be naturally resistant to many antibiotics, making the treatment diffi-
cult [6,7]. Patients develop drug resistance resulting in the resurgence of multiple drug
resistance (MDR) and extreme drug resistant (XDR) TB [8].

The complete nucleotide sequence of Mtb H37Rv strain comprising ~4,000 genes, contains
two new gene families; PE and PPE, accounting for ~10% of the total genome [9]. These pro-
teins are characterized by highly conserved N-terminal domains with approximately 110 and
180 amino acid residues, respectively. The names PE and PPE for these proteins are due to the
presence of amino acid sequence motifs Pro-Glu and Pro-Pro-Glu, respectively towards the N-
terminus. These proteins are proposed to be a source of antigenic variation and responsible for
virulence of pathogen. Subsequently, the complete sequencing of several strains of
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mycobacterial genomes [10,11,12,13,14,15] identified the presence of variable numbers of PE
and PPE genes. Single nucleotide polymorphisms were observed to be greater in these genes
compared to the non-PE and non-PPE genes. These genes were proposed as possible vaccine
candidates [9,16,17]. The PE and PPE genes were mostly arranged in a unique regulon with the
PE genes located upstream to the PPE genes and scattered throughout the genome [18]. The
PE and PPE genes are known to be present in pathogenic and non-pathogenic mycobacteria
but have not yet been identified in non-mycobacterial species [19,20,21]. A strong evolutionary
selection for PE and PPE proteins in the pathogenic mycobacteria has been reported since their
expansion is linked to the ESAT-6 gene clusters that has role in immuno-pathogenesis [22].

The functions of only few PE and PPE proteins are so far known. The PE and PPE proteins
are highly polymorphic and localized to the cell wall and have immunological role. Compara-
tive analysis of the PE and PPE families in Mtb H37Rv (virulent) and H37Ra (avirulent strain)
revealed genetic differences in several single nucleotide variations, insertions and deletions
[23]. Comparative genomics of theM. avium complex members revealed several polymor-
phisms in PE and PPE family members and the presence of some unique members in PPE fam-
ily that have been implicated for applications in diagnostics [24].

Among functional characterization of some of the PE and PPE proteins, it has been shown
that the N-terminal PE domain of PE_PGRS33 (Rv1809) is necessary for protein localization
to the cell wall inM.marinum andM. tuberculosis [25,26]. In LipY and PE_PGRS30
(Rv1651c), the C-terminus encodes the lipase activity of the protein. Both PE and PPE domains
contain a signal required for secretion of LipY by the ESX-5 system and these domains are pro-
teolytically removed upon translocation [27,28]. Studies on the enzymatic role of the PE
domain in LipY revealed that PE domain down-regulates the enzyme activity of LipY, but does
not effect its thermal stability [29]. Studies on the antigenic properties of operonic PE25
(Rv2431), PPE41 (Rv2430) and the complex PE25/PPE41 indicated that the PPE41 and the
PE25/PPE41 complex induced significant B cell response compared to the PE25 protein
[18,30]. The up-regulation of PPE32 (Rv1808) in many conditions defines its role in the host
innate immune response [31,32]. The PE_PGRS63 (Rv3097c) gene is highly expressed 24
hours post-infection in murine macrophage cell lines [33] and higher expression of PE/PPE
genes Rv0977, Rv1361c and Rv1840c in human macrophages upon infection have been
reported [34]. Functional studies of PE and PPE family members inM. tuberculosis have
reported their localization in cell wall, cytosol and membrane, and their functions have been
implicated in cell wall, virulence, detoxification, adaptation, insertion sequences, lipid metabo-
lism, intermediary metabolism, respiration and cell processes [35].

Despite the availability of the complete Mtb genome sequence very few PE, PPE proteins
have been structurally and functionally characterized. Computational methods may precede
the selection of proteins for wet-lab experimental validation of their structure and activity.
Structure-based functional annotation of proteins has been more useful than sequence-based
comparisons alone [36,37], as the protein fold and conservation of active site residues are
determinants of molecular function. Therefore, in the absence of experimental structures, com-
puter-based protein modeling methods may be employed to predict the structure and possible
function [37,38,39].

