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Abstract: In this work, we investigate two recently synthesized naphthodithiophene diimide (NDTI)
derivatives featuring promising n-type charge transport properties. We analyze the charge transport
pathways and model charge mobility with the non-adiabatic hopping mechanism using the Marcus-
Levich-Jortner rate constant formulation, highlighting the role of fluoroalkylated substitution in α
(α-NDTI) and at the imide nitrogen (N-NDTI) position. In contrast with the experimental results,
similar charge mobilities are computed for the two derivatives. However, while α-NDTI displays
remarkably anisotropic mobilities with an almost one-dimensional directionality, N-NDTI sustains a
more isotropic charge percolation pattern. We propose that the strong anisotropic charge transport
character of α-NDTI is responsible for the modest measured charge mobility. In addition, when
the role of thermally induced transfer integral fluctuations is investigated, the computed electron–
phonon couplings for intermolecular sliding modes indicate that dynamic disorder effects are also
more detrimental for the charge transport of α-NDTI than N-NDTI. The lower observed mobility
of α-NDTI is therefore rationalized in terms of a prominent anisotropic character of the charge
percolation pathways, with the additional contribution of dynamic disorder effects.

Keywords: n-type; organic semiconductors; charge transport; organic crystals; charge mobility
anisotropy; charge transfer; quantum chemistry; DFT; dynamic disorder; electron-phonon coupling

1. Introduction

Small molecule and polymeric n-type organic semiconductors are of great significance
for the development of p–n diodes, organic field effect transistors (OFETs), thermoelec-
tric organic devices, complementary circuits, and other plastic electronic devices [1–6].
Among the promising electron-deficient π-building blocks, dithienocoronenediimide [7],
isoindigo derivatives [8], perylene diimide derivatives (PDI) [9–13] and diketopyrrolopy-
rrole [14,15] have been reported. Naphthalene diimide (NDI) was reported in 2000 [16]
as a high-performance n-type semiconductor, and since then, several NDI derivatives
have been designed to develop materials for dyes, pigments, sensors, and optoelectronic
applications [13,17–22]. While core-linked NDI derivatives enabled the first high-mobility
electron transport in polymer-based thin film transistors [19,23], a recently emerging class
of materials consists of core-extended NDIs that afford rigid π frameworks with distinct
molecular and electronic structures compared with the smaller NDIs [24]. Specifically,
the planar and rigid structure over the whole π framework in core-extended acene and
heteroacene diimides such as naphthodithiophene diimides (NDTI) can be beneficial for
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carrier transport, owing to smaller reorganization energies and enhanced intermolecular
π-π overlap in the solid state [18,25,26]. Furthermore, substitution at the thiophene α
positions in the NDTI core enabled a variety of NDTI derivatives [27–30], some of which
displayed superior n-channel conduction in thin-film transistors of up to 0.73 cm2 V−1 s−1

by introducing chlorine groups into α positions [27,28].
To the best of our knowledge, there have been limited computational investigations

concerning the charge transport properties of NDTI derivatives. In a recent study [31], the
effects of electron-withdrawing groups and electron-donating substituents in the α position
of NDTI derivatives were computationally investigated to establish design rules for novel
semiconductors with both high charge transport properties and environmental stability. In
some cases, however, crystal structures were not available, and the study was carried out
under the assumption of a one-dimensional (1D) character of the charge transport.

The availability of organic single crystals, because of their general purity, low de-
gree of defects and long-range order, is ideal for analyzing the intrinsic properties of the
semiconductor as a function of the molecular arrangement. In this study, two recently
synthesized fluoroalkyl-modified NDTI were considered (see Figure 1). One derivative
featured fluoroalkyl substituents in the α position of the terminal thiophenes, while the
second featured fluoroalkyl substituents on the N position and are hereafter labeled as
α-NDTI (Figure 1a) and N-NDTI (Figure 1b), respectively. The introduction of fluorinated
substituents is well known to improve the device stability under ambient conditions, but
it also impacts the molecular packing arrangements, thereby leading to different device
performances. Indeed, single-crystal OFETs of both fluoroalkyl-modified NDTI showed
good electron transport properties, with α-NDTI displaying an average electron mobility
of 0.037 cm2 V−1 s−1 and a highest value of 0.065 cm2 V−1 s−1, while N-NDTI scored an
average value of 1.27 cm2 V−1 s−1 (highest value = 1.59 cm2 V−1 s−1) [32].
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Figure 1. Structural formula of the two fluoroalkylated NDTI derivatives considered in this work. (a)
α-NDTI. (b) N-NDTI.

