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Identification of IL-6 and its pleiotropic
functions
IL-6 was originally identified as an antigen-nonspecific B-
cell differentiation factor in the culture supernatants of
mitogen- or antigen-stimulated peripheral blood mono-
nuclear cells that induced B cells to produce immuno-
globulins [1,2], and was named B-cell stimulatory factor 2
(BSF-2). The cDNA encoding human BSF-2 was cloned
in 1986 [3]. Simultaneously, IFN-β2 [4,5] and a 26-kDa
protein [6] in fibroblasts were independently cloned by dif-
ferent groups and found to be identical to BSF-2. Later, a
hybridoma/plasmacytoma growth factor [7–10] and a
hepatocyte-stimulating factor [11–13] were also proven to
be the same molecule as BSF-2. Although various names

have been used for this molecule because of its multiple
biological activities, it is now known as IL-6.

A pleiotropic cytokine with a wide range of biological activ-
ities (Fig. 1), IL-6 is produced by various types of lymphoid
and nonlymphoid cells, such as T cells, B cells, mono-
cytes, fibroblasts, keratinocytes, endothelial cells, mesan-
gial cells, and several tumor cells [14]. It induces growth
of T cells and differentiation of cytotoxic T cells [15–19] by
augmenting the expression of IL-2 receptor [15] and the
production of IL-2 [20]. IL-6 acts synergistically with IL-3
to support the formation of multilineage blast cell colonies
in hematopoiesis [21–25]. IL-6 also induces differentiation
of macrophages [26], megakaryocytes [27–29], and
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osteoclasts [30]. In the acute-phase reaction, this cytokine
stimulates hepatocytes to produce acute-phase proteins
such as C-reactive protein (CRP), fibrinogen, α1-antit-
rypsin, and serum amyloid A [12,13], and it simultaneously
suppresses albumin production [11]. It causes leukocyto-
sis and fever when administered in vivo [31] and also acts
as a growth factor for renal mesangial cells [32], epider-
mal keratinocytes [33,34], and various types of tumor
cells, for example, in plasmacytoma [8], multiple myeloma
[35], and renal cell carcinoma [36].

Although IL-6 has pleiotropic effects on various target
cells, some of the biological activities are also mediated by
other cytokines, such as leukemia inhibitory factor (LIF)
and oncostatin M (OSM). The pleiotropy and redundancy
of IL-6 functions can be identified by using a unique
receptor system of cytokines [14].

Identification and characterization of IL-6R as
the specific receptor of IL-6, and of gp130 as
the common signal transducer of the IL-6
superfamily
We and our colleagues identified the two components of
IL-6 receptor (IL-6R), an 80-kDa IL-6-binding protein (α
chain) and a 130-kDa signal transducer known as gp130

(β chain), in 1988 and 1990 [37–39], respectively.
Although IL-6 cannot directly bind to gp130, it can bind to
IL-6R to generate the high-affinity complex of IL-6/IL-
6R/gp130. Furthermore, the complex of IL-6 and soluble
IL-6R can generate IL-6-mediated signal transduction
[38,39]. Another feature of cytokines is the redundancy of
their functions. For example, IL-6, LIF, and OSM all induce
macrophage differentiation in the myeloid leukemia cell
line M1 [40–43] and acute-phase protein synthesis in
hepatocytes [11,12,44–46]. An important finding as
regards cytokine receptors is that one constituent of a
given cytokine receptor is shared by several other cytokine
receptors [47]. For example, gp130 is in fact shared by
the receptors for such cytokines of the IL-6 superfamily as
ciliary neurotrophic factor (CNTF), LIF, OSM, IL-11, and
cardiotrophin-1 [14,48,49]. Thus, the molecular mecha-
nisms of redundancy in functions of cytokines of the IL-6
superfamily can be explained at least in part by the sharing
of gp130 among their receptors.

