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Abstract: Human lung mast cells (HLMCs) express the high-affinity receptor FcεRI for IgE and
are strategically located in different compartments of human lung, where they play a role in
several inflammatory disorders and cancer. Immunoglobulin superantigens (e.g., protein A of
Staphylococcus aureus and protein L of Peptostreptococcus magnus) bind to the variable regions of either
the heavy (VH3) or light chain (κ) of IgE. IL-33 is a cytokine expressed by epithelial cells that exerts
pleiotropic functions in the lung. The present study investigated whether immunoglobulin superanti-
gens protein A and protein L and IL-33 caused the release of inflammatory (histamine), angiogenic
(VEGF-A) and lymphangiogenic (VEGF-C) factors from HLMCs. The results show that protein A
and protein L induced the rapid (30 min) release of preformed histamine from HLMCs. By contrast,
IL-33 did not induce the release of histamine from lung mast cells. Prolonged incubation (12 h) of
HLMCs with superantigens and IL-33 induced the release of VEGF-A and VEGF-C. Preincubation
with IL-33 potentiated the superantigenic release of histamine, angiogenic and lymphangiogenic
factors from HLMCs. Our results suggest that IL-33 might enhance the inflammatory, angiogenic
and lymphangiogenic activities of lung mast cells in pulmonary disorders.

Keywords: allergy; asthma; histamine; IL-33; mast cell; protein A; protein L; superantigen; VEGF-A;
VEGF-C

1. Introduction

Mast cells, localized in different compartments of human lung [1–4], are critical sen-
tinels in immunity [5,6]. Mast cells were canonically considered primary effector cells of
allergic disorders [2,7–9]. There is now evidence that these cells play a role in bacterial and
viral infections [6,10–12], pulmonary disorders [13], angiogenesis [14–17], lymphangiogene-
sis [18,19], autoimmune diseases [20–22], and cancer [23–26].

Human lung mast cells express the high-affinity receptor (FcεRI) for immunoglobulin
E [1,27,28]. IgE is a heterotetramer consisting of two identical heavy chains and two iden-
tical light chains that bind with high affinity (Ka ∼= 1010 M−1) to FcεRI on mast cells [29].
The human FcεRI is a tetrameric complex comprising a single α chain, responsible for
binding to IgE, two disulfide-linked γ chains and a single β chain [30,31]. Aggregation of
IgE/FcεRI complex by multivalent antigen, divalent anti-IgE or anti-FcεRI initiates human
mast cell activation [32,33] and the release of preformed (e.g., histamine), de novo synthe-
sized lipid mediators [e.g., prostaglandin D2 (PGD2) and cysteinyl leukotriene C4 (LTC4)],
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chemokines [34,35] and cytokines [8]. Human lung mast cells [14], like macrophages [36],
basophils [37], and neutrophils [38], also release angiogenic (e.g., vascular endothelial
growth factor A: VEGF-A) and lymphangiogenic factors (e.g., vascular endothelial growth
factor C: VEGF-C) [7,14,36].

Staphylococcus aureus (S. aureus) is a multifaceted human pathobiont which synthesizes
several T [39] and B cell superantigens (SAgs) (e.g., protein A) [40]. Most clinical isolates
of S. aureus synthesize and release protein A [41] which has two binding sites for human
immunoglobulins (Igs): the classical site binds Fcγ [42], whereas the alternative site binds
the Fab portion of 15% to 50% of human polyclonal IgG, IgM, IgA, and IgE [43]. In par-
ticular, the alternative site of protein A binds specifically to VH3, the largest of human Ig
germline VH domain of human Igs [44]. Protein L, synthesized by Peptostreptococcus magnus
(P. magnus) is another SAg that binds to the V domain of the κ light chains of human Igs, in-
cluding IgE [45–48]. In particular, protein L binds with high-affinity only human VkI, VkIII
and VkIV subtypes, but does not interact with VkII subtype [49]. Several allergic [50–55]
and autoimmune disorders [56,57], neoplasia [58–60], and immunodeficiencies [44] can be
associated with SAgs.

Interleukin-33 (IL-33) is an IL-1 family member [61] expressed by lung epithelial and
endothelial cells, and by other stromal cells [62–64]. IL-33, released after cellular stress or
damage, acts as an alarmin that activates the immune response [65,66]. IL-33 binds to a
heterodimer formed by its primary receptor ST2 and the co-receptor IL-1 receptor accessory
protein (IL1RAP). Engagement of IL-33 receptor results in the release of mediators by
different immune cells [67], including mast cells [17,22,68–74]. IL-33 is involved in allergic
disorders [75–78], bacterial and viral infections [79–82] and cancer [66,83,84].

The aim of this study was to evaluate whether protein A and protein L, alone or in com-
bination with IL-33, induce the release of inflammatory, angiogenic and lymphangiogenic
factors from primary human lung mast cells.