To model the charge transport properties of the two NDTI derivatives, we employed
the non-adiabatic hopping approach recently adopted by us to rationalize the trends in
n-type charge transport of various fluorinated and chlorinated PDI derivatives [33,34], as
well as the anisotropy of charge transport in fluoroalkylated NDIs [35]. The integrated
approach encompasses the quantum chemical (QC) evaluation of the electronic couplings
and reorganization energies, followed by the calculation of charge transfer rate constants
with different formulations [36]. The latter are then injected in kinetic Monte Carlo (KMC)
simulations to model the charge percolations and mobilities. Dynamic disorder effects
have been shown to influence the charge mobilities of organic semiconductors by inducing
large fluctuations in the transfer integrals driven by slow intermolecular modes [37–42].
In previous investigations, we already considered thermally induced dynamical disorder
effects [33–35,43], showing that for core unsubstituted PDI derivatives, the remarkable
modulation of selected electronic couplings contributes to rationalizing the magnitude
and directionality of the measured electron mobilities. Here, we compare the intra- and
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intermolecular parameters governing charge transport for the two NDTI derivatives,
highlighting the impact of charge mobility anisotropy and eventually the role of dynamical
disorder effects in affecting the charge mobility.

2. Results and Discussion

The crystal structures of α- and N-NDTI derivatives contain a certain degree of
crystallographic disorder. More precisely, there are two possible orientations of thiophene
rings inside the crystal, leaving the rest of the molecule identical in the two cases. For both
NDTI derivatives, the dominant orientation was labeled ANTI-1, and the other was labeled
ANTI-2 (Figure S1). Both were considered in the calculation of electronic couplings and
charge mobilities. To evaluate the effect of different thiophene orientations in the same
solid phase, a crystal containing a mixture of the two orientations was also considered
for N-NDTI (hereafter labeled mix). After single-molecule geometry optimization, the
two N-NDTI structures corresponding to different thiophene orientations converged, as
expected, to the same equilibrium geometry. In contrast, two slightly different optimized
structures of α-NDTI ANTI-1 and α-NDTI ANTI-2 were obtained because of different
conformers of the fluoroalkyl chains.

At their respective equilibrium structures, the lowest unoccupied molecular orbital
(LUMO) energies of the two compounds (Table S1 and Figures S2 and S3) were low
(−3.9 eV for α-NDTI and −3.8 eV for N-NDTI), in line with previous calculations on
NDTI derivatives [24,27,31] and with the requirements necessary to prevent the electron
polaron from reducing ambient species [44]. In this regard, α-NDTI should be slightly
favored over N-NDTI, since it displays a slightly lower LUMO energy.

2.1. Electronic Couplings and Charge Transfer Pathways

The crystal of the α-NDTI display slipped one-dimensional (1D) stacking of its
molecules (Figure 2 and Figures S4 and S5). The identification of all possible near neighbors
of a given molecular site and the correspondingly computed charge transfer integrals (see
Section 3) showed that only pathway P1, directed along the a axis (Figure 2), carried a
significant electronic coupling, whereas all the others displayed negligible values (see
Table 1 and Table S3). This is because P1 corresponds to the only molecular dimer in
which intermolecular distance and π stacking allow for an efficient overlap between LUMO
orbitals. Indeed, for α-NDTI, the combined effect of N and α substituents determined the
solid phase packing with a markedly 1D columnar arrangement of the molecules. The
electronic coupling associated with path P1, evaluated for ANTI-1 and ANTI-2, displayed
slightly varying values in the range of 36–40 meV (see Table 1).
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Table 1. Charge hopping paths (Pn) relevant for charge transport and the intermolecular distances for each dimer, inter-
planar distances, and electronic couplings Vij (B3LYP/6-31G*) between the LUMO orbitals and Marcus-Levich-Jortner (MLJ)
rate constants keT computed for three crystalline structures ANTI-1, ANTI-2, and mix of α-NDTI and N-NDTI.

Dimer or Charge
Transfer Path

Molecules
Forming the

Dimer

Intermolecular
Distance (Å)

Interplanar
Distance (Å)

Vij
(LUMO)
(meV)

keT
a

(s−1)

α-NDTI

P1
ANTI-1 6.654 3.646 36 5.62 × 1012

ANTI-2 6.654 3.646 40 6.88 × 1012

mix 6.654 3.646 38

N-NDTI

P1
ANTI-1 4.197 3.623 35 6.87 × 1012

ANTI-2 4.197 3.623 50 1.36 × 1013

mix 4.193–4.202 3.700–3.744 46–38 1.15 × 1013–7.91 × 1012

P2
ANTI-1 11.002 0.144 10 5.26 × 1011

ANTI-2 11.002 0.144 8 3.05 × 1011

mix 11.002–11.002 0.244–0.278 9–8 4.91 × 1011–3.89 × 1011

P3
ANTI-1 11.238 3.467 2 2.59 × 1010

ANTI-2 11.238 3.467 1 5.12 × 109

P4
ANTI-1 12.290 3.033 0 4.40 × 108

ANTI-2 12.290 3.033 0 1.56 × 108

a From Equation (4), without an applied electric field.