Large proteins often contain domains (comprising usually>50 amino acid residues) that
are known to be independent folding units, irrespective of their location along the protein
sequence [40]. Our previous studies on the sequence analysis of PE and PPE proteins from
Mtb H37Rv strain identified a 225 amino acid residue conserved domain. This PE-PPE domain
(Pfam ID: PF08237) was observed in the C-terminus of some PE and PPE proteins [41]. Bioin-
formatics analyses identified a serine α/β hydrolase fold with a pentapeptide sequence motif
GxSxG/S for this domain and conserved Ser, Asp and His catalytic triad residues characteristic
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of lipase, esterase and cutinase activities [42]. Subsequent experiments confirmed that the
PE-PPE domain of PE16 (Rv1430) exhibited esterase activity [43]. Recently, Bharathy and
Suguna identified and solved the three-dimensional crystal structure of an aspartic proteinase-
like domain observed in the C-terminal region of the PE_PGRS16 (Rv0977) protein [44].

In the present work, we have analyzed the sequences of PE and PPE proteins from several
mycobacterial species. Our results provide clues for the fold and possible functions for ten
well-characterized domains predicted in some PE and PPE proteins that provide the rationale
for experimental validation.

Materials and Methods

Sequence searches—PSI-BLAST
The amino acid sequences corresponding to the PE and PPE proteins fromMtb H37Rv strain
were obtained from the NCBI databank (http://www.ncbi.nlm.nih.gov/). Iterative and recipro-
cal searches corresponding to the PE and PPE regions in these proteins were performed using
the PSI-BLAST program (www.ncbi.nlm.nih.gov/BLAST/) against the protein sequences from
60 mycobacterial species. The PSI-BLAST program detects related proteins by deriving a posi-
tion specific scoring matrix (PSSM) from multiple sequence alignment of proteins that are
detected above a given threshold score [45]. The results obtained were manually inspected to
confirm the protein family.

Selection of non-redundant proteins—CD-HIT
The large dataset of mycobacterial proteins obtained from the homology searches had a high
percentage of redundant sequences. We used the CD-HIT program [46] that can efficiently
handle huge datasets containing millions of protein sequences, in order to remove redundant
proteins and short-list set of protein sequences based on user-defined percentage sequence
identity cut-off value (http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi).

Multiple sequence alignment—ClustalX
The mycobacterial PE and PPE protein sequences obtained earlier were aligned separately
using the multiple sequence alignment program ClustalX 2.1. It uses a heuristic pairwise pro-
gressive sequence alignment method to generate a dendrogram. The dendrogram was used to
construct the multiple sequence alignment [47]. The parameters used for multiple sequence
alignment were; “10” for gap opening penalty, “0.2” for gap extension and "Gonnet Series" was
chosen for protein weight matrix.

Phylogeny analysis—MEGA5
Phylogenetic trees were generated for PE and PPE proteins using the draw tree clustering
option in ClustalX based on the neighbor joining clustering algorithm. The phylogenetic tree
was viewed and analyzed using Mega 5.0. MEGA5 is a collection of maximum likelihood (ML)
analyses for inferring evolutionary trees, selecting best-fit substitution models for both nucleo-
tides or amino acids, inferring ancestral states and estimating evolutionary rates [48]. The rep-
resentative proteins based on these phylogenetic trees were selected for further analysis.

Protein fold recognition—Phyre2
The non-PE and non-PPE regions in the PE and PPE proteins were selected in order to identify
functional domains. Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2) comprises a suite of tools
that can predict and analyze protein structure, function and mutations [49]. Phyre2 is
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particularly useful to recognize the protein folds of distantly related sequences and uses
advanced methods for constructing three-dimensional model. The results of the model
obtained for a given protein sequence can be interpreted based on percentage confidence, per-
centage sequence coverage, sequence alignment with the target structure, secondary and ter-
tiary structure of the models, domain composition, conservation of the active site and model
quality.

Results and Discussion
Mycobacterial species are known to comprise variable numbers of PE and PPE family proteins.
Several variations in their protein sequences have been attributed to synonymous and non-syn-
onymous single nucleotide polymorphism (SNPs), in-frame deletions and insertions, resulting
in their altered physico-chemical properties [23,24,50]. These features indicate the observed
differences between the mycobacterial species. The N-terminal PE and PPE domains, and the
Gly-rich regions in these families of proteins provide limited clues on their possible structure
and function. The structure-based annotation of the protein folds are more useful, which have
therefore been applied in the present work using Phyre2 program that has also been useful to
assign a possible function. The list of mycobacterial species for the analysis of structure and
function corresponding to the PE and PPE protein families studied in this work are shown in
the supplementary data (S1 Table). The protein fold templates identified with ‘high’ confidence
and described as "certain" according to the program and corresponding to significant sequence
coverage over whole length of the protein were selected as the probable fold. The three-dimen-
sional models based on the templates identified and the alignments of the sequence to each of
the templates produced by Phyre2 were manually inspected to examine whether the catalytic
residues and the cofactor binding residues were also conserved. In situations where such con-
servation was confirmed, the corresponding domains were assigned as the protein fold. We dis-
cuss below the different domains that were identified in the PE and PPE proteins.