2. Materials and Methods
2.1. Reagents

Bovine serum albumin (BSA), PIPES [piperazine-N,N′-bis (2-ethanesulfonic acid)],
L-glutamine, antibiotic-antimycotic solution (10,000 IU penicillin, 10 mg/mL streptomycin,
and 25 µg/mL amphotericin B), IL-33 (R & D Systems, Minneapolis, MN, USA), collagenase
(Worthington Biochemical Co., Freehold, NJ, USA), fetal calf serum (FCS) (GIBCO, Grand
Island, NY, USA), pronase (Calbiochem, La Jolla, CA, USA), RPMI 1640 with 25 mM
HEPES buffer, Eagle’s minimum essential medium (Flow Laboratories, Irvine, UK), Percoll
(Pharmacia Fine Chemicals, Uppsala, Sweden), and CD117 MicroBead (Miltenyi Biotech,
Bologna, Italy) were obtained commercially. The monoclonal antibody (mAb) anti-FcεRI
was a gift from Dr. Lawrence M. Lichtenstein (The Johns Hopkins University, Baltimore,
MD, USA). Human IgG anti-IgE (H-aIgE) was purified from the serum of a patient with
atopic dermatitis as previously described [85,86]. The specificity and activity of IgG anti-IgE
were described elsewhere [85].

2.2. Human Monoclonal IgM and IgE and Human Polyclonal IgG

Monoclonal IgM, purified from the serum of patients with Waldenström’s macroglob-
ulinemia, were described previously [87]. Variable regions of these monoclonal IgM were
determined using a panel of primary sequence-dependent VH family specific reagents that
identify framework regions [88]. Human polyclonal IgG were purified from the serum of
healthy donors [89]. Monoclonal IgE λ and κ, purified from the serum of patients with IgE
myeloma, were described elsewhere [89,90].

2.3. Isolation of HLMCs

The study was approved by the Ethics Committee of the University of Naples Federico
II (Protocol: Human MC No. 7/19). The lung tissue was obtained from patients who
were seronegative for HIV-1, HCV, and HBV undergoing thoracic surgery. HLMCs were
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isolated from human lung tissue by a modification of the method previously described [14].
The enzymatic dispersion tissue yields ≈5 × 105 mast cells per gram of lung tissue. The
purity of these populations ranged from 3% to 18%. HLMCs were partially purified
by flotation through a discontinuous Percoll gradient [87]. Mast cell purity using this
technique ranged from 49% to 81% and was assessed by alcian blue staining.

2.4. Histamine Release

HLMCs (≈3 × 104 mast cells per tube) were resuspended in PIPES buffer containing,
in addition to PIPES (25 mM), CaCl2 (2 mM) and dextrose (1 g/L). 0.3 mL of the cell
suspensions were placed in 12 × 75 mm polyethylene tubes. 0.2 mL of each prewarmed
releasing stimulus was added, and incubation was continued at 37 ◦C for 45 min [91].
At the end of incubation, cells were centrifuged (1000× g, 4 ◦C, 5 min) and supernatants
were stored at –20 ◦C for subsequent assay of histamine. Histamine was measured in
duplicate determinations with an automated fluorometric technique [92].

2.5. VEGF-A and VEGF-C Release

HLMCs (≈8 × 104 mast cells/per tube) were incubated (37 ◦C, 12 h) in RPMI 1640
containing 5% FCS, 2 mM L-glutamine, and 1% antibiotic-antimycotic solution, and ac-
tivated with various concentrations of protein A or protein L, alone or in combination
with IL-33. At the end of incubation, cells were centrifuged (1000× g, 4 ◦C, 5 min) and the
supernatants were stored at −80 ◦C for subsequent assay of mediator release. VEGF-A
and VEGF-C were measured in duplicate determinations using ELISA kits (R&D System,
Minneapolis, MN, USA [93]. The ELISA sensitivity is 31–2000 pg/mL for VEGF-A and
62–4000 pg/mL for VEGF-C.

2.6. Statistical Analysis

Data were analyzed with the GraphPad Prim 6 software package (GraphPad Soft-
ware, La Jolla, CA, USA). Values were expressed as mean ± SEM (standard error of the
mean). Statistical analysis was performed using Student’s t-test or one-way analysis of
variance [71]. Correlations between two variables were assessed by Spearman’s rank
correlation analysis and reported as coefficients of correlation (r). A p value ≤ 0.05 was
considered statistically significant.