The N-NDTI crystal was characterized by layers of molecules oriented with their con-
jugated plane almost perpendicular (edge-on) to the b,c plane (see Figure 3 and Figure S6).
The molecules in each layer alternate two different site types that determine a twisted cofa-
cial stacking. Notably, the packing between columns of π-stacked molecules, determined
by the reduced number of substituents in this case, afforded smaller distances compared
with α-NDTI. Because of the large distance between layers along the a direction, the most
relevant paths for charge transport involved molecules in the same crystal layer (parallel to
the b,c plane; see Figure 3), while negligible couplings were computed along the a direction.
Electronic coupling calculations revealed three main paths that were expected to contribute
significantly to charge transport (Table 1 and Figure 3). The P1 path defined a columnar
percolation channel along the c axis between pairs of twisted molecules, with a coupling
of 35 meV for N-NDTI ANTI-1 and 50 meV for ANTI-2. The relative twisting of the two
molecules forming each P1 dimer led to efficient π stacking with a small intermolecular and
interplanar distance, resulting in efficient LUMO overlapping and significant electronic
coupling.

Path P2 involved molecules belonging to the same site type, (therefore having the
same spatial orientation) with a coupling of 10 meV (8 meV for ANTI-2). Because it was
directed along the b axis, it would contribute to making charge transport more isotropic.
Finally, path P3 defined a zig-zag percolation across two different columns of π-stacked
molecules with a minor coupling of 2 meV (1 meV), and it would contribute to seldom
jumps to adjacent columns. The larger P1 coupling for ANTI-2 could be rationalized by a
more efficient overlap between LUMO orbitals in the thiophene region (see Figure S7). In
contrast, the overlap efficiency was slightly reduced for P2 and P3 in ANTI-2.

For the mix crystal of N-NDTI (see Figure S8), the P1 and P2 dimers were composed
of one molecule featuring ANTI-1 and one featuring ANTI-2 thiophene orientations. In this
case, because of different centers of mass, two different couplings of 46 and 38 meV were
obtained for the two components of the P1 path (see Table 1), while the couplings were 9
and 8 meV for P2. In both cases, these were values within the range of those computed for
the dimers formed by two identical molecules (ANTI-1 or ANTI-2).



Molecules 2021, 26, 4119 5 of 17

Molecules 2021, 26, x FOR PEER REVIEW 4 of 18 
 

 

 

Figure 2. The most relevant charge transport path (P1, from the central dark gray to the lateral green 

molecules), shown within a portion of the α-NDTI crystal. The view is along the c axis. 

The N‐NDTI crystal was characterized by layers of molecules oriented with their 

conjugated plane almost perpendicular (edge-on) to the b,c plane (see Figures 3 and S6). 

The molecules in each layer alternate two different site types that determine a twisted 

cofacial stacking. Notably, the packing between columns of π-stacked molecules, deter-

mined by the reduced number of substituents in this case, afforded smaller distances com-

pared with α-NDTI. Because of the large distance between layers along the a direction, 

the most relevant paths for charge transport involved molecules in the same crystal layer 

(parallel to the b,c plane; see Figure 3), while negligible couplings were computed along 

the a direction. Electronic coupling calculations revealed three main paths that were ex-

pected to contribute significantly to charge transport (Table 1 and Figure 3). The P1 path 

defined a columnar percolation channel along the c axis between pairs of twisted mole-
cules, with a coupling of 35 meV for N‐NDTI ANTI‐1 and 50 meV for ANTI-2. The relative 

twisting of the two molecules forming each P1 dimer led to efficient π stacking with a 

small intermolecular and interplanar distance, resulting in efficient LUMO overlapping 

and significant electronic coupling. 

 

Figure 3. The most relevant charge transport paths (from the central dark gray molecule), namely 

P1 (green), P2 (yellow), P3 (blue), and P4 (light gray), shown within a portion of the N-NDTI crys-

tal. The view is along the a axis. 

Path P2 involved molecules belonging to the same site type, (therefore having the 

same spatial orientation) with a coupling of 10 meV (8 meV for ANTI-2). Because it was 

directed along the b axis, it would contribute to making charge transport more isotropic. 

Finally, path P3 defined a zig-zag percolation across two different columns of π-stacked 

Figure 3. The most relevant charge transport paths (from the central dark gray molecule), namely P1
(green), P2 (yellow), P3 (blue), and P4 (light gray), shown within a portion of the N-NDTI crystal.
The view is along the a axis.