Hydrolase domain
The PE and PPE proteins from several mycobacterial species (M. tuberculosis,M. bovis,M. afri-
canum,M. canettii,M.marinum,M. kansasii,M. liflandi,M. heckeshornense,M. bovis BCG
strain,M. asiaticum,M. caprae,M. nebraskense,M. gordonae,M. haemophilum,M. lentifla-
vum,M. simiae,M. triplex,M. sinense,M. arupense,M. heraklionense,M. neworleansense) that
were predicted to comprise a conserved C-terminal domain with α/β hydrolase fold are shown
in the supplementary data (S1 Appendix). This domain was modelled on the crystal structures
of two templates comprising msmeg_6394 fromM. smegmatis str. MC2 155 (PDB_ID: 3AJA:
A) and a putative esterase from Staphylococcus aureus (PDB_ID: 3D7R:B). The template struc-
tures represent hydrolase family which exhibit an overall α/β hydrolase fold with central β-
sheet flanked by α-helices on either side of the sheet and has the functional characterization of
a lipase. Most hydolase family proteins are characterized by a beta-sheet core made up of five
to eight β-strands connected by α-helices forming an α/β/α sandwich with a conserved penta-
peptide sequence motif GxSxG, and Ser, Asp and His as the catalytic residues [51].

We previously identified this domain in the C-terminal region of 8 PE and PPE proteins
(Rv0151c, Rv0152c, Rv0159c, Rv0160c, Rv1430, Rv1800, Rv2608 and Rv3539) inM. tuberculo-
sisH37Rv strain and was termed ‘PE-PPE domain’ [41]. Subsequently, we modelled this
domain, characterized the active site, lid insertion close to the active site, the oxyanion hole
required for function and predicted that this domain would specifically possess esterase/lipase/
cutinase activity [42]. Further, we carried out wet-lab experimental studies using biochemical
assays and mutational analyses and confirmed that the purified full-length Rv1430 protein and
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its ‘PE-PPE domain’ possesses esterase activity and hydrolyses short to medium chain fatty
acid esters with highest specific activity for p-nitrophenyl caproate [43].

Aspartic proteinase domain
The PE proteins frommycobacterial species (M. tuberculosis,M. bovis,M. caprae,M. africanum,
M. caprae,M. orygis,M. canettii,M. gordonae) predicted to comprise the aspartic proteinase
domain are shown in the supplementary data (S2 Appendix). This domain was reported in the
PE_PGRS16 (Rv0977) protein and its three-dimensional crystal structure was solved (PDB_ID:
4EHC) [44]. The aspartic proteinase domain has low overall sequence similarity to HIV protein-
ase with a characteristic pepsin-fold and catalytic site architecture. The overall fold comprises a
six stranded β-sheet located at the centre formed by the contribution of 3 strands each from N-
and C-terminal domains. On either side of the central region, β-sheet rich regions and two α-
helices connected by loops that harbor the conserved DTGmotifs were located. These motifs
are essential for the peptide hydrolysis function of this enzyme. In this work, the fold for some
of the PE proteins, for instance, WP_015355774.1, WP_036418539.1 andWP_031667305.1
(refer S2 Appendix for detailed list) comprising a C-terminal 280 amino acid domain was pre-
dicted as the aspartic proteinase domain. This domain in the mycobacterial PE proteins was
modeled on the crystal structure of PDB_ID: 4EHC_A. The models comprise the two conserved
DT(S)G motifs characteristic of aspartic proteinases. In the peptide hydrolysis reaction, one of
the aspartic acid residues from the conserved motifs acts as a general base and the other acts as a
general acid followed by the nucleophilic attack of a catalytic water molecule [52]. Typically
aspartic proteinases hydrolyse a peptide bond between hydrophobic residues. For example,
renin is an aspartic proteinase that cleaves angiotensiogen to a decapetide angiotensin with high
specific cleavage between Leu-Leu bond [53]. Several of these proteins are drug targets, for
example, HIV proteinase in AIDS and renin in hypertension [54].