3. Results
3.1. Effects of Human IgG Anti-IgE on the Release of Angiogenic and Lymphangiogenic Factors
from HLMCs

We have previously reported that IgG anti-IgE purified from the serum of a small per-
centage of atopic dermatitis patients induced histamine release from human basophils [85]
and lung mast cells [94]. The activating effects of human IgG anti-IgE (H-aIgE) were
mediated by the interaction with membrane-bound IgE on human basophils and mast cells.
In a series of experiments, we used this human autoantibody to activate HLMCs in vitro.
H-aIgE (10−2 to 3 µg/mL) caused a concentration-dependent release of both angiogenic
(VEGF-A) and lymphangiogenic factors (VEGF-C) from four different preparations for
HLMCs (Figure 1A). As a control, we found that the same concentrations of H-aIgE in-
duced a concentration-dependent release of histamine. Similar results were obtained when
HLMCs were activated by increasing concentrations (10−1 to 3 µg/mL) of monoclonal
antibody (mAb) anti-FcεRI (Table 1). Three preparations of human polyclonal IgG (10−2 to
3 µg/mL) did not cause the release of histamine, VEGF-A, and VEGF-C (Table 2). These
results indicate that mast cells isolated from human lung parenchyma express IgE bound
to FcεRI. Figure 1B shows that there was a significant correlation between the production
of VEGF-A and histamine release caused by H-aIgE (r = 0.76; p < 0.001). Similarly, there
was a significant correlation between the production of VEGF-C and histamine release
(r = 0.57; p < 0.05) (Figure 1C) and between the production of angiogenic (VEGF-A) and
lymphangiogenic (VEGF-C) factors (r = 0.89; p < 0.001) (Figure 1D).
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(HLMCs). HLMCs were incubated (45 min at 37 °C) with the indicated concentrations of 
IgG anti-IgE for histamine secretion or (12 h at 37 °C) for VEGF-A and VEGF-C release. 
Each bar is the mean ± SEM; (B) Correlation (r = 0.76; p < 0.001) between VEGF-A release 
and the percent histamine secretion caused by human IgG anti-IgE from HLMCs; (C) 
Correlation (r = 0.57; p < 0.05) between VEGF-C release and the percent histamine secre-
tion caused by human IgG anti-IgE from HLMCs; (D) Correlation (r = 0.89; p < 0.001) 
between VEGF-A and VEGF-C release caused by human IgG anti-IgE from HLMCs. 

Table 1. Effects of increasing concentrations of monoclonal antibody anti-FcεRI on histamine re-
lease and the production of VEGF-A (angiogenic) and VEGF-C (lymphangiogenic) from human 
lung mast cells. 

Monoclonal Antibody (mAb) Anti-FcεRI (μg/mL) 
 10−1 1 3 

Percent Histamine Release 14.0 ± 3.21 23.33 ± 4.80 24.66 ± 3.84 
VEGF-A 

(pg/106 cells) 
16.33 ± 3.28 28.66 ± 1.45 51.33 ± 3.84 
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Human lung mast cells purified from three different donors were incubated with the indicated 
concentrations of mAb anti-FcεRI to evaluate histamine secretion (45 min at 37 °C) or VEGF-A and 
VEGF-C release (12 h at 37 °C). Each value is the mean ± SEM. 

Figure 1. (A) Effects of increasing concentrations of human IgG anti-IgE purified from the serum of
an atopic dermatitis patient [85,95] on histamine release and the production of VEGF-A and VEGF-C
from four different preparations of human lung mast cells (HLMCs). HLMCs were incubated (45 min
at 37 ◦C) with the indicated concentrations of IgG anti-IgE for histamine secretion or (12 h at 37 ◦C)
for VEGF-A and VEGF-C release. Each bar is the mean ± SEM; (B) Correlation (r = 0.76; p < 0.001)
between VEGF-A release and the percent histamine secretion caused by human IgG anti-IgE from
HLMCs; (C) Correlation (r = 0.57; p < 0.05) between VEGF-C release and the percent histamine
secretion caused by human IgG anti-IgE from HLMCs; (D) Correlation (r = 0.89; p < 0.001) between
VEGF-A and VEGF-C release caused by human IgG anti-IgE from HLMCs.

Table 1. Effects of increasing concentrations of monoclonal antibody anti-FcεRI on histamine release
and the production of VEGF-A (angiogenic) and VEGF-C (lymphangiogenic) from human lung mast
cells.

Monoclonal Antibody (mAb) Anti-FcεRI (µg/mL)

10−1 1 3

Percent
Histamine

Release
14.0 ± 3.21 23.33 ± 4.80 24.66 ± 3.84

VEGF-A
(pg/106 cells) 16.33 ± 3.28 28.66 ± 1.45 51.33 ± 3.84

VEGF-C
(pg/106 cells) 16.33 ± 4.91 29.33 ± 6.43 45.0 ± 8.14

Human lung mast cells purified from three different donors were incubated with the indicated concentrations of
mAb anti-FcεRI to evaluate histamine secretion (45 min at 37 ◦C) or VEGF-A and VEGF-C release (12 h at 37 ◦C).
Each value is the mean ± SEM.
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Table 2. Effect of human polyclonal IgG on histamine release and the production of VEGF-A and
VEGF-C from human lung mast cells.

