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Abstract

Background: Reliability and reproducibility are key metrics for gene expression assays. This report assesses the
utility of the correlation coefficient in the analysis of reproducibility and reliability of gene expression data.

Results: The correlation coefficient alone is not sufficient to assess equality among sample replicates but when
coupled with slope and scatter plots expression data equality can be better assessed. Narrow-intervals of scatter
plots should be shown as a tool to inspect the actual level of noise within the data. Here we propose a method
to examine expression data reproducibility, which is based on the ratios of both the means and the standard
deviations for the inter-treatment expression ratios of genes. In addition, we introduce a fold-change threshold with
an inter-replicate occurrence likelihood lower than 5% to perform analysis even when reproducibility is not acceptable.
There is no possibility to find a perfect correlation between transcript and protein levels even when there is not any
post-transcriptional regulatory mechanism. We therefore propose an adjustment for protein abundance with that of
transcript abundance based on open reading frame length.

Conclusions: Here, we introduce a very efficient reproducibility approach. Our method detects very small changes in
large datasets which was not possible through regular correlation analysis. We also introduce a correction on protein
quantities which allows us to examine the post-transcriptional regulatory effects with a higher accuracy.
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Background
Reliability or accuracy of data-to-reality, and reproduci-
bility or inter-replicate variance, are typically assessed
using the correlation coefficient. As a reliability assay,
the agreement between transcript abundance and their
encoded protein abundance has long been investigated
[1-4]. RNA-Seq [5] has made the global profiling of gene
expression achievable by covering comprehensive tran-
scriptome data. As the most recent approach, reliability
of the output has been examined by correlation analysis
using microarray and/or Real Time RT-PCR [5-10]. In
addition, the correlation between replicates has been
used to judge the reproducibility of data [7,10-15].
Correlation is the agreement level between two vari-

ables. The correlation coefficient varies between perfect

agreement (r = ±1) and no agreement (r = 0). A perfect
agreement implies equal change in one of the variables
for a given fixed change of another variable. A negative
correlation indicates an opposite direction in the agree-
ment, i.e. reduction in one of the variables in response
to positive changes in another, regardless of the agree-
ment level. For example, we can find a perfect agree-
ment but in the opposite direction between the dose of
insecticides and the number of survived insects.
The inter-replicate variation of gene expression-

quantities is of the utmost importance to biologists be-
cause lower variance means higher reproducibility. The
correlation coefficient has been used to inspect the repro-
ducibility of gene expression data [7,10-15]. When the
inter-replicate variance is low or zero, a higher or perfect
correlation is expected but we can find the opposite, i.e. a
low inter-replicate variance may be absent when there is a
strong correlation. Thus, we cannot rely on the correlation
digit as the sole criterion.
Since the correlation coefficient has been the main

tool to assess agreement between replicates, technologies
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(microarray, Real Time RT-PCR, and RNA-Seq), and be-
tween protein and transcript abundance, this paper scru-
tinizes the power of correlation analysis for the
biologist and introduces other alternatives. We intro-
duce an alternative reproducibility assay approach. We
advise that there should be an application of an inter-
replicate based fold-change threshold to identify the
most reliable variations among the significant inter-
treatment changes regardless of what the inter-repli-
cate reproducibility may be. In addition, we introduce
a correction step based upon the lengths of open read-
ing frames (ORFs) for protein quantity before correl-
ation analysis with the respective transcript abundance
in order to assess post-transcriptional regulation.