Glucosyl-3-phosphoglycerate phosphatase domain
The list of PE proteins from mycobacterial species (M. tuberculosis,M. bohemicum,M. haemo-
philum,M. canettii,M. kansasii,M. africanum,M. bovis,M.marinum,M. liflandii,M. xenopi,
M. heckeshornense,M. gordonae) comprising the glucosyl-3-phosphoglycerate phosphatase
domain is shown in the supplementary data (S3 Appendix). Some of these PE proteins, for
instance, WP_003403850.1, WP_015357328.1 and CPR12073.1 recognized the template
PDB_ID: 4PZ9:B corresponding to the mycobacterial glucosyl-3-phosphoglycerate phospha-
tase Rv2419c [55]. This enzyme consists of a single domain made up of a central β-sheet
flanked by α-helices on either side and is known to catalyze the second step in the biosynthesis
of methylglucose lipopolysaccharides (MGLPs) pathway. The synthesis of mycolic acids, which
forms an important lipid component of the mycobacterium cell wall, is regulated by MGLPs.
The alignment of the sequence to the template (~21% identity) is shown in Fig 1A and high-
lights the regions of secondary structure. The corresponding structure alignment of the model
and template is shown in Fig 1B and suggests the overall similarity in the protein fold.

In the crystal structure (PDB_ID: 4QIH), the active site is located in a positively charged
cleft situated above a central β-sheet. Unambiguous electron density for a vanadate ion cova-
lently bound to His11 (numbering according to PDB_ID: 4PZ9) mimicking the phosphohisti-
dine intermediate and acetate ion was observed. In WP_003403850.1 too, the catalytic residues
His11 and Glu84 are conserved (Fig 1A) and most of the ligand binding residues close to the
acetate and vanadate, for instance, Arg10, His11, Asn17, Gln23, Arg60, Glu84, His159 and
Leu209 which are important for enzymatic activity are conserved, except Gln23 which was
replaced by Thr and His159 by Tyr. According to the structure analyses, most residues being
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conserved, especially residues close to vanadate, suggests that the protein function is also likely
to be conserved.

Laminaripentaose-producing beta-1,3-glucanase domain
The list of PE proteins from mycobacterial species (M.marinum,Mycobacterium sp. 012931,
M. ulcerans str.Harvey) comprising the laminaripentaose-producing beta-1,3-glucanase
(LPHase) domain is shown in the supplementary data (S4 Appendix). The PE protein, for
instance, WP_012394280.1 fromM.marinum C-terminal region recognized the template
PDB_ID: 3GD9:A corresponding to the crystal structure of LPHase in complex with laminari-
tetraose [56]. Glycoside hydrolases have been classified into families based on sequence simi-
larity and have been further grouped into clans based on the similarity of their overall fold,
active site architecture and catalytic mechanism [57,58,59]. LPHase is a glycoside hydrolase
family 64 protein which cleaves a long chain polysaccharide β-1,3-glucan into specific penta-
saccharide oligomers. The structure consists of a crescent-like fold; a barrel domain and a
mixed (α/β) domain forming a wide-open groove between the two domains. The sequence
alignment highlighting the secondary structures predicted is shown in Fig 2A and has ~24%
identity. The structural overlay of the model and template is shown in Fig 2B that suggests the
protein has overall similar fold and certain variable loop regions. The glycoside hydrolases are
known to catalyse the hydrolysis of the glycosidic bond between two or more carbohydrates or
between a carbohydrate and non-carbohydrate moiety [60]. Depending on the nature of the
organism, these enzymes are associated with a variety of roles, such as degradation of biomass
by cellulases, pathogenesis during the activity of influenza virus neuraminidase [61], normal
cellular metabolic processes that involves the formation and breakage of glycosidic bonds [62].
Our model suggests the conservation of catalytic residues; Glu154 and Asp170 (numbering
according to the PDB_ID: 3GD9) as shown in Fig 2A. Between the N and C-terminal domains,
the model contains an electronegatively charged wide groove comprising several conserved res-
idues that include the above catalytic residues and four amino acid residues; Thr156, Asn158,
Trp163 and Thr167 involved in sugar binding that accommodate the laminaritetraose mole-
cule. According to the crystal structure of LPHase (PDB_ID:3GD9), the enzyme uses a direct
displacement mechanism involving Glu154 and Asp170 via acid-base catalysis to cleave β-
1,3-glucan into specific α-pentasaccharide oligomer. The side chains of Thr156, Asn158 and
Trp163 are known to demarcate the subsite +5 in the active site.