Human Polyclonal IgG (µg/mL)

10−2 10−1 1 3

Percent
Histamine

Release
1.66 ± 1.20 1.66 ± 0.88 1.33 ± 0.88 1.83 ± 1.01

VEGF-A
(pg/106 cells) 0.33 ± 0.33 2.30 ± 0.33 1.66 ± 1.20 0.66 ± 0.66

VEGF-C
(pg/106 cells) 1.16 ± 0.60 0.50 ± 0.50 1.4 ± 0.94 0.83 ± 0.44

Increasing concentrations of human polyclonal IgG purified from the serum of three healthy donors as described
elsewhere [89] were incubated with three different preparations of human lung mast cells (HLMCs). HLMCs
were incubated (45 min at 37 ◦C) with the indicated concentrations of IgG to evaluate histamine secretion or
VEGF-A and VEGF-C release (12 h at 37 ◦C). Each value is the mean ± SEM.

3.2. Effect of Superantigenic Protein A on the Release of Angiogenic and Lymphangiogenic Factors
from HLMCs

S. aureus colonization is associated with bronchial asthma [52,95]. S. aureus super-
antigens trigger airway inflammation and increased airway responsiveness, and facilitate
allergic sensitization in asthma models [96]. It has been shown that S. aureus and protein
A can activate human mast cells through different mechanisms [47,97]. More recently, we
have demonstrated that protein A induced the release of lipid mediators from human car-
diac mast cells through the engagement of IgE VH3+ bound to FcεRI [98]. Figure 2A shows
that protein A (30 to 600 nM) caused a concentration-dependent release of both VEGF-A
and VEGF-C from different preparations of HLMCs. The same concentrations of protein
A caused a dose-dependent release of histamine. Protein A contains five homologous
repeated domains, each of which binds to human Igs, including IgE [42,43]. Preincubation
(15 min, 37 ◦C) of protein A (300 nM) with IgM VH3+ (10 µg/mL), but not IgM VH6+

(10 µg/mL), blocked the histamine-releasing activity of protein A (Table 3). These results
suggest that the immunoglobulin superantigen protein A activates HLMCs through the
binding to IgE VH3+ bound to FcεRI.

Table 3. Effects of preincubation of protein A with human monoclonal IgM VH3+ or IgM VH6+ on
the activation of HLMCs.

Stimulus Percent Histamine Release

Protein A 18.3 ± 0.9
IgM VH3+ 0.3 ± 0.3

IgM VH3+ + Protein A 3.0 ± 0.6 ***
IgM VH6+ 0.7 ± 0.6

IgM VH6+ + Protein A 18.7 ± 0.3
Protein A (300 nM) was preincubated (15 min at 37 ◦C) with IgM VH3+ (10 µg/mL) or IgM VH6+ (10 µg/mL) and
incubation continued for another 45 min at 37 ◦C. Results show the mean ± SEM of percent histamine release
obtained from three experiments with different preparations of HLMCs. *** p < 0.001 when compared to protein
A alone.
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cretion (r = 0.59; p < 0.05) caused by protein A (Figure 2B). In addition, there was a signifi-
cant correlation between VEGF-C production and histamine secretion (r = 0.82; p < 0.001) 
(Figure 2C) and between VEGF-A and VEGF-C production (r = 0.64; p < 0.01) (Figure 2D). 
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human skin mast cells (HSMCs) with IL-33 reduced anti-IgE-induced histamine secretion 

Figure 2. (A) Effects of increasing concentrations of protein A on histamine release and the production of VEGF-A and
VEGF-C from four different preparations of human lung mast cells (HLMCs). HLMCs were incubated (45 min at 37 ◦C)
with the indicated concentrations of protein A for histamine secretion or (12 h at 37 ◦C) for VEGF-A and VEGF-C release.
Each bar is the mean ± SEM; (B) Correlation (r = 0.59; p < 0.05) between VEGF-A release and the percent histamine secretion
caused by protein A from HLMCs; (C) Correlation (r = 0.82; p < 0.001) between VEGF-C release and the percent histamine
secretion caused by protein A from HLMCs; (D) Correlation (r = 0.64; p < 0.01) between VEGF-A and VEGF-C release
caused by protein A from HLMCs from HLMCs.

There was a significant correlation between the release of VEGF-A and histamine
secretion (r = 0.59; p < 0.05) caused by protein A (Figure 2B). In addition, there was a
significant correlation between VEGF-C production and histamine secretion (r = 0.82;
p < 0.001) (Figure 2C) and between VEGF-A and VEGF-C production (r = 0.64; p < 0.01)
(Figure 2D).