Results and discussion
The correlation coefficient is not sufficient as a
reproducibility assay for expression data
By analyzing a publicly available RNA-Seq data we ex-
amined reproducibility of ≈ 25000 genes between two
replicates. We found correlations of 0.986 and 0.985 by
applying unigene reads and total exon reads, respectively
(Figure 1A1 and B1). However, we also found 65% and
64.09% of the genes with a variation higher than 50% be-
tween the two replicates (Figure 1A1 and B1). Through
further analyses, the insensitivity of the correlation
coefficient to the large shifts of inter-replicate variation
was confirmed after data correction. Comparisons of
Figure 1A1 with A2 and Figure 1B1 with B2 indicate
that the large declines in the levels of inter-replicate var-
iances (≈from 65% to 12% of the genes with an inter-
replicate variation higher than 50%) were insufficient to
influence the correlations. By comparing Figure 1A2 and
B2 with 1C where the slopes are nearly the same, it is
clear that the correlation coefficient depends on the
noise level of the data. Alternatively, relying on the cor-
relation and taking the slope of inter-replicate regression
line into account could increase the efficiency of the re-
producibility assay. In contrast to the correlation coeffi-
cient, considerable improvements of the slopes from
0.620 to 1.006 and 0.972 are good representatives of the
correction efficiencies on unigene reads and total exon
reads, respectively (Figure 1A1, A2, B1 and B2). How-
ever, the threshold level for the noise should be deter-
mined by the nature of the experiments. This is crucial
when dealing with large sets of data as in microarray or
RNA-Seq assays. In this situation, a slope with a small devi-
ation from 1 and a significantly high correlation could coin-
cide with a considerable inter-replicate variation. Although
it is not discernible by the slope and the level of noise in
the example chosen, 12% of the genes have greater than a
50% inter-replicate variation (Figure 1A2 and B2). There-
fore, it is an easy pitfall to ‘neglect’ a few thousand genes

with considerable variance among 30,000 genes, which can
result in false positive biological conclusions.
Although the actual level of noise on the plots is not vis-

ible owing to the large dataset size, the inspection of very
narrow intervals of the data range can be helpful (e.g., com-
pare Figure 1A2 and B2 with A2α and B2α, respectively).
By following this procedure we found > ±0.5× noise-level in
the presented examples, which were not detectable when
showing the whole dynamic range of expression. We advise
that it would be helpful to include figures and supplements
showing narrow-intervals of representations in the reports
to provide readers with a useful overall picture.
Scatter plots using the logarithmic scale have been re-

ported previously to represent expression data reproducibil-
ity [2,4,5,11,12,15-17]. However, logarithmic transformation
of data evokes changes in the variation between replicates,
which affects slope and diminishes its usefulness. The simi-
larity level between replicates and the percent of data which
are 1 and lower than 1 have an impact on the direction, i.e.
whether slope-deviation will be increased or decreased,
and the rate of change of slope. We found considerable
decreases in the deviation of the slope of inter-replicate
regression line using uncorrected data where the inter-
replicate similarity levels were low (compare Figure 1A1
and B1 with A1α and B1α, respectively). This artificially
low slope-deviation could be incorrectly interpreted as
high reproducibility. In conclusion, logarithmic scale slope
is of little utility to reproducibility assays.
To examine the reliability of gene expression measure-

ments, the agreement levels of expression data between
technologies, i.e. RNA-Seq, microarray, and Real Time RT-
PCR, have also been investigated [5-10]. These assays might
have general agreement with each other but equality is not
observed. Therefore, we should require a strong positive
correlation but not equality among platforms, which could
be represented by the slope of inter-replicate regression
line. Aside from the evidence-free acceptance of one tech-
nology as the most reliable one, reliability assays suffer from
the inefficiency of correlation coefficient when analyzing
large sets of data. The acceptable threshold of correlation
should be evaluated. Like for the reproducibility assay, we
advise that the real level of noise should be examined on
narrow-intervals of data ranges in scatter plots.

The mean and standard deviation of the inter-treatment
gene expression ratios shed light on reproducibility
As an alternative to the correlation coefficient, we advise
reporting the mean and standard deviation of the inter-
treatment gene expression ratios to examine reproducibil-
ity. By calculating the ratios of each of the descriptive sta-
tistics for single replicates when compared to different
replicates of another treatment, we should check the devi-
ation of ratios from 1. The average of deviations and their
standard deviation could be utilized as reproducibility

Darbani and Stewart Journal of Biological Research-Thessaloniki 2014, 21:3 Page 2 of 10
http://www.jbiolres.com/content/21/1/3