Investigations of the IL-6R system have provided evidence
that the combination of IL-6 and soluble IL-6R can act on
cells that express gp130 but not IL-6R [48]. A complex
consisting of a soluble cytokine receptor and its corre-
sponding cytokine acquires different target specificity from

Figure 1

IL-6-producing cells and biological activities of IL-6. IL-6 is produced by lymphoid and nonlymphoid cells, such as T cells, B cells, monocytes,
fibroblasts, keratinocytes, endothelial cells, mesangial cells, and several kinds of tumor cell (top of figure). IL-6 also has a wide range of biological
activities on various target cells (bottom of figure).
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the original cytokine and should therefore express different
functions from those of the original cytokine. In fact, we
found that doubly transgenic mice expressing human IL-6
and IL-6R showed myocardial hypertrophy [50], indicating
that the combination of IL-6 and soluble IL-6R acts on
heart muscle cells that express gp130, an action that IL-6
cannot exert by itself. The action leads to the induction of
cardiac hypertrophy, so that the effect is similar to that of
cardiotrophin-1. This combination of cytokine and its
soluble receptor may contribute to the generation of the
functional diversity of cytokines in a wide range of other
receptor systems and may also play a pathological role in
various diseases in which an increase in the serum-soluble
form of various cytokine receptors has been reported.

Clarification of multiple signal cascades in
IL-6 signal
As the cytoplasmic domain of most cytokine receptors,
including gp130, does not have an intrinsic catalytic
domain, one of the most controversial issues before 1993
was the identification of catalytic molecules that associate
with cytokine receptors. This issue was resolved by the dis-
covery of several Janus family tyrosine kinases (JAK1,
JAK2, JAK3, Tyk-2), which are involved in the transduction
of cytokine and hormone signals [51–53]. Furthermore, the
signal transducer and activator of transcription (STAT) was
found to play a central role in a variety of cytokine signal
cascades. Our group and others found that JAK1, JAK2,
and Tky-2 are activated and are tyrosine-phosphorylated in
response to IL-6, CNTF, LIF, and OSM [14], and also iden-
tified and characterized STAT3 [54]. IL-6 activates STAT1
and STAT5 in addition to STAT3. In the absence of JAK1,
the activation of transcriptional factor STATs following
stimulation by IL-6 is not effective as long as both JAK2
and Tky-2 are activated. This finding suggests that there is
a hierarchy among gp130-associated JAKs [55].

Several research groups, including ours, have identified
two types of IL-6 response element (IL-6RE) in the genes
encoding acute-phase proteins. The presence of type I
IL-6RE, which is a binding site for NF-IL-6 (nuclear factor
for IL-6 expression), IL-6DBP (IL-6 vitamin-D-binding
protein), and C/EBPβ [56–59], has been confirmed in the
genes for CRP, hemopexin A, and haptoglobin. The
binding activity of NF-IL-6 is probably induced by IL-6
through the increased expression of the NF-IL-6 gene
rather than through its post-translational modification.
Type II IL-6RE is contained in the fibrinogen, α2-macroglo-
bin, α1-acid glycoprotein, and haptoglobin genes. IL-6 trig-
gers the rapid activation of a nuclear factor, known as the
acute-phase response factor, which binds to type II IL-
6RE [60]. Purification and molecular cloning of this factor
revealed that it is identical to STAT3 [54,61].

We clarified that human gp130 has 277 amino acid
residues in its cytoplasmic domain, which contains two

motifs, Box1 and Box2, conserved among the cytokine
receptor family (Fig. 2) [39,62,63]. The membrane-proxi-
mal region containing Box1 and Box2 was found to be
sufficient for the activation of JAK through gp130 [64].
Furthermore, human gp130 has six tyrosine residues in its
cytoplasmic domain. Finally, the tyrosine phosphorylation
of Src homology protein 2 tyrosine phosphatase-2 (SHP-
2), a phosphotyrosine phosphatase, and that of STAT3
depend on the second tyrosine residue (Y2) from the
membrane, and on any one of the four tyrosine residues
(Y3, Y4, Y5, Y6) in the carboxy terminus that have a gluta-
mine residue at the third position behind tyrosine (Y-X-X-
Q) (see Fig. 2) [65,66].