3.3. Effects of IL-33 on the Release of Angiogenic and Lymphangiogenic Factors from HLMCs

Several investigators have found that IL-33 can induce the release of different cytokines
from human cord blood (CBMCs) and peripheral blood-derived mast cells
(PBMCs) [17,68–71,78,99]. By contrast, IL-33 had no effect on the release of preformed
mediators from mouse and human mast cells [100]. Interestingly, long-term incubation of
human skin mast cells (HSMCs) with IL-33 reduced anti-IgE-induced histamine secretion
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from human skin mast cells (HSMCs) [68], whereas short-term exposure of HSMCs synergis-
tically potentiated β-hexosaminidase release induced by substance P (SP) and anti-IgE [74].
Figure 3A shows that IL-33 (10 to 100 ng/mL) caused a concentration-dependent release of
both VEGF-A and VEGF-C from HLMCs. By contrast, short-term incubation of HLMCs with
IL-33 did not induce histamine release from these cells. The maximum VEGF-A release in-
duced by IL-33 was significantly lower than that caused by both anti-IgE (12.7 ± 1.7 pg/106

cells vs. 52.3 ± 3.3 pg/106 cells; p < 0.001) and protein A (12.7 ± 1.7 pg/106 cells vs.
24.3 ± 1.9 pg/106 cells; p < 0.01). Similarly, the maximum release of VEGF-C induced by
IL-33 was lower than that caused by anti-IgE (12.3 ± 2.1 pg/106 cells vs. 49.0 ± 5.9 pg/106

cells; p < 0.01) and protein A (12.3 ± 2.1 pg/106 cells vs. 26.8 ± 2.6 pg/106 cells; p < 0.01).
There was no correlation between the production of both VEGF-A (Figure 3B) and VEGF-C
(Figure 3C) and histamine release induced by IL-33 from HLMCs. By contrast, there was
a significant correlation between the release of VEGF-A and VEGF-C (r = 0.91; p < 0.001)
induced by IL-33 from HLMCs (Figure 3D).
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Figure 3. (A) Effects of increasing concentrations of IL-33 on histamine release and the production of VEGF-A and VEGF-C
from four different preparations of human lung mast cells (HLMCs). HLMCs were incubated (45 min at 37 ◦C) with the
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caused by IL-33 from HLMCs; (D) Correlation (r = 0.91; p < 0.001) between VEGF-A and VEGF-C release caused by IL-33
from HLMCs.
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3.4. Effect of Short-Term Priming by IL-33 on Superantigenic Release of Mediators from HLMCs

It has been reported that short-term priming by IL-33 can potentiate the release of cy-
tokines induced by different stimuli from mouse [73] and human mast cells [17,20,69,71,74,101].
In a series of experiments, HLMCs were preincubated (30 min, 37 ◦C) with IL-33 (30 ng/mL)
before exposure to protein A (100 nM). The results presented in Figure 4A confirm that
IL-33 alone has no effect on histamine release whereas it induced both VEGF-A (Figure 4B)
and VEGF-C (Figure 4C) from HLMCs. Interestingly, short-term priming by IL-33 poten-
tiated the release of VEGF-A (Figure 4B) and VEGF-C (Figure 4C) induced by protein A
from HLMCs.
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Protein L is another immunoglobulin SAg, which binds to human Igs through a mecha-
nism different from protein A [45,102]. This protein binds with high affinity (~1010 M−1) only
to subtypes (VKI, VKIII, and VKIV) of κ light chains of human Igs, including IgE [46,48,49].
We have found that protein L is a superantigenic stimulus inducing the release of pre-
formed and the de novo synthesized inflammatory mediators from human cardiac mast
cells through the interaction with κ light chains of IgE [98]. In a series of preliminary
experiments, we found that increasing concentrations (1–300 nM) of protein L caused the
release of inflammatory mediators from HLMCs (data not shown). Table 4 shows that
protein L (100 nM) induced histamine release from HLMCs. Preincubation of protein L
with increasing concentrations (0-3-1 µg/mL) of human monoclonal IgE λ light chain did
not modify the activating property of protein L. By contrast, preincubation with the same
concentrations of human monoclonal IgE κ light chain concentration-dependently inhibits
the release of histamine induced by protein L from HLMCs. These results are compatible
with the hypothesis that protein L activates HLMCs through the interaction with the κ
light chain of IgE on lung mast cells. We then examined the interactions between protein
L and IL-33 on the activation of HLMCs. Figure 5 shows the results of a typical experi-
ment showing that protein L induces the release of histamine from HLMCs (Figure 5A).
By contrast, IL-33 did not induce histamine secretion from HLMCs (Figure 5A) but caused
a small production of VEGF-A (Figure 5B) and VEGF-C (Figure 5C). Short-term incubation
(30 min, 37 ◦C) of HLMCs with IL-33 (30 mg/mL) potentiated the secretion of histamine
(Figure 5A) and the release of VEGF-A (Figure 5B) and VEGF-C (Figure 5C) induced by
protein L from HLMCs. Similar results were obtained in two additional experiments with
different preparations of HLMCs (data not shown).

