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Simple Summary: Mastitis is the most common inflammatory disease of economic and animal
welfare concern in dairy animals. The present study was designed to evaluate the gene expression
and epigenetic modifications in cattle with mastitis and healthy cows. The CpG islands in the
promoter regions of the JAK2 and the STAT5A revealed hypo-methylation levels and higher gene
expression in cows with mastitis compared to the healthy control, and vice versa in those with the
CD4 gene. DNA methylation was negatively correlated with gene expression in the JAK2 and CD4
genes. Findings of the current study showed that aberrant DNA methylation due to mastitis in the
promoter region of the three genes under study could be used as potential epigenetic markers to
predict the mastitis susceptibility in dairy cattle.

Abstract: The present study was designed to evaluate the gene expression and DNA methylation level
in the promoter region of the CD4 and the JAK-STAT-pathway-related genes. A total of 24 samples
were deployed in the gene expression and 118 samples were used in the DNA methylation study.
Student’s t-tests were used to analyze the gene expression and DNA methylation. The evaluation
of DNA methylation in promoter regions of JAK2 and STAT5A revealed hypo-methylation levels of
CpG sites and higher gene expression in cows diagnosed with mastitis as compared to the healthy
control, and vice versa in those with CD4. DNA methylation was negatively correlated with gene
expression in JAK2, STAT5A, and CD4 genes. Six, two, and four active transcription factors were
identified on the CpG sites in the promoter regions of JAK2, STAT5A, and CD4 genes, respectively.
Regarding correlation analysis, the DNA methylation levels of CD4 showed significantly higher
positive correlations with somatic cell counts (p < 0.05). Findings of the current study inferred that
aberrant DNA methylation in the CpG sites at the 1 kb promoter region in JAK2, STAT5A, and CD4
genes due to mastitis in cows can be used as potential epigenetic markers to estimate bovine mastitis
susceptibility in dairy cattle.

Keywords: JAK-STAT pathway; DNA methylation; gene expression; epigenetic regulation; bovine
mastitis resistance

1. Introduction

Mastitis is an inflammation of the mammary gland and is characterized by pathologi-
cal, physiological and bacteriological changes in the udder which affect the quality and
quantity of the milk [1]. Mastitis is the most common inflammatory disease of economic
and animal welfare concern in dairy animals. Globally, published estimates of the economic
losses of clinical mastitis per cow on a farm range from EUR 61 to EUR 97 [2]. In addition
to economic importance, bovine mastitis also carries public health significance. Milk and
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other dairy products are often reported to be contaminated with S. aureus and E. coli. Milk
from cows with sub-clinical mastitis accidentally mixed into bulk milk enters food chain,
thus causing a great threat to human health [3]. The California mastitis test and somatic
cell count are tests routinely performed for the detection of mastitis in dairy animals [4].
Large numbers of pathogens causing mastitis; therefore, successful vaccination to control
the disease is not effective. Generally, antimicrobial agents and management strategies are
used to combat the disease in dairy cattle [5]. However, marker-assisted selection using
genetics and epigenetics approaches is considered an appropriate strategy to minimize the
incidence of mastitis in dairy cattle [6,7].

DNA methylation is a biochemical process in which a methyl group is added to the 5′-
carbon of cytosine in the CpG dinucleotide sequence of DNA by the catalytic activity of the
DNA methyltransferases, i.e., DNMT1, DNMT3A and DNMT3B [8]. The epigenetic markers
of DNA are heritable during cell division, and do not alter the DNA sequence. Aberrant
DNA methylation at CpG islands in the gene promoter region results in transcriptional
silencing and is associated with many disease conditions, i.e., cancer formation and tumor
progression [9]. Aberrant DNA methylation suppresses the transcription by inhibiting
the binding of specific TFs [10]. Hypomethylation of global DNA methylation induced
by S. aureus infection suppressed DNA methyltransferase activity in bovine mammary
epithelial cells [11].