To summarize, fluoroalkyl substitution strongly impacted the solid state organization
of the two NDTI derivatives and resulted in charge transfer integrals favoring a 1D charge
percolation in α-NDTI and a more isotropic charge transfer network in N-NDTI. Charge
transfer rate constants (Equation (4)) are, however, dependent not only on electronic
couplings but also on reorganization energies, as is discussed in the next section.

2.2. Reorganization Energies

The intramolecular reorganization energies computed using the four-point adiabatic
potential (AP) method (see Tables S5 and S6) and from the computed Huang–Rhys (HR)
factors Sm (Table S7) agreed very closely (0.319 eV for α-NDTI and 0.305 eV for N-NDTI),
which implied that the harmonic approximation was acceptable, at least for the higher
vibrational frequencies, since their contributions to λi were dominant. Indeed, as shown
in Figure 4, the individual components λm

i (from HR factor Sm; see also Equation (S6))
to λi revealed, as is generally found for organic semiconductors, a larger contribution
from vibrations above 1200 cm−1, most of which were associated with carbon-carbon
bond stretching of the conjugated molecular core, where the largest geometry change
occurred (see Figures S9 and S10). Figure 4 also shows that the active frequencies (larger
λm

i values) were very similar for the neutral and charged species. Compared with previous
investigations on unsubstituted NDTI (λi = 0.263 eV), [31] our computed λi values were
slightly larger on account of the role of the flexible substituents. Notably, inspection of
the computed HR factor Sm (see Figures S11 and S12) showed that a large number of
low-frequency intramolecular vibrations, mostly associated with the flexible substituents,
displayed unexpectedly large Sm values that were very likely to be overestimated as a
result of the anharmonic character of low-frequency vibrations. More specifically, for
α-NDTI and N-NDTI, the highest HR factor was computed for frequencies at 96 cm−1

and 25 cm−1, respectively, being associated with accordion-like skeletal deformations [45]
(see Figure S13).

Because vibrational frequencies below 200 cm−1 can be considered classical degrees
of freedom at room temperature, the effective parameters collected in Table 2 and used
to evaluate the charge transfer rate constants (see the Marcus-Levich-Jortner (MLJ) for-
mulation in Equation (4)), were determined by retaining only vibrations above 200 cm−1.
For comparison, the effective parameters computed using the entire set of vibrational
contributions are collected in Table S7.
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Table 2. Intramolecular reorganization energy λi, effective frequencyωeff, and effective HR factor
Seff, with contributions from intramolecular classical vibrations λclassic and from the outer sphere λo

to λo+classic in Equation (4) for α-NDTI and N-NDTI.

λi
a

(eV)
ωeff

a

(cm−1) Seff
a λclassic

b

(eV)
λo

c

(eV)

α-NDTI ANTI-1 0.286 920 2.51 0.032 0.01
α-NDTI ANTI-2 0.286 925 2.49 0.033 0.01

N-NDTI d 0.294 849 2.79 0.011 0.01
a Computed by excluding vibrations with frequencies lower than 200 cm−1. b Contribution due to intramolecular
vibrations lower than 200 cm−1. c Value chosen according to [46,47]. d Only one value was reported in this case,
since both ANTI-1 and ANTI-2 structures, featuring different thiophene orientations in the crystal, converged to
the same single-molecule equilibrium geometry.

Finally, we note that the magnitudes of the computed reorganization energies, com-
pared with the largest computed transfer integrals (never exceeding 50 meV), implied a
substantial reliability of the non-adiabatic hopping mechanism (λi >> Vij) [39,48].

2.3. Charge Transfer Rate Constants and KMC Simulations

The MLJ rate constants keT , in the absence of an applied electric field and computed for
the charge transfer paths discussed in the previous section, are collected in Table 1 and Table
S3. The computed values for path P1 of both NDTI derivatives were large (1012–1013 s−1)
and similar, as was expected from the λi and Vij values. Starting from keT , we generated
the KMC (Brownian) trajectories collected in Figure 5 and Figures S14 and S15.
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Figure S14 confirms the 1D charge transport of α-NDTI, as expected from the com-
puted transfer integrals and as previously documented for other NDTI derivatives [31].
Similarly, the columnar charge transport resulted in a remarkable anisotropy of the com-
puted time-of-flight (TOF) charge mobilities as depicted in Figure 6a.
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The KMC trajectories in Figure 5 and Figure S15 show that the charge transport in
N-NDTI was essentially bidimensional and parallel to the b,c crystallographic plane as
a result of non-negligible transfer integrals for paths P1, P2, and P3 (Figure 3). The b,c
plane almost coincided with the Y,Z Cartesian plane (Figure 5), on which the trajectories’
projections were therefore the largest. In comparing N-NDTI ANTI-1 and ANTI-2, their
charge transport trajectories showed similar displacements along Z (almost coincident with
c). For ANTI-1, the extension of the charge displacement in the two directions (Y,Z) was
quite similar, although the P1 rate constant (along c ≈ Z) was larger than that of P2 (along
b = Y) (Table 1). However, because the intermolecular distance for path P2 was larger than
that of P1, the charge hopping through P2 covered a larger distance along b (Y) compared
with that covered through P1 along c (≈Z). This interplay between rate constants and
intermolecular distances spanned by the charge led to a modest anisotropy overall in the
b,c (or Y,Z) plane for N-NDTI ANTI-1 and a more pronounced one for ANTI-2. For the latter,
indeed, the rate constant for jump P1 largely dominated over that of P2. Similar differences
could be seen in the computed anisotropies of the TOF charge mobilities (see Figure 6b).
Focusing on the three crystal structures of N-NDTI investigated, namely ANTI-1, ANTI-2,
and the mix, the first (ANTI-1, purple in Figure 6b) showed slightly lower mobilities than
the others and the lowest anisotropy. The second (ANTI-2 in green) displayed larger and
more anisotropic mobilities, and finally, the last one (mix in cyan) was characterized by an
intermediate situation.