Table 4. Effects of preincubation of protein L with human monoclonal IgE λ or IgE κ on the activation
of HLMCs.

Stimulus Percent Histamine Release

Protein L (100 nM) 19.0 ± 1.5
IgE λ (0.3 µg/mL) + Protein L 18.7 ± 1.8
IgE λ (1 µg/mL) + Protein L 18.3 ± 2.0

IgE κ (0.3 µg/mL) + Protein L 13.7 ± 0.7 *
IgE κ (1 µg/mL) + Protein L 3.7 ± 1.2 **

Protein L (100 nM) was preincubated (15 min at 37 ◦C) with increasing concentrations (0.3 or 1 µg/mL) of human
monoclonal IgE λ light chain or human monoclonal IgE κ light chain, and incubation continued for another 45 min
at 37 ◦C. Results show the mean ± SEM of triplicate determinations of percent histamine release. Similar results
were obtained in another experiment. * p < 0.05 when compared to protein L alone. ** p < 0.01 when compared to
protein L alone.

4. Discussion

Primary mast cells isolated from human lung parenchyma can be activated by a human
IgG anti-IgE isolated from a patient with atopic dermatitis to release histamine, VEGF-A,
and VEGF-C. Similar results were obtained by activating HLMCs with a monoclonal anti-
body anti-FcεRI. These findings indicate that HLMCs expressing FcεRI bind IgE, which is
a central immunoglobulin in the pathogenesis of several allergic disorders [103,104] and
pulmonary diseases [6,13]. Two bacterial superantigens, protein A and protein L, which
bind to distinct regions of human IgE [43–45,49], activate HLMCs to release inflamma-
tory (histamine), angiogenic (VEGF-A) and lymphangiogenic (VEGF-C) factors. IL-33,
expressed and released by lung epithelial cells and endothelial cells [63,77], does not in-
duce histamine release from HLMCs, but potentiates the release of VEGF-A and VEGF-C
induced by superantigens from HLMCs.
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harvested, centrifuged and VEGF-A and VEGF-C measured in the supernatants. Results show the mean ± SEM of triplicate
determinations obtained in a typical experiment. ** p < 0.01; *** p < 0.001.

Mast cells are strategically located in different compartments of human lung [3,4,78]. These
cells and their mediators play a central role in the pathophysiology of bronchial asthma [1,2,9],
lung remodeling [105], angiogenesis [14,16,17,98], lymphangiogenesis [14,18,94,98], chronic
obstructive pulmonary disease (COPD) [106], and lung cancer [107,108].

Asthma is a heterogeneous syndrome that has been subdivided into phenotypes
and molecular endotypes [109]. Type 2 (T2)-high subtype asthma is characterized by
IgE-mediated activation of lung mast cells and includes the majority of asthmatic pa-
tients [103,104]. T2-low asthma is less well-characterized and presumably includes dif-
ferent clinical and genetic variants [110,111]. T2-low asthma may be driven by abnormal
neuronal activation, structural abnormalities involving airway smooth muscle as well as
bacterial and viral superantigens [112,113]. We found that cross-linking the IgE-FcεRI
network on HLMCs induces the release of histamine. More importantly, we found that
IgE-mediated activation of primary HLMCs also induces the production of VEGF-A and
VEGF-C. The latter findings extend previous results indicating that activation of different
types of human mast cells causes the release of VEGF-A [14,16,17,94,98]. Interestingly,
IgE-mediated activation of HLMCs induces the release of VEGF-C, which is the most
potent lymphangiogenic factor [114,115].

Several investigators have provided evidence that bacterial superantigens play a role
in different allergic disorders [40,116]. We found that low concentrations of Staphylococcal
protein A induces the release of histamine, VEGF-A, and VEGF-C from HLMCs. These
findings might be relevant to explain the role of bacterial superantigens in the pathogenesis
of various allergic disorders. The role of S. aureus in the pathogenesis of allergic diseases
has been attributed to its capacity to activate T and B cells, resulting in cell proliferation and
massive cytokine release [117]. On the other hand, it has been shown that Staphylococcal su-
perantigens can induce the formation of IgE antibodies [95,118] and the presence of specific
IgE has been associated with the severity of airway and skin allergic disorders [52,119,120].
There is also evidence that S. aureus can trigger the production of cytokines from human
mast cells through the engagement of TLR2 and CD48 molecules [97]. Our results indicate
that protein A might contribute to the role played by S. aureus in allergic diseases by induc-
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ing the release of histamine and angiogenic and lymphangiogenic factors from HLMCs
through the interaction with the VH3 region of IgE.