The JAK-STAT pathway mediates signal transduction between nucleus and the cell
surface receptors [12], and any disturbance in this inflammatory signaling pathway can
result in various immune disorders such as immune deficiency syndromes, various cancer
conditions, and mastitis in dairy animals [13,14]. CpG sites in JAK2 were hyper-methylated
in myeloproliferative neoplasms compared with the healthy control, and 87.5% of the
hyper-methylated CpG sites were located in the CpG island [15]. Our previous study
demonstrated higher methylation levels of the CD4 promoter region and lower gene
expression in clinically mastitic cows compared with healthy controls using pyrosequencing
assays and qRT-PCR [16]. CpG islands are CpG-rich areas in the promoter region of
highly expressed genes and are a common site of methylation. Day and Bianco-Miotto
(2013) [17] reported that CpG islands in around 55% of cases form clusters and result
in the inhibition or activation of transcription depending on the status of methylation.
DNA methylation is the most understood mechanism amongst all epigenetic mechanisms.
DNA methylation markings have been suggested to be relatively stable over time in
adult individuals, showing average heritability of 0.19 [18], and are reported to play key
roles in the regulation of gene activity, DNA repair, recombination, replication, and the
establishment and maintenance of cellular identity [18]. Studies on mouse models have
shown that the risk of tumor incidence can be transmitted across generations (up to three
generations) through aberrant DNA methylation [19,20]. Due to the stable nature of
DNA methylation across generations and its average heritability of 0.18–0.19 [21], it has
been suggested to consider it as a potentially important epigenetic marker for selection
in breeding programs. Therefore, we designed this study to evaluate the role of DNA
methylation levels at the 1 kb promoter region in CD4 and JAK-STAT-pathway-related
genes (JAK2, STAT5A, and STAT5B) in mastitic and healthy cows.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

Blood and milk samples were randomly collected from 118 lactating cattle (clinical
mastitis, n = 58; healthy control, n = 60) from three Chinese Holstein dairy cattle farms
(Qiqihar, Tianjin, and Shanxi) located in the northwest of China for DNA methylation
analysis. The blood samples were collected in the morning between 9 a.m. and 11 a.m.,
whereas milk samples were collected at the routine milking time of 4 p.m. in the afternoon.
A subset of 24 samples (of the total 118 samples) was used to evaluate the mRNA expression
in the genes under study in mastitic and healthy cattle. We used routine dairy herd
improvement (DHI) data to classify the different categories of lactating animal health status
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based on the SCC, i.e., healthy cows with SCC < 200,000/mL, subclinical mastitis cows
with SCC ranging between 200,000 and 500,000/mL, and cows with clinical mastitis had
SCC > 500,000/mL. The term “clinical mastitis” is used for cows with SCC > 500,000/mL
based on the DHI data; however, these animals were apparently healthy and did not exhibit
any clinical signs and symptoms. The healthy control represents lactating cows with healthy
udders, without any history of mastitis in the last month, and SCC lower than 200,000/mL.
The cows had different parities, ranging from parity one to five, and were milked three
times per day (Table 1). The cattle were fed on a lactation diet as recommended by the
Dairy Association of China for lactating cows (NRC2001). Milk samples were collected
from all four quarters in sterile 50 mL falcon tubes and the SCC was analyzed at the official
Dairy Center of China (Beijing, China). Blood samples were collected from the caudal
vein of cows in three 9 mL tubes—one for serum isolation, the second for DNA extraction
and the third for RNA extraction (the tubes contain pre-added TRIzol)—which were then
immersed in liquid nitrogen at −196 ◦C to avoid any damage to the RNA. Serum was
isolated from blood samples by incubating the samples at room temperature for 30 min
followed by centrifugation at 3000× g for 10 min. The serum samples were then sent to
Beijing Huaying Biological Technology Research Institute to evaluate serum biochemical
assays of IL-4, IL-6, IL-10, IL-17, TNF-α, and IFN-γ using radioimmunoassay a technique,
as described by Usman et al. (2017) [22].

Table 1. Information of the parity and health status of the samples used in the study.

Clinical Mastitis Healthy Control

Number 58 60
SCC * >500,000 <200,000

Parity range 1–5 1–5
* SCC, somatic cell count.

2.2. DNA and RNA Extraction, cDNA Synthesis, and Real-Time Quantitative PCR

Genomic DNA and RNA extraction, reverse transcription of mRNA to cDNA, and real-
time quantitative PCR were performed as described in our previous paper [14]. Primers
were designed for JAK2, STAT5A, CD4, and GAPDH genes in Oligo 6.0 software, based on
the golden rules for real-time PCR (Supplementary Materials Table S1) [23].