Figure 1 (See legend on next page.)
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coefficients. The higher deviation and higher standard de-
viation for the deviations indicate lower reproducibility.
As an example, we performed the analysis on the total

exon mapped reads for a rice experiment and its cor-
rected “reads per kilobase of exon model per million
mapped reads” (RPKM) data by applying different inter-
treatment comparisons of untreated root and salinity
treated shoot, untreated shoot and salinity treated shoot,
untreated shoot and untreated root, untreated root and
salinity treated root, salinity treated root and salinity
treated shoot, and salinity treated root and untreated
shoot (see Additional file 1). Analysis of two replicates
of each treatment resulted in 2 × 48 ratios for each of
the datasets, i.e. corrected and uncorrected reads. The
average of the ratios’ deviations were 0.338 and 0.123
and the standard deviation of ratios’ deviations were
0.318 and 0.133 on total exon reads and on RPKM data,
respectively. As expected, these coefficients represent
higher reproducibility when using the corrected RPKM
data. Compared to the correlation-based reproducibility
assay, where there was no difference between the corre-
lations of uncorrected and corrected data, it is also more
effective to examine reproducibility by applying the new
approach. As shown in Figure 1, the correlation coeffi-
cient was not effective to represent the significant reduc-
tion in the inter-replicate variance (≈from 65% to 12% of
the genes with an inter-replicate variation higher than
50%) after data correction. In contrast, the reduction
from 33.8% to 12.3% in the reproducibility level proves
the effectiveness of the new method compared to the
correlation coefficient. Therefore, the new approach pro-
vides a higher level of efficiency to represent different
variability levels compared with the correlation-based
approach, at least using the applied experimental data.
In addition, the decreased standard deviation of ratios’
deviations from 0.318 to 0.133 indicates an increased re-
producibility among the treatments after data correction.
A similar approach is also applicable between replicates
just by applying the deviations of averages and standard

deviations of gene expression ratios. The average and
standard deviation of inter-replicate expression ratios
are expected to be 1 and 0 when there is perfect repro-
ducibility. However, we need a higher number of replicates
to obtain reliable measures. This should not be a concern
when the main aim is to evaluate the reproducibility of a
method or technology. As shown by the example analyzed
here, four samples each with two replicates works well.
However, it is worth to evaluate the impact of the number
of replicates on the proposed method. Our analysis indi-
cates that the method works at an acceptable level on a
dataset with three replicates. By analyzing an online-
available yeast RNA-Seq dataset [18] we found a Pearson
correlation of 0.994 among technical replicates of samples
1 and 2 while 4.3% and 4.2% of the 6387 genes had 50% or
higher inter-replicate variations, respectively. In contrast,
our proposed approach found 14.2% and 13.7% deviations
for samples 1 and 2, respectively. This indicates that the
proposed method can inform small changes, e.g., 4.3% to
4.2% of the genes with 50% or higher inter-replicate varia-
tions. In agreement with this, we also found a 15.3% devi-
ation when comparing biological replicates, i.e. sample 1
with sample 2, with 4.4% of the genes showing 50% or
higher inter-replicate variations (see Additional file 1). This
indicates that our method has high sensitivity and can even
detect very small changes in large datasets. Therefore, we
advise our method to be utilized as an efficient alternative
to the correlation coefficient. To examine the efficiency of
our method on various gene expression datasets, we ana-
lyzed microarray data from Arabidopsis, barley, yeast, and
E. coli (Table 1; Additional file 2). Similar to the RNA-Seq
data, correction of the microarray data resulted in strong
reduction in the number of genes showing over 50% inter-
replicate variations without considerable improvement in
the correlation coefficients between replicates (Table 1).
The average of slopes of inter-replicate regression lines
showed improvements after data correction (Table 1) and
as discussed before, it can complement the correlation coef-
ficient. As seen in RNA-Seq data, very high correlations