Overall, the computed charge mobilities from the zero field (Brownian) and TOF KMC
simulations (see Table 3) indicated a similar charge transport efficiency for both NDTI
derivatives, with computed values to the order of 1 cm2 V−1 s−1. Such similar computed
mobilities were, however, in contrast with the experimental observation of a superior
charge transport efficiency for N-NDTI vs. α-NDTI.

A possible explanation for the lowest observed mobility of α-NDTI may be related to
experimental factors, such as contact resistance limitations, additional structural disorder at
the single crystal level, and chemical impurities. However, in seeking intrinsic factors, we
suggest here that the remarkably anisotropic charge transport of α-NDTI plays a relevant
role. The X-ray diffraction (XRD) measurements indeed showed the c-axis of α-NDTI
single crystal standing out of the OFET substrate, while the a,b plane was arranged parallel
to the substrate. However, the calculations showed that only along the a direction the
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mobility was large. In other directions, namely in the a,b plane, which was parallel to the
OFET substrate (compare µmax ≈ 1 cm2 V−1 s−1 and µmin ≈ 10−6 cm2 V−1 s−1 in Table 3)
and in the direction perpendicular to it, the mobility reduced to almost zero. This might
justify the discrepancy between the computed and experimental values, with the latter
averaging the OFET mobility in the a,b plane (rather than only along one direction).

Table 3. Computed Brownian (zero field) and TOF mobilities for α-NDTI and N-NDTI.

Zero Field
(Brownian) TOF TOF Exp

µ
(cm2 V−1 s−1)

µmax
(cm2 V−1 s−1)

µmin
(cm2 V−1 s−1)

µ a

(cm2 V−1 s−1)

α-NDTI ANTI-1 0.32 1.00 b 3 × 10−6 b
0.037

α-NDTI ANTI-2 0.39 1.23 b 2 × 10−6 b

N-NDTI ANTI-1 0.24 0.46 c 0.25 c

1.27N-NDTI ANTI-2 0.34 0.92 c 0.14 c

N-NDTI mix 0.28 0.63 c 0.21 c

a Average experimental (Exp) mobilities from [32]. b TOF mobilities computed in the X,Y plane. c TOF mobilities
computed in the Z,Y plane.

XRD measurements of the N-NDTI single crystal displayed the a-axis standing on the
substrate, while the b,c plane was arranged parallel to the substrate. In contrast to α-NDTI,
the KMC simulations showed a similar charge transport efficiency in every direction of
the b,c plane (i.e., the substrate plane) of N-NDTI, and therefore, a favorable mobility is
always expected in this case. Furthermore, the KMC trajectories (Figure S15) also showed a
non-negligible charge transport along the a direction, which was relevant for the bottom
gate’s top contact OFET architecture used in the experiments [49].

A second, minor discrepancy between the computed and observed results con-
cerned the slight underestimation of the largest computed TOF mobility of N-NDTI
(0.92 cm2 V−1 s−1) compared with the highest experimental mobility (1.56 cm2 V−1 s−1) [32].
This is somewhat unusual, since predicted mobilities are generally overestimated due to
the ideal conditions underlying the models used. Several computational and experimental
reasons may account for this discrepancy. Although the conditions for the non-adiabatic
hopping were satisfied (for both NDTI derivatives), other factors could have limited the
quantitative agreement of the computed charge mobilities, among them being the fact that
MLJ formulation relies on a single effective parameter and that our KMC simulations did
not include the effects of carrier-carrier interactions, a factor that may be relevant for high
charge densities [49]. In this frame, charge mobility is a function of several parameters,
among which is the charge density, which was not taken into account here [50,51]. We
should further mention that from the experimental side, the measured OFET mobilities
could be overestimated, as was suggested in previous works [52,53].