2.3. Bisulfite Treatment of Extracted DNA and Hot Start PCR

In order to evaluate the DNA methylation in JAK2, STAT5A, STAT5B, and CD4 genes,
we first checked the presence of CpG islands in the promoter region of these genes using a
genome browser (UCSC BAU 6.0). We found a CpG island located in the 1 kb promoter
region of all genes except for STAT5B. Sequencing primers of the JAK2, STAT5A, and CD4
genes were designed with Oligo 6 software for evaluating DNA methylation in the genes
under study (Supplementary Materials Table S2). Genomic DNA (1 µg) of each sample
was treated for sodium bisulfite conversion using the EZ DNA Methylation Golden kit,
following the manufacturer’s protocol (ZYMO Research, Irvine, CA, USA). A volume of
20 µL elution buffer was used to elute the bisulfite-converted DNA (ZYMO Research). In
our study, we used a biotin-labeled universal primer (5′-GGGACACCGCTGATCGTTTA-
3′), as mentioned in our previous research [23]. A hot-start PCR was performed to amplify
the target sequence in a 25 µL volume, including 12.5 µL hot-start PCR premix (ZYMO
Research), 0.5 µM forward primer, 0.05 µM reverse primer labeled with universal tail,
0.45 µM biotin-labeled universal primer, and 20 ng bisulfite-converted DNA. The PCR
protocol was 95 ◦C for 10 min, 94 ◦C for 30 s, 50 to 60 ◦C for 45 s, and 72 ◦C for 45 s, and a
final extension at 72 ◦C for 10 min for a total of 45 cycles. The PCR products were checked
by running them on 2% agarose gel stained with ethidium bromide for visualization.
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2.4. Quantitative DNA Methylation Evaluation Using Pyrosequencing

Pyrosequencing assays were conducted to quantitatively examine the methylation lev-
els in the promoters of JAK2, STAT5A, and CD4 genes in clinically mastitic cows and healthy
controls. The DNA methylation level was tested for the nine CpG sites in the JAK2 gene
(USCS database: Bau6.0, Chr8: 39751199~39750253), seven CpG sites in the STAT5A gene
(USCS database: Bau6.0, Chr19: 43033111~43034137), and five CpG sites located in the pro-
moter region of the bovine CD4 gene (USCS database: Bau6.0, Chr5: 104015622~104015994).
Pyrosequencing techniques were used to evaluate the promoter DNA methylation levels
using a Pyro Q-CpG system (Qiagen), following the manufacturer’s instructions. The
high-quality purified DNA and the PCR products with high concentration (about 25 to
35 µL) were considered for pyrosequencing assays [24,25]. Streptavidin Sepharose High
Performance (GE Healthycare) was utilized with the PCR products. The PCR products
labeled with biotin and attached to Sepharose beads were distilled in 70% ethanol for 30 s,
denatured for 30 s in denature buffer (0.2 M NaOH), then washed for 45 s with washing
buffer with the Pyrosequencing Vacuum Prep Tool (Qiagen). Subsequently, 0.5 µM pyrose-
quencing primers of each gene was mixed with annealing buffer (Qiagen) in order to purify
the PCR product. The methylation levels at each CpG site in the promoter region were
revealed as the percentage [(mC/(mC + C)) × 100]. Here, mC indicates methylated cytosine
and C denotes unmethylated cytosine. In order to verify bisulfite conversion, non-CpG
cytosine residues were used as internal controls.

2.5. Statistical Analysis

Student’s t-tests were used for analyzing the mRNA expression (values from RT-qPCR)
and DNA methylation between mastitic cows and healthy controls. Pearson’s correlations
of DNA methylation levels with mastitis-related traits in the genes under study were
evaluated using the SAS (9.1) package. TFSEARCH software was used to predict the
transcription factor binding sites in the promoter regions of the study genes.

3. Results
3.1. CpG Sites Methylation in the Genes under Study

The methylation statuses of CpG sites in the CpG island of the 1 kb promoter region
in all genes under study were analyzed in mastitic cows and healthy controls using a
pyrosequencing assay, except for the STAT5B gene, where no CpG island was present. The
results of the pyrosequencing assay are shown below as methylation pyrogram (Figure 1).
The pyrosequencing assay revealed aberrant methylation in almost all of the CpG sites in
the genes under study (Table 2).