(See figure on previous page.)
Figure 1 Correlation-based reproducibility and reliability assays on real gene expression data. A publicly available RNA-Seq dataset from
rice including two root-sample replicates and two shoot-sample replicates is used as an example to illustrate the power of correlation coefficient
in the reproducibility assay of read counts as gene expression data. Briefly, the reads were mapped on the rice genome to apply the mapped
total gene, unigene, and total exon reads (A1, A2 and B1, B2). Large bias shifts from ~65% in A1 and B1 to ~12% in A2 and B2 after both
reference gene-based correction (A) and read count-based correction (B) were not able to increase the correlation coefficient. (C) As the level of
noise increases the correlation becomes weaker. The slopes are nearly the same and approach a slope of 1, but the lower correlation observed
results from the higher level of noise in C compared to A2 and B2. Considering the level of noise in the data and the slope of inter-replicate
regression line, it is possible that, while helpful, they might not be precise for reproducibility assay. After data correction (in A2 and B2), the
correlation was not changed but the slope was improved, i.e. the slope-deviation from 1 was decreased. However, 12% of the genes still show
50% or greater than 50% inter-replicate variation in expression, which would be indistinguishable by taking both the correlation and the slope
into account. (A1α, B1α) Logarithmic transformation of data could change the difference between sample replicates which is represented by the
changed slope-deviation on scatter plots. (A2α, B2α) Scatter plot narrow-intervals allow us to observe noise in the dataset. There is almost a
clear ±0.5x variation shown by scatter plots. 350, 354: rice untreated root sample replicates; 349, 353: rice untreated shoot sample replicates. We
evaluated the expression of 24122 to 24701 genes by applying the different types of reads and samples. The log10 transformed data were used
to calculate the Pearson correlation. All correlations were significant (P = 0.000) by a two-tailed test.
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(>0.98) and small slope deviations (<0.02) are possible while
up to 10% of the genes show over 50% inter-replicate varia-
tions in microarray data (Table 1). In addition, not only do
the slopes not show any considerable improvement after
correction of the E. coli microarray data, but they also de-
creased while the number of genes with higher than 50%
inter-replicate variation was decreased from 8-10% to 2.9%
(Table 1). In contrast, our new measurements followed the
increased reproducibility and showed considerable reduc-
tion in deviations after data correction (Table 1; Additional
file 2). However, the deviations were still large enough to
explain the existent variance after data correction in all the
experiments.
It should be emphasized that the levels of reproducibility

should not be compared among different experimental
data. This is due to the data-dependency of the measured
statistics. We found higher deviation values (15.3%, 14.2%,
and 13.7%) for the yeast data when there were fewer genes
with greater than 50% inter-replicate variance (4.4%, 4.3%,
and 4.2%) compared to the rice data.
As indicated, we have included X/Y and Y/X as sep-

arate measurements of the genes between the treat-
ments in order to fix the asymmetric aspect of the
ratios around 1. We have not applied the well-known
logarithmic transformation, i.e. log (X/Y) = log (X) –
log (Y). The latter, can easily reduce the difference
level between comparisons as we have already ex-
plained. Therefore, we will not see the actual difference
at the reproducibility levels by applying the logarithmic
transformation.

What can be done when reproducibility is low or
not known?
The correlation coefficient or the alternative method in-
troduced here shed light on general data reproducibility
based on predefined thresholds. The main application of
these approaches is in comparing different analytical
methods such as correction measures with each other in
order to use the most appropriate method. However,
they do not provide detailed information as to which
part of data has an acceptable reproducibility or what
stringency level we should apply in our analysis to meet
the low reproducibility levels in order to avoid making
the data useless. Under the assumption of a similar nat-
ural variation of expression for all genes, i.e. since a gene
with extreme inter-replicate variation for expression is
assumed to be random, we advise applying a fold-change
threshold to solve the problem. To be acceptable, the
level of the statistically significant expression changes
between the treatments should be not smaller than the
predetermined threshold. This threshold should be de-
termined by keeping the frequency of genes showing
same or higher levels of inter-replicate changes lower
than an acceptable likelihood of being false positive, i.e.
5% or 1%. Therefore, a significant inter-treatment fold-
change of a gene should have an inter-replicate likeli-
hood lower than either 1% or 5%. Applying this criterion
keeps the usability gate open even when the reproduci-
bility is low just by considering the reliable fold-changes.
When analyzing the rice untreated root [GenBank ID:
DRR000350 and DRR000354] and untreated shoot