Overall, the above considerations may explain the differences between the observed
and computed mobilities. Aside from these factors, dynamic disorder may also play a role
in affecting the final computed charge mobility, as is discussed in the next section.

2.4. Influence of Dynamic Disorder

Extrinsic sources of disorder can affect carrier transport, as has been shown theoreti-
cally [54] and experimentally [55]. In addition, there is a general consensus that dynamic
disorder is one of the crucial parameters governing charge transport in organic semi-
conductors. Generally, thermally induced fluctuations of transfer integrals limit charge
transport [37,41,56], but for percolation channels characterized by small electronic cou-
plings, they have been shown to open new hopping pathways, thereby increasing the
mobility [34,57–60]. In recent works, it has been reported that the strength of the dynamic
disorder is highly correlated with the gradient of the electronic couplings [56,61] with
respect to the phonon modes, a parameter also known as the non-local electron-phonon
coupling (or Peierls coupling) [39,40]. Further, the presence of alkyl chains may influence
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the dynamic disorder via modulation of electron–phonon couplings. In a recent work
on alkylated dinaphthothienothiophene (DNTT) [62], it was shown that transfer integral
fluctuations are prevalently dominated by a single sliding mode involving long-axis dis-
placements between pairs of molecules. The enhancement of the thermal disorder by a
such sliding mode was shown to dramatically depress the charge mobility. For this reason,
the sliding mode was identified as a killer phonon.

In previous works, we already investigated the role of dynamic disorder in PDI and
NDI derivatives [33–35] by running molecular dynamics (MD) simulations followed by
QC evaluation of the transfer integrals. The analysis of fluctuations via a Fourier transform
of the autocorrelation function of the transfer integrals [63] provided indications of the
most active intermolecular phonons. Long and short molecular axis sliding motions
were clearly identified as being largely responsible for the transfer integral fluctuations
and, interestingly, they were demonstrated to activate (i.e., a phonon-assisted mechanism)
additional charge transport channels in a PDI derivative [34].

Seeking possible evidence of phonon-assisted charge transport, we applied a similar
strategy to investigate the role of thermally induced disorder in N-NDTI and computed
the transfer integral fluctuations for the two charge pathways displaying limited efficiency
(i.e., low Vij (P2 and P3; see Table 1)), therefore being more promising for phonon-assisted
charge transport activation. The thermal fluctuations, however, were negligible for the
two paths, and therefore we completed the investigation including path P1. However, for
the latter, due to its large electronic coupling, the dynamic disorder effects may only be
detrimental to charge transport, ultimately lowering the mobility. In Figure 7 (top), we
show the computed fluctuations of the P1 transfer integrals. The standard deviation (σ)
was only 11 meV, about one third of the average electronic coupling (< Vij >= 35 meV;
see Table 1), a value smaller than what is typically found (i.e., generally the same size as
the electronic couplings). The phonon frequencies, which were most active in determining
the P1 transfer integral fluctuations, are shown in Figure 7 (bottom). Low-frequency
intermolecular phonons (below 50 cm−1) were dominant, and they have been shown to
be associated with sliding modes, as was reported in several previous works [34,62,64,65].
However, because the strength of the non-local electron–phonon coupling is related to
σ [40,66], its modest value suggests only minor effects of the sliding modes on the N-NDTI
charge mobility. Similar to N-NDTI, it can be argued that the sliding phonon modes would
also be the primary lattice vibrations determining the P1 transfer integral fluctuations in
α-NDTI.
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Since electronic coupling fluctuations along P1 are expected to depress charge mobility
(due to the large Vij value), it is interesting to compare α-NDTI and N-NDTI, seeking
evidence for an additional mechanism accounting for the lower experimental mobility of
the former. To this end, the modulations of the P1 electronic couplings were computed along
the sliding coordinates represented in Figure 8a. The computed coupling dependences
are collected in Figure 8b, from which the absolute value of the numerically estimated
derivatives (associated to the non-local electron–phonon coupling) was 48 meV/Å for
α-NDTI and 33 meV/Å for N-NDTI. The larger electron–phonon coupling for α-NDTI
may therefore have contributed to reducing its charge transport efficiency, as was similarly
shown in a recent work on alkylated DNTT [62]. Although a more detailed assessment of
the entire spectrum of non-local electron–phonon couplings should be carried out for a
conclusive response, the preliminary results of such a higher dependency of α-NDTI on
thermal fluctuations than N-NDTI may further justify its lower observed charge mobility
(Table 3), in addition to the factors discussed in the previous section.
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3. Computational Methods and Models

The bulk charge transport was investigated according to the non-adiabatic hopping
mechanism. The charge mobilities were evaluated while either assuming a Brownian
motion of the charge carrier—that is, in the limit of a zero field and zero concentration—
and under the effect of an electric field (see below). According to the hopping model,
the relevant charge transfer event is localized on a molecular pair (dimer) formed by two
neighboring molecules. The validity of this model depends on the relative magnitude of
the electronic coupling Vij and the internal reorganization energy λi, with Vij required to
be considerably smaller than λi [39,48,67,68]. We verified (vide infra) that this was the case
for both molecules investigated here.