Fig 1. Glucosyl-3-phosphoglycerate phosphatase domain. (A) Sequence alignment of model WP_003403850.1 and template PDB_ID: 4PZ9:B
indicating the catalytic residues (#). In all the pair-wise sequence alignments, identical residues are indicated in gray shaded regions, deletions in the
template sequence is indicated as dots in brown shaded region, deletions in the query sequence is indicated as dots in yellow shaded region. (B) Structure
alignment of model (green) and template (pink).

doi:10.1371/journal.pone.0146786.g001
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Chitinase domain
The list of PE proteins from mycobacterial species (M. liflandii,M.marinum,Mycobacterium
sp. 012931,M. ulcerans str.Harvey,M. gastri,M. gordonae) comprising the chitinase domain is
shown in the supplementary data (S5 Appendix). Some of these PE proteins, for instance,
ABL03629.1, WP_015355330.1, WP_023367572.1, WP_036414736.1 and WP_012395848.1
recognize the template PDB_ID:2DSK:A corresponding to the chitinase domain. The catalytic
site residues; Asp522, Asp524 and Glu526 form the characteristic DxDxE motif observed in the
crystal structure were conserved in these PE proteins as shown for one of the illustrative exam-
ples in Fig 3A that shares ~37% identity. The model was constructed on the crystal structure of
the catalytic domain of chitinase from Pyrococcus furiosus (PDB _ID: 2DSK:A). The overall
structure of this domain comprises a TIM-barrel fold with a tunnel-like active site, a common
feature of family 18 chitinases. The high degree of the overall structural similarity is shown in
Fig 3B. The chitinases hydrolyze chitin, a polymer of β-1,4-linked N-acetylglucosamine
(GlcNAc) and classified into two families (families 18 and 19 in the CAZy database; http://
www.cazy.org/) according to amino acid sequence similarity [63].

Endoglucanase domain
The list of PE proteins from mycobacterial species (M. kansasii,M. gastri,M. gordonae,M.
bohemicum DSM 44277,M. asiaticum) comprising the endoglucanase domain is shown in the
supplementary data (S6 Appendix). The PE proteins, for example, MGAST_01715 and
CPR09297.1 have a conserved C-terminal region. The fold for these proteins corresponds to
the endoglucanases (PDB_IDs: 1OA4:A and 2NLR). These glycoside hydrolase clan GH-C
group endoglucanases comprise the family 11 xylanases and family 12 cellulases, which share a
jelly-roll topology. The two predominantly anti-parallel β-sheets form a long substrate-binding
cleft. The catalysis of these enzymes is via a double-displacement mechanism in which a cova-
lent glycosyl enzyme intermediate is formed and subsequently hydrolyzed with acid-base assis-
tance, via oxocarbenium ion transition states and performs the catalysis with net retention of
anomeric configuration [64,65]. Fig 4A shows the sequence alignment (~58% identity) along

Fig 2. Laminaripentaose-producing beta-1,3-glucanase domain. (A) Sequence alignment of model WP_012394280.1 and template PDB _ID: 3GD9:A
indicating the catalytic residues (#). (B) Structure alignment of model (green) and template (pink).

doi:10.1371/journal.pone.0146786.g002
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with the catalytic residues and the secondary structural information. The structural compari-
son is shown in Fig 4B. The concave surface of the larger β-sheet produces a wide substrate-
binding cleft across one face of the enzyme [66]. Further, the cleft has two invariant catalytic
residues Glu120 and Glu203 (amino acid numbering according to PDB_IDs: 2NLR) that point
into the active site cleft from opposite sides. A long loop crossing the substrate-binding groove
terminates at the reducing end, known as the “cord” and that is a common feature of all family
11 and family 12 structures. A number of residues located in the loop, importantly, Pro133 is
conserved throughout clan GH-C members. A possible loop movement upon substrate binding
has been speculated [66].