Table 1 Reproducibility of the microarray data

Uncorrected data After quantile correction

Experimenta Average number of genes
with >50% inter-replicate
variation

r(P)
b Slopec A.Dd % Average number of genes

with >50% inter-replicate
variation

r(P)
b Slopec A.Dd %

E-GEOD-53990: Arabidopsis
data with 6 treatments and
3 replicates

8488/22810 (37%) 0.975 0.804 91% 2000/22810 (8.8%) 0.980 0.982 26%

E-GEOD-27822: Barley data
with 2 treatments and
3 replicates

6433/22840 (28%) 0.992 1.22 34% 519/22840 (2.3%) 0.994 0.992 8.2%

E-GEOD-39950: Yeast data
with 2 treatments and
3 replicates

1645/10928 (15%) 0.997 1.257 26% 396/10928 (3.6%) 0.997 0.980 12%

E-GEOD-49918: E. coli data
with 4 treatments and
3 replicates

1059/10208 (10%) 0.996 1.032 28% 299/10208 (2.9%) 0.997 0.981 10%

E-GEOD-24524: E. coli data
with 4 treatments and
2 replicates

837/10208 (8.2%) 0.995 0.999 22% 300/1028 (2.9%) 0.996 0.990 15%

Different publicly available microarray data were analyzed using the Affymetrix Expression Console build 1.3.1.187 following the 3 Expression Arrays-RMA protocol.
Both the corrected and uncorrected data were extracted. The Pearson correlations between the replicates were calculated on the log2 transformed data. Following
our method, the average of the ratios’ deviations was also calculated in order to evaluate its usefulness compared to the correlation coefficient.
aThe experiments are available at http://www.ebi.ac.uk/arrayexpress/experiments/browse.html, bThe average of Pearson correlations between the replicates in
each experiment, cThe average of slopes of inter-replicate regression lines in each experiment, dThe average of the ratios’ deviations.
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[GenBank ID: DRR000349 and DRR000353] samples,
we found the fold-change thresholds of >3.7 and >2.0
at 1% and 5% levels, respectively. By comparing untreated
shoot with untreated root, we found 5212 (48% of the
significant differentially expressed genes) and 783 (7.3% of
the significant differentially expressed genes) genes show-
ing same or lower levels of fold-changes according to the
1% and 5% cut-offs, respectively. We can also apply a
genegroup specific fold-change threshold when there is a
bias towards specific genes, e.g., by gene-length or
expression-quantity based clustering of the genes due to
the higher variation of shortlength or low-abundant genes
compared to the long or high abundant genes, respectively,
in RNA-Seq.

ORF length-based correction on protein quantities is
necessary before correlating them with their transcript
abundance
No strong correlation has been found between protein
and the RNA abundance [1-4]. One reason could be the
multiple levels of regulatory mechanisms, from tran-
scription to post-translation, that govern the expression
of genes. By excluding all the technical and biological
noise as well as experimental biases, different determi-
nants including ribosomal occupancy (the fraction of a
given gene’s transcripts engaged in translation at least by
one ribosome) and ribosomal density (number of ribo-
somes per length-unit of transcripts) as translation acti-
vating factors, sequence features of translation initiation,
elongation, and termination as ORF-specific translation-
efficiency related factors, and amino acid availability as
well as mRNA/protein half-life have been proposed to
influence the mRNA-protein correlation [19-22]. Among
these, ORF-specific translation-efficiency related factors
explain 15-30% of the variation of mRNA-protein cor-
relations [22-24]. The mRNA half-life does not show a
considerable impact in contrast to the protein half-life,
which explains ≈ 17% of the mRNA-protein correlation
variations [24].
For many reasons, however, biologists most typically

rely on transcript abundance as a gauge for gene
expression. But, how reasonable is it to expect a high
correlation between the transcript and the protein
levels? To answer, let us assume the two expressed
genes, A and B, are governed by post-transcriptional-
free regulation mechanisms. This means that they have
the same stability, half-life, and translation efficiency
for the transcripts and same stability and half-life for
the proteins of genes A and B. It is still possible to have
different rates of induction or suppression between the
protein levels of genes when there is a similar induc-
tion or repression rate at the transcript levels of the
genes. Similar rates of change at the transcript levels of
the genes A and B could result in different rates of