The experimentally available crystal structures of the organic semiconductors were
used to identify the possible charge pathways by evaluating the vector displacements of
the centers of mass for the molecules surrounding a central reference site in the crystal.

While the electronic couplings were evaluated for the molecular dimers extracted
from the crystal structures, calculation of the intramolecular reorganization energies was
based on the determination of potential energy surfaces for neutral and charged species.
The equilibrium structures were obtained from quantum chemical calculations carried
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out at the B3LYP/6-31G* level of theory. The nature of the stationary points determined
by quantum chemical structure optimization was assessed by evaluating the vibrational
frequencies at the optimized geometries. The vibrational frequencies were also employed
to estimate the vibrational contributions to the intramolecular reorganization energies
through the calculation of the HR parameters (see below).

3.1. Reorganization Energy and Electronic Couplings

The reorganization energy is composed of an intramolecular term λi and an outer
sphere contribution λo, due to the interaction with the surrounding molecules in the crystal.
The former was computed either with the AP method, namely via two point determina-
tions from each potential energy surface (neutral and charged states), or via calculations
of the HR factor Sm [67,69,70], obtained in turn within the harmonic approximation from
the dimensionless displacement parameter Bm, which is generally employed to evaluate
Franck–Condon (FC) vibronic progressions in electronic and photoelectronic spectra (see
the SI for further details) [71,72]. The outer sphere reorganization energy λo was assumed
to be 0.01 eV according to recent determinations [46,47]. The performance of different
schemes designed for efficient calculation of the intermolecular transfer integrals and site
energies for pairs of molecules were reviewed recently [67,73–75]. In the framework of the
dimer approach and one-electron approximation, the electronic coupling (charge transfer
integrals) Vij =< φi

∣∣Ĥ∣∣φj > , where φi,j are the highest occupied molecular orbital (HOMO)
or LUMO orbitals of the two monomers forming the dimer (for p-type and n-type conduc-
tion, respectively), was obtained using a fragment orbital approach. Following previous
studies [76–79], the protocol was based on the determination of the matrix HMOB in the
monomer orbital basis (MOB), whose off-diagonal elements were the non-orthogonalized
electronic couplings:

HMOB = Ct
MON_AOBSMON_AOBCDIM_AOBεDIMCt

DIM_AOBSMON_AOBCMON_AOB (1)

where εDIM is the diagonal matrix of the eigenvalues associated to the molecular orbitals
of the dimer, CDIM_AOB is the matrix of the eigenvectors of the dimer in the atomic orbital
basis (AOB), SMON_AOB is the overlap matrix of the monomers in the AOB, and CMON_AOB
is the monomer-localized orbitals matrix. CMON_AOB is, therefore, a block diagonal matrix
containing the MO coefficients in the AOB from each monomer, with the off-block diagonals
set to zero and the superscript t indicating the transpose.

The computed couplings were then transformed in an orthogonalized basis by per-
forming a Löwdin orthogonalization:

H⊥MOB = S−
1
2

DIM_MOBHMOBS−
1
2

DIM_MOB (2)

where SDIM_MOB is the overlap matrix between monomer orbitals, which was obtained as
follows from the MO coefficients of the monomer orbitals and the overlap of the atomic
orbitals in the dimer configuration SDIM_AOB:

SDIM_MOB = Ct
MON_AOB · SDIM_AOB · CMON_AOB (3)

For a dimer, this was conducted on the 2 × 2 HMOB matrix including the HOMO (or
LUMO) orbitals of the two monomers [73,80]. A detailed discussion of the approximations
involved in the fragment orbital approach was reported in a previous work [81].

The electronic couplings were computed at the same level of theory (B3LYP/6-31G*)
adopted for geometry optimization and for the evaluation of the reorganization energies.
All QC calculations were carried out with the Gaussian16 suite of programs [82].