Carbohydrate binding domain
The list of PE proteins from mycobacterial species (M. kansasii,M. gastri,Mycobacterium sp.
012931,M. bohemicum DSM 44277) comprising the carbohydrate binding domain is shown in
the supplementary data (S7 Appendix). In the cellulose degradation process, the binding of the
cellulolytic enzyme is mediated by carbohydrate binding domain (CBD) which typically com-
prises ~100 amino acid residues [67]. CBDs are separated from the catalytic domain by a short
amino acid linker region and the enzymatic degradation is carried out by the cellulolytic
domain [68,69]. From our analysis, we observed that the CPR09297.1 comprising an endoglu-
canase domain described above has one CBD, while ETW25608.1 has two consecutive CBDs

Fig 3. Chitinase domain. (A) Sequence alignment of model ABL03629.1 and template PDB _ID: 2DSK:A indicating the catalytic residues (#). (B) Structure
alignment of model (green) and template (pink).

doi:10.1371/journal.pone.0146786.g003

Fig 4. Endoglucanase domain. (A) Sequence alignment of model CPR09297.1 and template PDB_ID: 2NLR:A indicating the catalytic residues (#, red box).
(B) Structure alignment of model (green) and template (pink).

doi:10.1371/journal.pone.0146786.g004
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separated by 87 amino acids. The two proteins with CBD domains are linked with C-terminal
glycosyl hydrolase 12 (GH12) family domains discussed above. Likewise, another PE protein;
WP_036414736.1, comprises a CBD that is linked to a glycosyl hydrolase 18 (GH18) family
domain. The three-dimensional structures of these CBDs were modelled on the CBD domain
present in the endoglucanase D from Clostridium cellulovorans (PDB_ID: 3NDY). The
sequence alignment (~35% identity) is shown in Fig 5A. The alignment demonstrates that the
secondary structure is mainly comprised of beta-strands. The structural overlay of model with
template is shown in Fig 5B which reveal eight major beta-strands that fold into a beta-sheet
structure. Three conserved hydrophobic amino acids (Trp, Trp, Trp/Tyr) ‘strip’ are located on
loops connecting the beta-strands in the model and the template as shown in Fig 5B. The pi-
electron dense aromatic rings of the ‘strip’ contact the cellulose hydrophobic region and drive
the enzymes to perform their catalytic functions [70,71].

Cytochrome P450 domain
The 1761 amino acid PE protein AGC62230.1 fromM. liflandii 128FXT comprises a 500
amino acid C-terminus domain. The fold for this domain was recognized as the cytochrome
P450 from Streptomyces sp. Acta 2897 (PDB_ID:4L0E) [72]. Cytochrome P450s are a class of
heme cofactor binding proteins and found in all domains of life. The high diversity in
sequences and functions resulted in an expanded family of cytochrome P450s. They catalyse a
variety of reactions, for instance, carbon heteroatom oxygenation, dealkylation, epoxidation,
aromatic hydroxylation, reduction and dehalogenation [73]. A unique consensus sequence
motif; ‘FXXGXXXCXG’ is present in all cytochrome P450s and located between helices K and
L that forms a heme binding decapeptide loop [74]. This motif was also observed in the PE pro-
tein AGC62230.1 fromMycobacterium liflandii 128FXT (Fig 6A).

The non-ribosomal peptide synthetases (NRPSs) are involved in the synthesis of diverse
peptides known as non-ribosomally synthesised peptides (NRPs) [75]. One of the prominent
modifications found in NRPs is the β-hydroxylation of various amino acid residues including
the hydroxylation of non-activated C-H bonds [76] that are catalysed by cytochrome P450
enzymes. The cytochrome P450 encoded (sky32) is associated with the skyllamycin biosynthe-
sis gene cluster. The cyclodepsipeptide skyllamycin A isolated from streptomyces is an inhibi-
tor of the platelet derived growth factor signaling pathway [77]. The crystal structure of sky32
(PDB_ID:4L0E) is responsible for the β-hydroxylation of three separate amino acids at posi-
tions 5 (β-hydroxyphenylalanine), 7 (β-hydroxy-OMe-tyrosine), and 11 (β-hydroxyleucine).
The sequence alignment (~23% identity) corresponding to the cytochrome P450 domain in the
above PE protein and sky32 mainly comprising helices is shown in Fig 6A. The comparison of
the overall fold shown in Fig 6B reveals the high degree of structural similarity.