It is known that IL-6 induces growth arrest and macrophage
differentiation in the murine myeloid leukemic cell line M1.
The essential role of STAT3 in the IL-6-induced
macrophage differentiation of M1 cells was demonstrated
by using dominant negative forms of STAT3 [67], which
inhibit both IL-6-induced growth arrest and macrophage dif-
ferentiation in M1 transformants. Blocking STAT3 activation
inhibits IL-6-induced repression of c-Myb and c-Myc, but
not EGR-1 induction [68], while IL-6 enhances the growth
of M1 cells when STAT3 is suppressed. Thus, IL-6 simulta-
neously generates growth-enhancing signals as well as
growth-arrest and differentiation-inducing signals, but the
former are apparent only when STAT3 activation is sup-
pressed. As for the growth signals, a 65-amino-acid region
proximal to the transmembrane domain was found to be suf-
ficient for generating a growth response by using gp130
transfectants of an IL-3-dependent proB-cell line BAF/BO3
[14,63]. However, the membrane-proximal region of 68
amino acids is not sufficient for the induction of tritium
thymidine (3H-Tdr) uptake when cells are starved of IL-3.
For cell growth, the membrane-proximal region containing
133 amino acid residues is both required and sufficient
[69]. Furthermore, at least two distinct signals are required
for gp130-induced cell growth: a cell cycle progression
signal dependent on the second tyrosine residue, Y2, and
possibly mediated by SHP-2, and an antiapoptotic signal
dependent on the third tyrosine residue, Y3, and mediated
by STAT3 through induction of BCL-2. However, our recent
study using mice with STAT3 deficiency in a T-cell-specific
manner has revealed that STAT3 activation is involved in IL-
6-dependent T cell proliferation through prevention of apop-
tosis without the need for BCL-2 induction [70]. Thus,
STAT3 plays pivotal roles in gp130-mediated signal trans-
duction regulating cell growth, differentiation, and survival.
In addition to the JAK–STAT signal transduction pathway, it
is known that the Ras mitogen-activated protein (MAP)
kinase pathway is also activated through SHP-2 [69] or
Shc [71]. Furthermore, nonreceptor tyrosine kinases, such
as Btk, Tec, Fes, and Hck [72,73] are activated through
the IL-6 receptor, as well as through a variety of other
cytokine receptors [74], although the biological signifi-
cance of these signal transduction pathways remains to be
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clarified. Several distinct signal transduction pathways are
generated through different regions of the cytoplasmic
domain of gp130. The expression pattern of these signaling
molecules determines which set of signaling pathways is
activated in a given cell. Furthermore, these signaling path-
ways may interact with each other and contribute to a
variety of biological activities. In fact, a recent study reported
that knock-in mutation mice lacking SHP-2 signal showed
sustained gp130-induced STAT3 activation; this finding
indicates a negative regulatory role of SHP-2 for STAT3
activation [75]. These knock-in mice also displayed
splenomegaly and lymphadenopathy and an acute-phase
reaction. In contrast, all known mice deficient in the STAT3
binding site, such as the gp130-deficient mouse, died peri-
natally [75]. However, it has also been reported that mice
deficient in STAT3 signal displayed a severe joint disease in
association with mitogenic hyper-responsiveness of the syn-
ovial cells to the IL-6-family cytokines. This hyper-respon-
siveness was the result of sustained gp130-mediated
SHP-2 activation due to a lack of the SHP-2 inhibitor
induced by STAT3 [76].