3.2. Charge Transfer Rate Constants and Kinetic Monte Carlo Simulations

Because the quantum nature of the most active modes governing local electron-phonon
coupling cannot be neglected, a suitable formulation of the transfer rate constants keT
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associated with each hopping event is provided by the MLJ quantum correction of Marcus’
equation [83]:

keT =
2π

} Vij
2 1√

4πλo+classickBT

∞

∑
υ=0

exp
(
−Se f f

)Sυ
e f f

υ!
exp

−
(

∆G0 + λo+classic + υ}ωe f f

)2

4λo+classickBT


 (4)

In the MLJ formulation of the charge transfer rate constants, the quantum descrip-
tion of the non-classical degrees of freedom is represented by a single effective mode of
frequency ωe f f and the associated HR factor Se f f , determined from the set of computed
HR factors (see the SI for additional details). Following previous work [33,34], because
frequency vibrations below roughly 150–200 cm−1 at room temperature can be described
to a good approximation in classical terms, and because of their possible anharmonicity,
their contributions were not included in the evaluation of ωe f f . The exceeding classical
contributions were summed to the outer sphere reorganization energy λo, and the total
contribution reads as λo+classic in Equation (4).

The zero field (Brownian) charge mobilities were determined by computing the dif-
fusion coefficient D with a set of KMC simulations [57,66,84–88] (see the SI for further
details). An approximately linear dependence of the mean square displacement (MSD)
< [r(t)− r(0)] >2 as a function of time t was obtained by averaging over the subsets of
1000 KMC trajectories. The diffusion coefficient D was obtained from the fitted linear
dependence of MSD by employing Einstein’s equation:

D = lim
t→∞

(MSD/6t). (5)

The charge mobility was then obtained by Einstein–Smoluchowski’s equation:

µ =
eD
kBT

(6)

In the presence of an electric field, the TOF charge mobilities were obtained with the
following relation by applying an electric field F of magnitude 105 V/cm:

µ =
d f
τF

(7)

where d f is the distance traveled by the charge along the F direction and τ is the time
required to travel the distance d f , which is assumed to be 50 µm. The mobility was
averaged over 100 trajectories.

3.3. Simulation of Thermally Induced Dynamic Disorder

To assess the importance of thermal motions to the electronic couplings [64,89], we
ran MD simulations combined with the QC evaluation of the charge transfer integrals.
Molecular dynamics simulations were run on a 5× 5× 5 supercell of the crystal unit cell
of N-NDTI. The dynamics of the system was studied with periodic boundary conditions
employing the MM3 force field [90] and the Tinker code [91]. Since recent studies have
shown that low-frequency intermolecular vibrations can modulate the magnitude of the
electronic couplings [33–35,40,43,61,92–95], we froze all the intramolecular degrees of
freedom (rigid body approximation) while allowing intermolecular motions. We ran a
100-ps MD simulation in the NVT ensemble and at T = 300 K using a thermal bath. The
integration time step was set to 1 fs, and trajectory snapshots were saved every 30 fs. On
a selected range of 12 ps, after equilibration, we evaluated the LUMO transfer integral
fluctuations for the most relevant charge pathways of N-NDTI and determined their
standard deviation.
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4. Conclusions

We investigated the charge transport properties ofα-NDTI and N-NDTI, two recently
synthesized NDTI derivatives in which fluoroalkyl chains were introduced to improve the
n-type character and device stability in ambient conditions.

The computed electronic couplings showed that fluoroalkyl substitution impacted the
solid state organization of the two NDTI derivatives; the active charge transfer channels
favored a 1D charge percolation in α-NDTI and induced a more isotropic charge transfer
network in N-NDTI. For both, the intra-column (P1) electronic coupling dominated. The
computed intramolecular reorganization energies were similar for α-NDTI and N-NDTI
and slightly larger compared with the unsubstituted NDTI, underscoring the role of the
low-frequency vibrations associated with skeletal deformations.

The similar magnitudes of the computed intra- and intermolecular parameters was
reflected in the n-type mobilities, predicted to be to the order of 1 cm2 V−1 s−1 and
comparable for α-NDTI and N-NDTI, in contrast with the experimental observation of a
superior charge transport efficiency for N-NDTI.

Disregarding the role of impurities, contact resistance limitations, and other experi-
mental factors, this apparent discrepancy could be reconciled by considering the striking
difference in the charge mobility anisotropy. While N-NDTI displayed sizable charge
mobilities in every direction parallel to the substrate, α-NDTI exhibited a prominent
anisotropic character with mobility that reduced to zero in some directions parallel to
the substrate. We suggested that such marked anisotropy of α-NDTI could justify the
difference between the computed and experimental values, the latter corresponding to the
average OFET mobilities.

Seeking additional sources of charge mobility degradation for α-NDTI, we also com-
pared the role of dynamic disorder on the most effective charge transport path (P1) of both
derivatives. Although limited to transfer integral fluctuations induced by an intermolecular
sliding mode, the computed electron–phonon couplings confirmed a more detrimental
effect for α-NDTI compared with N-NDTI.

The lower observed mobility of α-NDTI was therefore rationalized in terms of the
strong anisotropic character of the charge percolation pathways, with the additional contri-
bution of dynamic disorder effects.
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