Fig 5. Carbohydrate binding domain. (A) Sequence alignment of model WP_036414736.1 and template PDB_ID: 3NDY:G indicating aromatic residues (*)
from hydrophobic strip. (B) Structure alignment of model (green) and template (pink).

doi:10.1371/journal.pone.0146786.g005
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Beta-propeller
We earlier reported certain PE family proteins to comprise YVTN repeats [41]. These repeats
contain 40–45 amino acid residues present in tandem along the protein sequence and located
towards the C-terminus. In this work, we have identified several PE proteins from mycobacte-
rial species (M. tuberculosis,M. bovis,M. africanumMAL020173,M. caprae,M. orygis
112400015,M. canettii CIPT 140070010,M. haemophilum,M.marinum) that contain the
above repeat as shown in the supplementary data (S8 Appendix). Some of these PE proteins,
for example, WP_023369269.1, CCP43730.1, WP_013988789.1 and WP_013988787.1 were
modelled on the crystal structures of nitrous oxide reductase from Pseudomonas nautical
(PDB_ID: 1QNI:E) [78], nitrous oxide reductase from P. denitrificans (PDB_ID: 1FWX:B)
[79], cytochrome cd1 nitrite reductase (PDB_ID: 1GQ1:B) [80] and nup84-nup145c-sec13
(PDB_ID: 3JRO:A) [81]. These diverse proteins comprise a 6–8 bladed beta-propeller fold.
Typically, beta- propellers contain 4–8 blades that are arranged circularly around a central axis
[82]. Several other diverse ~40–45 amino acid repeats, such as, WD, YWTD, etc., are known to
be present in tandem and fold as beta-propellers [83]. The proteins containing the beta-propel-
lers are associated with diverse functions such as transport, hydrolases, transferases, sugar and
cofactor binding proteins, cell surface proteins, lyases and isomerases [83]. In some cases, the
active site is present in the loops that connect the tandem blades. For example, in the crystal
structure of influenza neuraminidase (PDB_ID: 1BJI), the active site is located in the region
connected by several loops [84]. The sequence alignment (~13% identity) corresponding to the
PE protein; CMB12570.1 and its template is shown in Fig 7A. The structural comparison of the
model and template is shown in Fig 7B. This protein represents a 6 bladed beta-propeller.

Beta-helix
The beta-helix predicted for the PPE proteins from mycobacterial species (M. tuberculosis,M.
kansasii,M. asiaticum,M. gastri,Mycobacterium sp. 012931,M.marinum,M. canettii,M. gor-
donae,M. ulcerans,M. bovis,M. orygis,M. liflandii) is shown in the supplementary data (S9
Appendix). Several PPE proteins are characterized by Gly-rich pentapeptide sequence repeats.

Fig 6. Cytochrome P450 domain. (A) Sequence alignment of model AGC62230.1 and template PDB _ID: 4L0E:A indicating consensus heme binding
decapeptide motif in box. (B) Structure alignment of model (green) and template (pink).

doi:10.1371/journal.pone.0146786.g006
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Some of the PPE proteins (WP_049959014.1, WP_049959014.1 and WP_012396836.1) were
modelled on the N-terminal domain of a ubiquitin ligase (PDB _ID: 3NB2:B) as the template.
The template structure contains two structural domains: an N-terminal four stranded beta-
helix domain made up of penta-peptide sequence repeats and a C-terminal α-helical catalytic
domain [85,86]. Beta-helices were initially identified in the crystal structure of pectate lyase
[87] and their functions, such as, polysaccharide lyases, cellulose or acid sugar binding lyases
have been reviewed [88]. The beta-helix forms a helical pattern due to the hydrogen bonds
between parallel beta sheets and can form two/three/four beta-stranded helices. The sequence
alignment (~15% identity) predicted to mainly comprise the beta-strands is shown in Fig 8A
and structure superposition on the template for this domain predicted in WP_012396836.1 is
shown in Fig 8B.