change at the protein levels when the lengths of the
coding sequences differ between the genes. It might be
expected to find twice as much induction for the pro-
tein A compared to the protein B if the coding se-
quence of gene B is twice as long as that of the gene A.
The longer protein B will take more time to be trans-
lated than the protein A. This can simply decrease the
correlation between the protein and the RNA levels by
uneven variation of the variables (the transcript level
and the protein level). As an example, the induced pro-
tein levels for A and B were four and two times, re-
spectively, if the transcript levels of the genes were
induced two times. In this situation, there are uneven
changes of two and four times at the protein levels
(one of the variables) compared to a fixed two times
change in transcript levels (another variable). There-
fore, it is not reasonable to look at the agreement level
between the RNA and their encoded protein quantities.
Instead, we should consider the effects of treatments/
tissues on the gene expression quantities regardless of
gene expression assay. In conclusion, different levels of
post-transcriptional regulations should not be inter-
preted as the sole reason for the medium-weak correl-
ation between the protein and transcript levels due to
the above-mentioned technical problem which could
easily have a large impact on the issue, either positively
or negatively.
To inspect the pure effects of post-transcriptional

regulation we advise that protein quantities should be
corrected for the length of coding sequences before
correlating the protein and the transcript quantities
with each other. We performed a length-based correc-
tion on the previously reported protein quantities be-
fore examining the correlation between protein and
transcript quantities. For the 10 proteins of Plasmodium
falciparum and their corresponding transcript abundance
measured during six growth stages published in [2], the
correlation showed a shift from −0.029 to 0.135 after the
ORF length-based correction was applied for protein
quantities (Additional file 1). We also examined two dif-
ferent expression datasets (Additional file 1): cell cycle
with 173 genes and cell rescue with 115 genes in yeast
where the expression quantities exist both at the pro-
tein and at transcript levels, reported by Greenbaum
et al. [1]. After the length-based correction on protein
quantities the Pearson correlations were changed from
0.71 to 0.41 and from 0.45 to 0.29 in cell cycle and cell
rescue datasets, respectively.
To further analyze the impact of ORF length-based

bias in quantitative analysis of transcript and protein
expressions, we looked at the correlation of mRNA
changes with protein changes between human and
chimpanzee reported by Fu et al. [25]. We do not ex-
pect a negative correlation between changes of transcripts
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and of proteins. This is due to the fact that cells try to con-
sume as little energy as possible. In addition, an overall
trend of decreased mRNAs and increased proteins is not
reasonable. However, we found a correlation of −0.37 be-
tween mRNAs (chimpanzee/human ratios) and proteins
(chimpanzee/human ratios) of 143 genes. The averages of
five and three biological replicates were applied to calculate
the mRNAs changes and the proteins changes, respectively
(Additional file 1). In contrast, a more reasonable correl-
ation of −0.11 was obtained by using the ORF length-based
corrected protein changes (Additional file 1).
Increased ribosomal occupancy means increased usage

of minimum physical space on transcripts for ribosomal
functionality. This can alleviate the effect of different
ORF lengths on the deviations of fold-changes of protein
quantities from the fold-changes of transcript quantities.
In agreement with this, a higher protein transcript cor-
relation was reported for the transcripts with high ribo-
somal occupancy [1]. This indicates that the ORF length
differences can easily affect the agreement between the
transcripts and their coded protein quantities.
It is conceivable that the longer transcripts may be

occupied by a higher number of ribosomes, which
might alleviate the aforementioned effect of the ORF
length on the correlation coefficient between protein
and transcript abundance. However, the very weak
correlation (rP = 0.22, rS = 0.34) between the ORF
length and number of ribosomes on the transcripts and
negativeweak correlation (rP = −0.39, rS = −0.56) be-
tween the ORF length and ribosomal occupancy, which
we found (see Additional file 1) in the data published
by Greenbaum et al. [1], introduce the number of ribo-
somes or the ribosomal occupancy of transcripts not as
a random length-based event, but rather, as a post-
transcriptional regulation mechanism. Not only there
is no strong correlation between the transcript length
and ribosome numbers but also longer transcripts
show lower ribosomal density compared to shorter
transcripts reported in [19]. This could be explained by
the fact that the first 40 codons of transcripts have over
three-fold higher ribosomal density compared with any
given 40 codons long fragment from the +40th codon
downstream region of transcripts [26]. In addition,
trans-regulatory divergence and not ribosomal occu-
pancy has recently been introduced as the force behind
the differences in the yeast translational efficiency [27].
Therefore, there should not be any concern about the
alleviated effect of ORF length on the correlation
coefficient. Correction for ORF length on protein
quantity seems to be useful to extract much pure post-
transcriptional regulation effects, at least based on the
available data.
Although we introduce ORF length as a factor affecting