Identification of new inhibitors of IL-6 signaling
Cytokine signaling, including that of IL-6, is negatively reg-
ulated with respect to both magnitude and duration.
Recently, it has been found that at least two new families

of inhibitors contribute to the negative regulation of
cytokine signaling: the suppressor of cytokine signaling
(SOCS) and the protein inhibitors of activated STATs
(PIAS) (Fig. 3). In 1997, two other groups and ours identi-
fied SOCS-1, also known as SSI-1 (STAT-induced STAT
inhibitor 1) or JAB-1 (JAK-binding protein 1), as a negative
regulatory molecule of IL-6 signaling on the basis of its
binding to JAK [77–79]. Subsequently, database
searches have shown that the SOCS family now includes
eight members (CIS and SOCS1–SOCS7), all of which
are characterized by a central SH2 domain flanked by an
N-terminal region containing a conserved motif known as
the SOCS box [77,80–82]. mRNA of SOCS-1, SOCS-2,
and SOCS-3 is induced by cytokines such as IL-6, IFN-γ,
IL-4, and granulocyte-colony-stimulating factor and several
other members, and they inhibit cytokine-activated
JAK–STAT signal pathways [83–85]. However, the factors
that induce mRNA of the other SOCS families, such as
SOCS-4–7, have not been clarified and their functions
have not been thoroughly characterized.

SOCS-1 and SOCS-3 are especially well known as
inhibitors of cytokine signaling [86], acting through differ-
ent mechanisms. SOCS-1 directly interacts with JAKs,
and thus inhibits their catalytic activity. SOCS-3 also
inhibits JAK activity (but only partially in comparison with
SOCS-1) although the augmentation of its effect in the
presence of receptors suggests that SOCS-3 inhibits
cytokine signaling by binding to the receptor complex. In
the IL-6 signal cascade, the SHP-2 interaction site of
gp130 has also been shown to be a SOCS-3 contact site,
so that SOCS-3 may compete for the SHP-2–gp130
interaction site [86,87]. Gene-targeting mice of the SOCS
family were used to show that SOCS-2 and SOCS-3 are
critical molecules for, respectively, GH/IGF-1 and EPO
signaling in vivo [88,89]. In particular, mice deficient in
SOCS-2 exhibit giantism, reduced production of major
urinary proteins, increased local production of IGF-1, and
accumulation of collagen in the dermis, while SOCS-3-
deficient mice die at 12–16 days of age because of ery-
throcytosis by deregulation of fetal liver hematopoiesis.
However, a recent study of SOCS-3-deficient mice
showed that SOCS-3 was required for placental develop-
ment but not for normal hematopoiesis in the mouse
embryo [90].

Two groups of researchers, including ours, initially
reported that SOCS-1-deficient mice are born healthy but
with growth disclose various kinds of abnormalities,
including stunted growth, fulminant hepatitis with serious
fatty degradation, and mononuclear cell infiltration of
several organs, and die within 3 weeks after birth [91,92].
Subsequently, it was reported that SOCS-1 is a key mole-
cule for IFN-γ actions in vivo as seen in SOCS-1-deficient
mice that also lack the IFN-γ gene (SOCS-1/IFN-γ doubly
deficient mice) [93,94]. However, it was also found that
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Figure 2

Schematic structure of gp130. Binding of IL-6 to IL-6R induces
homodimerization of gp130, activating JAK associating with gp130 at
Box1. This is followed by the tyrosine phosphorylation of the distal part
of gp130 and recruitment of STAT3. STAT3 is then tyrosine-
phosphorylated by JAK. SHP-2 on the second tyrosine (Y2) residue of
gp130 activates the MAP kinase pathway. JAK, Janus family tyrosine
kinase; SHP-2, Src homology protein 2 tyrosine phosphatase-2; 
STAT, signal transducer and activator of transcription; Y(2,3, etc.),
(second, third, etc.) tyrosine residue (from the membrane).
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SOCS-1 in vitro inhibits activation of STAT6 by IL-4 stimu-
lation [92], and that SOCS-1 in vivo inhibits TNF-α and
insulin signaling [95,96]. In a recent study of SOCS-
1/STAT1 and SOCS-1/STAT6 doubly deficient mice, we
found that the physiological role of SOCS-1 is essential
for inhibition of crosstalk in cytokine signaling, particularly
for IFN-γ-induced inhibition of STAT6 [97]. SOCS-1-defi-
cient mice feature an intact IL-6 signaling pathway, sug-
gesting that SOCS-3 may act as a crucial inhibitor of IL-6
signaling in vivo.