Acetyl hydrolase / cutinase domain
The list of PE proteins from mycobacterial species (M. bohemicum DSM 44277,M.marinum,
M. liflandii,Mycobacterium sp. 012931,M. kansasii,M. asiaticum,M. gordonae) predicted to

Fig 7. Beta-propeller. (A) Sequence alignment of model WP_023369269.1 and template PDB_ID: 3JRO:A. (B) Structure alignment of model (green) and
template (pink).

doi:10.1371/journal.pone.0146786.g007

Fig 8. Beta-helix. (A) Sequence alignment of model WP_012396836.1 and template PDB_ID: 3NB2:B. (B) Structure alignment of model (green) and
template (pink).

doi:10.1371/journal.pone.0146786.g008
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contain the acetyl hydrolase / cutinase domain is shown in the supplementary data (S10
Appendix). Some of these proteins were modeled, for instance, WP_023371336.1,
WP_015356298.1, WP_036353055.1 and CPR09862.1. The crystal structures of human plasma
platelet activating factor acetyl hydrolase (PDB_IDs: 3D5E, 3D59:B) were used as templates in
the modeling procedure. These structures have a α/β-hydrolase fold containing a catalytic triad
of Ser, His and Asp. The alignment of the sequences (~15% identity) is shown in Fig 9A. The
structural comparison for the PE protein; WP_023371336.1 with template is shown in Fig 9B.
The location of the catalytic residues Ser273, Asp296 and His351 (numbering according to
PDB_ID: 3D59) are shown in Fig 9A.

Transmembrane domain
Some PPE family proteins; WP_036437315.1, WP_036444818.1 and CPR01223.1 have been
predicted to comprise transmembrane helices with large stretches of intervening sequences
suggesting these as membrane proteins. We modeled, one of the above proteins, CPR01223.1, a
M. bohemicum protein on the crystal structure of a eukaryotic calcium/proton exchanger
(PDB_ID: 4K1C). The sequence alignment that shares ~9% identity and predicted secondary
structure is shown in Fig 10A, suggesting this protein is mainly composed of helices. The
three-dimensional model superimposed on the template is shown in Fig 10B.

Fig 9. Acetyl hydrolase/cutinase. (A) Sequence alignment of model WP_023371336.1 and template PDB _ID: 3D59:B indicating the catalytic residues (#).
(B) Structure alignment of model (green) and template (pink).

doi:10.1371/journal.pone.0146786.g009

Fig 10. Transmembrane domain. (A) Sequence alignment of model CPR01223.1 and template PDB _ID: 4K1C:B. (B) Structure alignment of model (green)
and template (pink).

doi:10.1371/journal.pone.0146786.g010
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In this work, we have identified certain well-characterized domains present in the PE and
PPE proteins of mycobacteria. These domains are known to be associated with a variety of func-
tions, such as, hydrolysis of lipids (α/β hydrolase fold and acetyl hydrolase), hydrolysis of carbo-
hydrates (chitinase, endoglucanase and laminaripentaose-producing beta-1,3-glucanase
domain) and hydrolysis of proteins (aspartic proteinase). Glucosyl-3-phosphoglycerate phos-
phatase plays an important role in the synthesis of mycobacterial cell wall components and cyto-
chrome P450 domain is implicated in metabolic activity. The transmembrane domains, beta-
propellers, CBD and beta-helices are regulators of protein function. This suggests that some of
the PE and PPE family proteins may be associated with enzymatic and regulatory roles.

The α/β hydrolase domain is present in both PE and PPE family proteins, whereas aspartic
proteinase, chitinase, endoglucanase and beta-propeller domains were only detected for PE
proteins. The beta-helix has been observed in PPE proteins. It was also observed that some
domains such as α/β hydrolase were present in all mycobacterial species, whereas some
domains, such as, chitinase and endoglucanase were specific only to certain mycobacterial spe-
cies. These findings suggest that the PE and PPE family proteins co-ordinate diverse roles that
are mycobacterial species dependent.

Out of several hundred diverse sequences that were analysed, we were able to predict the
fold with ‘high’ confidence for ~30% proteins. The structure and function predicted for the PE
and PPE proteins discussed in this work provide the rationale for validation by experimental
studies.

Conclusions
The bioinformatics analyses of several PE and PPE proteins from a number of mycobacterial
species allowed us to identify the following well-characterized domains; hydrolase, aspartic
proteinase, glucosyl-3-phosphoglycerate phosphatase, laminaripentaose-producing beta-
1,3-glucanase, chitinase, endoglucanase, carbohydrate binding, cytochrome P450, beta-propel-
ler, beta-helix, acetyl hydrolase/cutinase and transmembrane domains. Some of these domains
have enzymatic roles and hydrolyse substrates, such as, proteins, lipids and carbohydrates,
while some domains have a regulatory role. Further, some domains were observed to be com-
mon to several mycobacterial species, while some were present only in few mycobacterial spe-
cies. Our work sheds new light on the structural and functional aspects of these important
classes of mycobacterial proteins.
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