3.2. Predicted Binding Sites of TFs in the Promoter Regions of the Studied Genes

The results showed six active transcription factors (TFs) (c-Myb, HSF, SRY, MZF1,
ADR1, and Sp1) on the CpG sites of the JAK2 gene, two TFs (ADR1 and Ik-2) on the STAT5A
gene, and four active TFs (cap, Sp1, GATA-1, and GATA-2) were predicted on the promoter
region of the CD4 gene (Figure 2).

3.3. Relationship of DNA Methylation with mRNA Expression

To evaluate the results of DNA methylation with the transcription levels of the genes
under study, we performed real-time quantitative PCR to estimate the mRNA expression
levels. The results showed that the mRNA expression was significantly higher in clinically
mastitic cows compare to the healthy controls in the JAK2 gene, whereas in the STAT5A
and CD4 genes, the mRNA expression of mastitic cows was significantly lower than the
healthy controls. Moreover, the mRNA expression and DNA methylation were negatively
associated with JAK2 and CD4 genes, i.e., a higher methylation level was associated with a
lower mRNA expression (Figure 3). DNA methylation in the figure below was calculated
for the same cows for which mRNA expressions were analyzed.



Animals 2022, 12, 65 5 of 12

Figure 1. Results of bisulfite pyrosequencing showing aberrant methylation in clinically mastitic cow
and healthy controls in almost all of the CpG sites in the genes under study: (a) JAK2, (b) STAT5A,
(c) CD4.

Table 2. DNA methylation levels of CpG sites in 1 kb promoter regions of the JAK2, STAT5A, and
CD4 genes in clinically mastitic and healthy cows.

CpG Position Gene Clinical Mastitis
(Mean ± SE)

Healthy Control
(Mean ± SE) p Value

CpG site 1 JAK2 15.6 ± 10.1 25.9 ± 15.7 0.05
STAT5A 10.3 ± 5.7 12.9 ± 12.5 0.40

CD4 82.7 ± 7.8 75.8 ± 5.3 4 × 10−3

CpG site 2 JAK2 14.7 ± 6.4 25.5 ± 11.5 3 × 10−4

STAT5A 8.9 ± 10.2 10.1 ± 6.9 0.02
CD4 68.6 ± 3.0 66 ± 2.5 7 × 10−3

CpG site 3 JAK2 13.9 ± 5.6 20.9 ± 9.9 3 × 10−3

STAT5A 8.8 ± 1.7 12.6 ± 8.2 0.15
CD4 77.8 ± 4 69.5 ± 5 2 × 10−5

CpG site 4 JAK2 19 ± 12 36.5 ± 22 4 × 10−3

STAT5A 10.3 ± 5.6 10.7 ± 11.9 0.50
CD4 70.1 ± 6.3 62.1 ± 3.9 1 × 10−4

CpG site 5 JAK2 25.9 ± 17.7 46.6 ± 28.5 6 × 10−3

STAT5A 5.5 ± 1.2 7.2 ± 1.2 0.02
CD4 57.8 ± 3.3 54.9 ± 5.7 0.05

CpG site 6 JAK2 14.8 ± 6.7 23.9 ± 10.5 2 × 10−3

STAT5A 7.4 ± 1.5 9 ± 2.2 0.01
CpG site 7 JAK2 15.2 ± 8 21.8 ± 8.5 0.01

STAT5A 8.5 ± 5.9 15.3 ± 5.5 0.11
CpG site 8 JAK2 17.2 ± 9 24.3 ± 9.6 7 × 10−3
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Table 2. Cont.

CpG Position Gene Clinical Mastitis
(Mean ± SE)

Healthy Control
(Mean ± SE) p Value

CpG site 9 JAK2 19.6 ± 8.5 24.1 ± 11.7 0.07
All (Mean) JAK2 17.5 ± 9.6 27.3 ± 14.3 3 × 10−3

STAT5A 8.7 ± 3.8 10 ± 5.7 0.20
CD4 71.4 ± 3.2 65.7 ± 3.7 5 × 10−5

Figure 2. Predicted binding sites of transcription factors in the 1 kb promoter region of different
genes under study: (a) JAK2, (b) STAT5A, (c) CD4. Number with red arrows indicate the CpG sites in
the 1 kb promoter region of the studied genes. TF, predicted transcriptional factor.
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Figure 3. Results of CpG site methylation and mRNA expression in the clinically mastitic cows and
in healthy controls: (a) JAK2 gene, (b) STAT5A gene, (c) CD4 gene. The asterisk “*” symbol shows the
values are significant at (p < 0.05) and the “**” shows that values are significant at (p < 0.01).