Unlike the SOCS family, PIAS proteins constitute a
family of constitutively expressed negative regulators of
STATs. Five members of this family have been identified
with the yeast two-hybrid method and by a search of the
expressed sequence tag database: PIAS-1, PIAS-3,
PIAS-Xα, PIAS-Xβ, and PIAS-Y [98,99]. They all share
homology and contain several highly conserved domains,
including a putative zinc-binding motif and a highly acidic
region. PIAS-1 and PIAS-3 have been identified as spe-
cific inhibitors of STAT signal pathways [98,99]. Overex-
pression studies have shown that PIAS-1 associates
only with activated STAT1 dimers and inhibits their DNA-
binding activity, but that no monomeric forms of STAT1
are present [99]. Similarly, PIAS-3 associates specifi-
cally with activated STAT3 but not with STAT1, resulting
in the blocking of all STAT3-mediated gene transcrip-
tions, and is especially well known as an inhibitor of IL-6
signaling in M1 cell lines [98]. The constitutive expres-
sion of PIAS proteins implies that their physiological role
differs from that of SOCS proteins, which are induced by

cytokine stimulation. So far, however, the differences in
the physiological roles of these two families of proteins
are not well known.

Application of anti-IL-6R antibody to clinical
medicine
Rheumatoid arthritis (RA) is a systemic inflammatory
disease characterized by destructive changes in bone and
cartilage of affected joints as well as the emergence of
rheumatoid factors. Although the exact causes of RA
remain unknown, immunological dysregulation by inflam-
matory cytokines has been shown to be involved in its
development [100]. IL-6 is one of these cytokines and
uncontrolled IL-6 overproduction appears to be responsi-
ble for the clinical symptoms and abnormal laboratory find-
ings in RA [101]. Because of the B-cell differentiation
factor activity of IL-6, overproduction of IL-6 is responsible
for the increase in serum γ-globulin and the emergence of
rheumatoid factors. IL-6 as a hepatocyte-stimulating factor
causes an increase in CRP, serum amyloid A, and erythro-
cyte sedimentation rate and a decrease in serum albumin
[11–13]. On the other hand, IL-6 as a megakaryocyte dif-
ferentiation factor causes thrombocytosis [22,27,28].
Since IL-6 in the presence of soluble IL-6R activates
osteoclasts to induce bone absorption [30], IL-6 may be
involved in the osteoporosis [102] and destruction of
bone and cartilage associated with RA. In fact, a large
amount of IL-6 has been observed in both sera and syn-
ovial fluids from the affected joints of patients with RA
[103–106]. Blockade of the IL-6 signal may thus consti-
tute a new therapeutic strategy for RA.

Available online http://arthritis-research.com/content/4/S3/S233

Figure 3

Molecular mechanism of inhibition by new cytokine inhibitors. (Left) PIAS inhibits DNA-binding activity of STATs through association with activated
them. (Center) SOCS-1 inhibits catalytic activity of JAKs by direct interaction with them. (Right) SOCS-3 inhibits catalytic activity of JAKs by
binding to receptor complex. JAK, Janus family tyrosine kinases; P, phosphorylation; PIAS, protein inhibitors of activated STATs; 
SOCS, suppressor of cytokine signaling; STAT, signal transducer and activator of transcription; Y, tyrosine residue.
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Wendling et al. reported that the administration of mouse
antihuman IL-6 monoclonal antibodies to patients with RA
resulted in amelioration of RA symptoms and improvement
of laboratory findings [107]. However, such therapeutic
effects were transient, because murine antibodies were
found to be highly immunogenic in humans, especially when
they were administered repeatedly. To be effective as thera-
peutic agents administered to patients in repeated doses,
mouse antibodies must therefore be engineered to look like
human antibodies. A humanized anti-IL-6R antibody was
constructed by grafting the complementarity-determining
regions (CDRs) from mouse PM-1, a specific monoclonal
antibody against human IL-6R, into human IgG to re-create
a properly functioning antigen-binding site in a reshaped
human antibody [108]. In vitro, humanized anti-IL-6R anti-
body is equivalent to both mouse and chimeric PM-1 in
terms of antigen binding and growth inhibition of IL-6-
dependent myeloma cells [108,109]. Furthermore, it looks
very much like a human antibody and can therefore be
expected to be a poor immunogen in human patients [110].