Protein L is another Ig superantigen which specifically interacts with high affinity
with the κ light chains of human Igs, including IgE [42]. In this study, we found that protein
L is a potent stimulus to induce the secretion of histamine and the release of VEGF-A
and VEGF-C from HLMCs. These results extend previous findings indicating that protein
L induced the release of preformed (i.e., histamine) and de novo synthesized mediators
(i.e., prostaglandin D2: PGD2) from human cardiac mast cells [98]. Collectively, these
findings indicate that protein L is a complete mast cell secretagogue capable of releasing
inflammatory, angiogenic and lymphangiogenic mediators implicated in cardio-pulmonary
pathophysiology [121–123].

Recent studies revealed that cytokines such as thymic stromal lymphopoietin
(TSLP) [124–126], IL-33 [78,99,127–129], and IL-25 [130], highly expressed in the airway
epithelium, are implicated in human asthma [131]. These upstream cytokines serve as
key regulators of T2-high and T2-low asthma [99,128,132]. In particular, IL-33 is over-
expressed by epithelial cells in bronchial asthma [129] and activates different types of
rodent [70,73,133] and human mast cells [17,20,68,69,71,72,74]. There is some evidence
that IL-33, but not TSLP or IL-25, is central in models of allergic sensitization [78,127].
In this study, short-term incubation of HLMCs with IL-33 does not induce the secretion of
histamine, confirming the results of previous studies [99]. By contrast, it has been reported
that long-term (24 h) incubation of HLMCs with IL-33 caused marginal, but significant
histamine release [99].

IL-33 can induce the production of several cytokines from mouse [70,73,133], human
CBMCs [17,78] and PBMCs [20,69,72], mast cell lines [17,71], and primary mast cells [99].
We extended these findings by showing that IL-33 alone induces the release of angiogenic
VEGF-A and lymphangiogenic VEGF-C from HLMCs. The activating property of IL-33 is
likely mediated by the engagement of IL-33 receptor (ST2), which is highly expressed by
human mast cells [72,99].

Angiogenesis plays a role in pulmonary pathophysiology [18,134,135]. VEGF-A is a ma-
jor mediator of angiogenesis and can be produced by several immune cells [14,36,37,136,137].
To our knowledge, this is the first evidence that superantigens protein A and protein L
induce the release of angiogenic factors from HLMCs raising the possibility that these cells
can contribute to angiogenesis, a process of pivotal relevance in bronchial asthma [18,134]
and lung cancer [135]. Further studies are needed to comprehensively define the contribu-
tive role of IL-33 and superantigens to angiogenesis in pulmonary disorders.

The mammalian lung is rich in lymphatic vessels [138] which are increased in human
lung following infections [139–141]. We provide the first evidence that a superantigenic
activation of HLMCs leads to the production of VEGF-C, a major mediator of lymphan-
giogenesis [142]. Lymphangiogenesis is canonically considered pivotal for the diffusion
of metastasis to draining lymph nodes [143,144]. However, recent evidences indicate that
VEGF-C can potentially exert protective effects, since inflammation-associated lymphangio-
genesis can improve the resolution of inflammation [115,145]. Therefore, the contribution of
bacterial superantigens to lung mast cell-mediated lymphangiogenesis requires additional
investigations.

To the best of our knowledge, we provide the first evidence that IL-33 can induce
the release of the lymphangiogenic factor VEGF-C from HLMCs. This finding extends
a previous observation indicating that immunologically-activated human cardiac mast
cells release VEGF-C [98]. The production of VEGF-C by activated primary human mast
cells is intriguing because these cells are at the interface of the lymphatic and immune sys-
tems [146]. In several clinical and experimental studies, mast cells play a pro-tumorigenic
role, whereas in others, they play an anti-tumorigenic role [25,26,143,147]. VEGF-C is
mostly viewed as the most potent lymphangiogenic factor [115] controlling the formation
of metastasis. However, increasing evidences indicate that, under certain circumstances,
lymphangiogenesis and VEGF-C have protective effects in cancer [148]. Moreover, VEGF-C
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can exert a protective role in several inflammatory disorders [149,150] by favoring the
resolution of inflammation [142,151,152]. The pathophysiological role of VEGF-C released
by human lung and cardiac mast cells [98] deserves further investigations.

Several studies have provided evidence that IL-33 can exert a priming effect on
the activation of rodent [73] and human mast cells [17,20,69,71,74]. A previous study
reported that preincubation of LAD2 cells and CBMCs with IL-33 augmented SP-induced
VEGF-A mRNA and VEGF-A protein secretion [17]. In our study, we found that short-
term incubation of HLMCs with IL-33 potentiates the release of histamine, VEGF-A, and
VEGF-C induced by superantigens protein A and protein L. The interactions between
IL-33 and IgE-mediated stimuli (i.e., protein A and protein L) is unlikely mediated by an
overexpression of FcεRI because it has been demonstrated that IL-33 does not increase
FcεRI expression on human mast cells [74].