3.4. Correlation among the CpG Sites in the Genes under Study

We analyzed the correlation among all of the CpG sites in CpG island of the genes
under study. The results showed that almost all of the CpG sites were highly significantly
correlated with each other in the JAK2, STAT5A, and CD4 genes (Supplementary Materials
Tables S3–S5).
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3.5. Methylation Correlation with Mastitis Traits in the Studied Genes

The results of methylation correlations (Spearman) with mastitis indicator traits in
JAK2, STAT5A, and CD4 genes are shown in Table 3. The results indicated that the methy-
lation levels of the JAK2 gene exhibited a significant association with IL-4; STAT5A was
significantly associated with IL-4 and Il-17; and the methylation level of the CD4 gene was
highly significantly associated with SCC, SCS, mastitis status, and IFN-γ (p < 0.01).

Table 3. Spearman’s correlation of DNA methylation levels with mastitis-related traits in JAK2,
STAT5A, and CD4 genes.

Traits JAK2 Methylation STAT5A Methylation CD4 Methylation

SCC −0.06 0.17 0.67 **
p value 0.55 0.33 5 × 10−4

SCS −0.05 0.15 0.71 **
p value 0.61 0.41 3 × 10−5

Status −0.13 −0.24 0.66 **
p value 0.18 0.16 2 × 10−5

IL-4 0.28 * −0.48 * −0.15
p value 0.03 0.03 0.51

IL-6 −0.04 −0.51* −0.10
p value 0.73 0.03 0.65
IL-10 −0.08 0.14 −0.24

p value 0.56 0.56 0.31
IL-17 −0.19 0.44 * 0.15

p value 0.15 0.05 0.53
TNF-α 0.07 0.08 −0.22
p value 0.63 0.73 0.36
IFN-γ 0.11 −0.01 −0.54 **

p value 0.41 0.95 0.01
The asterisk “*” symbol shows the values are significant at (p < 0.05), and the “**” shows that values are significant
at (p < 0.01). SCC, somatic cell count; SCS, somatic cell score; Status, health status; IL-4, interleukin 4; IL-6,
interleukin-6; IL-10, interleukin-10; IL-17, interleukin-17; TNF-α, tumor necrosis factor-alpha; IFN-γ, interferon-γ.

4. Discussion

Unlike genetic variants, which cause irreparable changes in the gene and can poten-
tially result in gene activation or other effects, epigenetic modifications are known to be
reversible changes which influence gene expression whilst keeping the DNA sequence
unaltered [8]. DNA methylation is the most understood mechanism amongst all of the
epigenetic mechanisms and its role is well known in mediating the gene expression [18].
DNA methylation is known to be an important epigenetic modification that potentially
suppresses gene expression; thus, it can play a vital role in inflammatory conditions [17–19].
In recent years, the locus-specific methylation levels in peripheral leukocytes have emerged
as suitable epigenetic markers in breast cancer [26] and in various other inflammatory
conditions [17–19]. It has been reported that DNA methylation patterns can serve as a
stable epigenetic marker of gene silencing memory in animals [19]. One recent study sug-
gested potential regulatory roles of DNA methylation in bovine mammary glands during
S. aureus-induced mastitis [27]. Song et al. (2016) reported aberrant DNA methylation in
1078 genes in cows with subclinical mastitis vs. healthy controls; most of these genes were
associated with inflammation and ErbB signaling pathway [28]. A study in mice showed
that DNA methylation is quite stable across generations and the epigenetic information
can be passed on for up to three generations [19,20]. Due to the stable nature of DNA
methylation across generations and its average heritability of 0.18–0.19 [21], it is suggested
to consider it as an important epigenetic marker for selection in breeding programs. Based
on the important function of DNA methylation in various inflammatory conditions in
different species, its role as a potential epigenetic marker in the 1 kb promoter region of
genes under study in the mastitis resistance of dairy cattle has been evaluated.
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We found that the methylation levels at CpG sites in the JAK2 gene in mastitic cows
was significantly low and the mRNA expression was significantly higher, and vice versa in
healthy controls (p < 0.05). This revealed that a lower methylation status of the JAK2 gene in
mastitic cows possibly induces enhanced gene expression. Perez et al. (2013) reported that
CpG sites in JAK2 were aberrantly methylated in myeloproliferaitve neoplasms compared
with healthy controls, and 87.5% of the differentially methylated CpG sites were located in
the CpG island [15]. JAK2 plays an essential role in the activation of the lmo2 leukemogenic
gene through phosphorylation of the H3Y41 histone [29]. The results of the present study
are in line with a previous study which reported that the methylation patterns of CpG sites
in the JAK2 gene were hypomethylated after 24 h in E. coli-challenged porcine mammary
epithelial cells compared with the control cells [30]. It is well documented that hyper-
methylation of the CpG island is associated with decreased mRNA expression because
hyper-methylated CpG sites can block the transcription factor (TF) motifs [31,32]. The
presence of six active TFs in the CpG island of the JAK2 gene in the present study shows
that these TFs could have a potential role in gene activation and silencing; thus, they
can play important roles in mastitis resistance. The TFs revealed in a recent study were
reported to be involved in transcription activation and gene regulation [33]. The variable
DNA methylation levels of CpG sites in the JAK2 promoter region reveal that methylation
at these sites could be a potential epigenetic marker for mastitis resistance. We suggest
that further studies should be carried on epigenetic modifications (DNA methylation) of
the JAK2 gene in dairy cattle with clinical mastitis in a larger population. In the STAT5A
promoter region, the CpG sites exhibited higher methylation in healthy controls than
mastitic cows, and the association between mRNA expression and methylation was non-
significant. Moreover, the presence of the two active transcription factors in the CpG sites
of the STAT5A gene manifest that these TFs can potentially play an important role in gene
switch-on or switch-off. Stefanowicz et al. (2012) reported variable methylation between
airway epithelial cells and the peripheral blood mononuclear cells [34]. DNA methylation
selectively inhibits gene expression in the STAT5A gene of oncogenic cells [35]. To the best
of our knowledge, this is the first epigenetic study focused on DNA methylation level
evaluations in mastitic cows and healthy controls in the STAT5A gene. The results of the
different DNA methylation levels, although non-significant, between the mastitic cows and
the healthy controls, suggest that STAT5A could be considered in future epigenetic studies
on mastitis resistance in dairy cattle.