the mRNA-protein correlation, it should be highlighted

that our ORF length-based correction of protein quan-
tities is too simplistic and cannot guarantee the purity of
the variation of mRNA-protein correlation. Among the
ORF-specific translation-efficiency factors, peptide elong-
ation has been found as the major determinant to explain
the variation of mRNA-protein correlation [22-24].
One conceivable reason could be the biological import-
ance of the elongation process itself compared to the initi-
ation and termination processes. However, the other key
player could be the transcript/ORF length, which can eas-
ily influence the elongation process. Therefore, our intro-
duced ORF length-based correction of protein quantities
can be affected by the elongation-related regulatory vari-
ance and needs further development in order to extract
the pure length-dependent variance from the variation of
mRNA-protein correlation.

Methods
RNA-Seq data analyses
To evaluate the efficiency of correlation coefficient on
real data, a publicly available rice RNA-Seq dataset was
used in the analysis. The dataset included two replicates of
root and shoot samples from plants before and after a one
hour salinity stress treatment [GenBank ID: DRX000191,
DRX000192, DRX000193, and DRX000194]. The soft-
ware CLC Genomics Workbench (http://www.clcbio.
com; Aarhus, Denmark) was used to map the reads on
the rice Nipponbare reference genome to isolate differ-
ent type of reads, i.e. total and uniexon and gene reads.
The average of inter-replicate variations of selected
reference genes were applied for the reference gene
based data correction (data not shown). The differen-
tially expressed genes were found as described by Rob-
inson et al. [28] with a p-value cut-off of 0.01 and
using the Benjamini & Hochberg method [29] for mul-
tiple testing correction.

Microarray data analysis
We also analysed four different microarray datasets
which are publicly available in EMBL-EBI, ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/). The datasets stud-
ied included Arabidopsis data [E-GEOD-53990] with six
treatments and three replicates, barley data [E-GEOD-
27822] with two treatments and three replicates, yeast
data [E-GEOD-39950] with two treatments and three
replicates, and two Escherichia coli datasets [E-GEOD-
49918 and E-GEOD-24524]. One E. coli dataset had four
treatments and three replicates and another had four
treatments and two replicates. We used the Affymetrix
Expression Console build 1.3.1.187 to analyze the data;
the 3 Expression Arrays-RMA was applied to extract the
quantities both without any correction and together with
quantile-based correction.
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An alternative reproducibility test by measuring the
mean and standard deviation statistics of intertreatment
ratios of gene expression quantities
After measuring the descriptive statistics of mean and
standard deviation for intertreatment expression ra-
tios, we calculated the ratios of each statistic for a
single replicate when compared to different repli-
cates of another treatment. Perfect agreement between
replicates would result in a ratio of 1. Therefore, any
deviation could be an indicator of decreased reprodu-
cibility. The analytical procedure was as follows:

1. Measurement of the genes’ expression ratios
between the treatments
T1iR(T1)/T2iR(T2), T1iR(T1)/T3iR(T3), T2iR(T2)/T3iR(T3), …,
Tn-1iR(Tn-1)/TniR(Tn), and T2iR(T2)/T1iR(T1), T3iR(T3)/
T1iR(T1), T3iR(T3)/T2iR(T2)…, TniR(Tn)/Tn-1iR(Tn-1)

where T represents the treatments (1,…, n) and i
represents the genes. R(T1), …, and R(Tn) represent
the replicates of treatments.