IL-33 is an alarmin overexpressed in lung epithelial cells [99,129] in asthmatic patients.
IL-33 expression has been also identified in human airway smooth muscle (ASM) and
HLMCs in mild-to-moderate asthma [99]. Using quantitative morphometry of the airway
wall, it has been demonstrated that IL-33 causes a shift in mast cells from the submucosa
to the airway epithelium associated with type 2 inflammation and airway hyperrespon-
siveness (AHR) [78]. A recent study highlighted a novel pathogenetic mechanism of
interaction between IL-33 and S. aureus as inducers of airway inflammation in mice [118].
Intratracheal exposure to S. aureus derived serine protease-like protein (Spl) D upregulated
IL-33 production in the lung leading to eosinophilia, bronchial hyperreactivity, and goblet
cell hyperplasia in the airways. Interestingly, blocking IL-33 activity with a soluble ST2
receptor significantly reduced airway inflammation. Our findings highlight a novel im-
munologic mechanism by which IL-33 and superantigen protein A can amplify the immune
response in inflammatory disorders involving lung mast cells. Collectively, these findings
might have translational relevance emphasizing the relevance of IL-33/S. aureus-derived
proteins in inducing inflammatory response in the airways [78,99,153]. The translational
significance of the interactions between IL-33 and bacterial superantigens deserves further
investigations in experimental models of asthma.

Our study has several limitations that should be pointed out. The in vitro experiments
were performed using primary mast cells purified from lung parenchyma of patients un-
dergoing thoracic surgery for lung cancer. The purity of HLMCs used in these experiments
ranged from 49% to 81%. Although the activating properties of protein A, protein L and
IL-33 were not affected by mast cell purity, we cannot exclude the possibility that contami-
nating cells may have influenced some of our results. In addition, IL-33 is released by tumor
cells [84] and by a myriad of immune and non-immune cells localized in human lung [64].
There is the possibility that in vivo exposure of HLMCs to IL-33 could explain some of our
results. In addition, HLMCs, although obtained from macroscopically normal lung tissue,
are in close proximity to lung cancer cells. There is the possibility that the in vivo exposure
to altered tumor microenvironment, such as low pH [154], hypoxia [155,156], lactate [157],
or adenosine [37,158,159], may have affected the phenotypic expression and the functional
activity of pulmonary mast cells.

In conclusion, our results indicate that two immunoglobulin superantigens, protein A
and protein L, can interact with different domains of human IgE bound to FcεRI to induce
the release of inflammatory, angiogenic and lymphangiogenic factors from human lung
mast cells. IL-33 synergistically potentiates the superantigenic release of mediators from
these cells. Future studies are needed to investigate whether these in vitro observations can
help to understand the in vivo interactions between IL-33 and S. aureus in inflammatory
airway disorders.

Author Contributions: Conceptualization, M.R.G., S.L., A.d.P., G.M. and G.V.; formal analysis, G.C.,
G.M. and G.V.; investigation, L.C., R.P., A.L.F. and L.M.; data curation, G.C. and G.V.; writing—
original draft preparation, L.C., R.P. and G.S.; writing—review and editing, G.C., G.M. and G.V.;
supervision, G.M. and G.V.; funding acquisition, M.R.G., G.M., G.S. and G.V. All authors have read
and agreed to the published version of the manuscript.



Cells 2021, 10, 145 13 of 19

Funding: This research was funded in part by grants from Regione Campania CISI-Lab Project,
TIMING Project, Campania Bioscience and MIUR PRIN 2017 M8Y MR8_005.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of the University of Naples Fed-erico
II (Protocol: Human MC No. 7/19).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We are grateful to all patients for donating their samples.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AHR Airway hyperresponsiveness
ASM Airway smooth muscle
BSA Bovine serum albumin
COPD Chronic obstructive pulmonary disease
CBMC Cord blood-derived mast cell
FcεRI High-affinity receptor for IgE
FCS Fetal calf serum
H Heavy
H-aIgE Human IgG anti-IgE
HLMC Human lung mast cell
Ig Immunoglobulin
IL-33 Interleukin-33
IL Interleukin
L Light
LTC4 Cysteinyl leukotriene C4
mAb Monoclonal antibody
P. magnus Peptostreptococcus magnus
PBMC Peripheral blood-derived mast cell
PGD2 Prostaglandin D2
S. aureus Staphylococcus aureus
SAg Superantigen
SE Staphylococcus aureus enterotoxins
SP Substance P
TCR T cell receptor
Treg regulatory T cell
TSLP Thymic stromal lymphopoietin
V Variable
VEGF Vascular endothelial growth factor
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