The findings of the present study are in complete agreement with our previous study
that reported hyper-methylation and lower mRNA expression in the promoter region of the
CD4 gene in mastitic cows compared with healthy controls [16]. CpG island methylation
in the CD4 promoter region was downregulated in a line of chickens susceptible to MDV,
whereas the gene expression was upregulated in the spleen of that particular line of
chicken [36]. Many studies have reported that DNA methylation influences CD4 gene
silencing and plays an important role in inflammatory conditions, causing the development
and differentiation of CD4+ T cells [37]. Li et al. (2010) reported that the hyper-methylation
of CpG sites can suppress gene expression by inactivating the transcription factor binding
sites [31]. The presence of four active TFs at CpG sites of the CD4 gene indicates that these
TFs might be involved in the switching on/off of the CD4 gene [31]. Hence, these results
are promising, suggesting that DNA methylation at the promoter region of CD4 can be
considered as a potential epigenetic marker for mastitis resistance. We recommend carrying
out further research to verify the functional role of DNA methylation in promoter CpG
islands of the CD4 gene in mastitis resistance studies.

The results of the present study are in line with our previous study [16], although the
time, individuals’ samples, and the environmental conditions were totally different between
the two studies. These results indicate that CD4 DNA methylation at the promoter region
can be used as a potential biomarker in mastitis resistance studies. Similarly, the study of
JAK2 and STAT5A methylation status, and mRNA expression in mastitic versus healthy
controls, indicated the potential role of the CpG island at the 1 kb promoter region in these
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genes in hypo-methylation, and higher mRNA expression in mastitic cows compared to
healthy controls in the JAK2 gene. The results from TFSEARCH software revealed active
transcription factors in the CpG sites of these genes, which indicates that variation in the
TF methylation during mastitis can affect the switch-on or switch-off of the gene, thus
modifying gene action.

5. Conclusions

The aberrant DNA methylation levels in JAK2 and CD4 genes between mastitic cows
and healthy controls and their inverse relationship with gene expression suggests that these
genes could be potential candidate genes of epigenetic importance. The CpG sites at the
CpG island in the 1 kb promoter region of the studied genes showing peculiar methylation
patterns are recommended to be studied in other populations at larger scale to validate
their roles as potential biomarkers in future epigenetic studies on mastitis resistance in
dairy cattle.
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