2. Computing the mean (M) and standard deviation (S)
for each population of ratios
MT1iR(T1)/T2iR(T2), …, MTn-1iR(Tn-1)/TniR(Tn), and
T2iR(T2)/T1iR(T1), …, MTniR(Tn)/Tn-1iR(Tn-1)
ST1iR(T1)/T2iR(T2), …, STn-1iR(Tn-1)/TniR(Tn), and
ST2iR(T2)/T1iR(T1), …, STniR(Tn)/Tn-1iR(Tn-1)

3. Computing the ratios of the statistics between paired
populations among which one of the replicates of
one sample is compared to all the replicates in
another sample.
For example, in case of MT1iR(T1)/T2iR(T2) we do as
follows:
[MT1i1/T2i1]/[

MT1i1/T2i2], [
MT1i1/T2i1]/[

MT1i1/T2i3], …,
[MT1i2/T2i1]/[

MT1i2/T2i2], [
MT1i2/T2i1]/[

MT1i2/
T2i3],
The same calculation should be performed for the
ratios of standard deviations. Perfect agreement
between replicates would result in a ratio of 1 and
deviations can be an indication of decreased
reproducibility.

4. Measuring the variation of the ratios
Since we deal with ratios, the variations should be
applied in order to calculate the deviations from 1.
For that, we must use the ratios of X/Y when X > Y.
If X < Y, then we must use 1/(X/Y).

5. Measuring the average and standard deviation of the
deviations of ratios
These parameters could be utilized as reproducibility
coefficients. There will be no deviation when there
is a perfect reproducibility. In addition, the standard
deviation of the deviations is an indication of how
constant the reproducibility is when considering all
treatments. To facilitate all the steps of the analyses,
an Excel file (Additional file 3) is prepared for users.

It includes different sheets based on the number of
treatments and replicates and it just need the data to
be pasted in in order to calculate the reproducibility
measurements. There is a manual sheet included as
well. We analyzed the mentioned rice data including
four treatments each with two replicates. Therefore,
there were 48 populations of expression ratios for
uncorrected data and the same for corrected data
(see Additional file 1). To check the robustness of
the method, we also applied the online-available
yeast RNA-Seq dataset explained by Lipson et al.
[18]. This includes expression data of 6387 genes
reported as transcript per million (t.p.m) and were
found expressed in all the three technical replicates
of the samples (see Additional file 1). Furthermore,
we analyzed the mentioned five different microarray
datasets from Arabidopsis, barley, yeast, and E. coli
(see Additional file 2).

Protein quantity correction in order to assess the
correlation between the protein and transcript
abundance
Translation time can vary among transcripts with differ-
ent lengths. This could be a potential source of variation
of mRNA-protein correlation. Here, we introduce a cor-
rection approach to expel this source of variation out
of data. Table 2 represents an example of protein quan-
tity correction. The ORF lengths could be corrected by
dividing the ORF-of interest-length by the shortest
ORF length in the data. The corrected lengths are the cor-
rection factors that act as multipliers on protein quantities
prior to correlating them with respective transcript abun-
dance (Table 2).

Conclusions
Here, we conclude to enhance the power of reproduci-
bility assay of gene expression data by considering the

Table 2 Pure post-transcriptional regulation effects can
be examined after correction of the protein quantities

Gene TFa ORFb (bp) PFc CFd CPFf

1 2 1000 10 1 10

2 2 2000 9 2 18

3 2 3000 8 3 24

4 2 4000 7 4 28

5 2 5000 6 5 30

6 2 6000 5 6 30

7 2 7000 4 7 28

8 2 8000 3 8 24

The table represents an artificial example of similar transcript fold-change for
all the genes with different lengths and different protein fold-changes.
aObserved transcript fold-change, bCoding sequence length, cObserved protein
fold-change, dCalculated correction factor (length/1000), fCorrected PF (PF.CF).
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slopes of inter-replicate linear regression lines and nar-
row-intervals of scatter plots as well as the correlation
coefficient. We also introduce an efficient alternative ap-
proach which can detect small changes among large
datasets. This works based on the means and standard
deviations of the expression ratios of genes. As a reliabil-
ity assay, it is advised not to rely on the correlation be-
tween the transcript and protein levels. This is due to
the differences among the ORF-lengths of genes which
can result in a weak correlation without post-transcrip-
tional regulatory mechanisms. Finally, we advise an
ORF-length based correction of protein quantities to
examine a much pure effect of post-transcriptional regu-
latory mechanisms.

Additional files

Additional file 1: It is an Excel file which contains all RNA-Seq data
analyses plus RNA-protein datasets.

Additional file 2: It is an Excel file which contains all the microarray
data analyses.

Additional file 3: This Excel file can be used as an easy tool in
order to get the reproducibility measurements.
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