The in vivo effect of humanized anti-IL-6R antibody on the
development of collagen-induced arthritis was examined in
cynomolgus monkeys because it cross-reacts with the
monkey IL-6R [111]. Intravenous administration of human-
ized anti-IL-6R antibody (10 mg/kg once a week) signifi-
cantly inhibited the onset of joint inflammation and the
elevation of serum CRP and fibrinogen levels and erythro-
cyte sedimentation rate that were induced by immuniza-
tion with bovine type II collagen with a complete adjuvant.

On the basis of the above findings, we administered
humanized anti-IL-6R antibody to RA patients whose
active disease was resistant to conventional therapy using
methotrexate, various disease-modifying antirheumatic
drugs, and corticosteroids, with the permission of the
Ethical Committee of Osaka University Medical School.
Low-grade fever and fatigue disappeared and CRP and
fibrinogen levels were normalized within 2 weeks after the
start of humanized anti-IL-6R antibody treatment (50 mg
twice a week) (Fig. 4). This was followed by reduction of
morning stiffness, improvement of the swollen-joint score
and the pain and tenderness score, and reduction of
anemia, thrombocytosis, and hypoalbuminemia. A score of
ACR20 on the American College of Rheumatology scale
was achieved in 7 of 8 patients after 8 weeks of treatment
and ACR50 in 4 of 8 patients after 8 weeks. The treat-
ment was well tolerated and no major side effects were
observed. These data indicate that humanized anti-IL-6R
antibody is useful for the treatment of RA. Phase I clinical
trials in the United Kingdom and a phase I/II study in Japan
also proved the safety and the efficacy of humanized anti-
IL-6R antibody [112,113]. Double-blind, randomized,
placebo-controlled phase II studies for the use of the anti-
body to treat RA are now in the progress both in Europe
and in Japan. In addition to RA, various other IL-6-related

diseases such as Castleman’s disease, multiple myeloma,
mesangial proliferative glomerulonephritis, psoriasis, and
Kaposi’s sarcoma are possible targets of humanized anti-
IL-6R antibody.

Conclusion
IL-6 participates in immune response, hematopoiesis, and
acute-phase reactions. On the other hand, deregulation of
IL-6 production has been implicated in the pathogenesis
of a variety of diseases, including plasmacytoma/myeloma
and several chronic inflammatory proliferative diseases.
Future studies on the regulation of IL-6 expression and
clarification of the molecular mechanisms of IL-6 functions,
as well as of inhibitors of IL-6 signal, should provide infor-
mation critical to a better understanding of the molecular
mechanisms of these diseases and the development of
new therapeutic methods such as antibody therapy.
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Figure 4

Representative clinical course of an RA patient treated with humanized
anti-IL-6R antibody. A 51-year-old woman with RA was given
humanized anti-IL-6R antibody intravenously (50 mg twice a week).
Although she had active disease refractory to conventional treatment
with drugs including methotrexate and prednisolone, treatment with
humanized anti-IL-6R remarkably improved her condition. 
CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; 
RF, rheumatoid factor.
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Glossary of terms
BSF = B-cell stimulatory factor; CNTF = ciliary neuro-
trophic factor; IL-6RE = IL-6 response element; LIF =
leukemia inhibitory factor; NF-IL-6 = nuclear factor for IL-6
expression; OSM = oncostatin M; PIAS = protein
inhibitors of activated STATs; SHP-2 = SH2-containing
protein tyrosine phosphatase-2; SOCS = suppressor of
cytokine signaling; Y(2,3, etc.) = (second, third, etc.) tyro-
sine residue (from the membrane).
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