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Abstract

Background: High throughput sequencing has become an important technology for studying expression levels in
many types of genomic, and particularly transcriptomic, data. One key way of analysing such data is to look for
elements of the data which display particular patterns of differential expression in order to take these forward for
further analysis and validation.

Results: We propose a framework for defining patterns of differential expression and develop a novel algorithm,
baySeq, which uses an empirical Bayes approach to detect these patterns of differential expression within a set of
sequencing samples. The method assumes a negative binomial distribution for the data and derives an empirically
determined prior distribution from the entire dataset. We examine the performance of the method on real and
simulated data.

Conclusions: Our method performs at least as well, and often better, than existing methods for analyses of
pairwise differential expression in both real and simulated data. When we compare methods for the analysis of
data from experimental designs involving multiple sample groups, our method again shows substantial gains in
performance. We believe that this approach thus represents an important step forward for the analysis of count
data from sequencing experiments.

Background
The development of high-throughput sequencing tech-
nologies in recent years [1-4] has led to a massive
increase in genomic data represented by counts. These
count data are distinct from those acquired using bead
and array technologies in that they are fundamentally
discrete, rather than continuous, in nature. Rather than
measurements of intensity, we acquire counts of the
number of times a particular sequence is observed in a
library, whether the source is genomic DNA, DNA frag-
ments produced by immunoprecipitation, mRNA or
small RNAs. Analyses of such sequence data are often
concerned with detecting differential representation,
that is, the discovery of data which are differentially
represented between sets of biological replicates, parti-
cularly, but not exclusively, in analyses of transcriptomic
data. These analyses are often challenging due to the

small sample sizes available as a consequence of the
relatively high cost of sequencing experiments.
This type of data first emerged from the serial analysis

of gene expression (SAGE) [5], and a number of
approaches were put forward for its analysis. Most of
the early methods did not properly allow for replication
or, when they did, could only be used to compare two
groups. Baggerly et al [6] and Lu et al [7] introduced
modelling approaches based on the overdispersed logis-
tic and overdispersed log-linear distributions respectively
that are able to handle both replicate data and multiple
comparisons between groups. Robinson and Smyth
derived an ‘exact test’ method based on the negative
binomial distribution [8], and further developed this
approach using a moderated test statistic sharing infor-
mation across genomic locations to stabilize dispersion
estimation in small samples [9]. This approach showed
improvements in accuracy compared with the overdis-
persed logistic and log-linear approaches, but the meth-
ods are limited to pairwise comparisons. A recently
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developed method, DEGseq[10] takes an alternative
approach, assuming normality of the log-ratios of the
data from different biological samples conditional on
the log geometric mean of the data. Another recent
method DESeq[11] also makes the assumption of a
negative binomial distribution, but adds the assumption
of a locally linear relationship between over-dispersion
and mean expression levels of the data. These later
methods have not yet been fully described, but again
appear strictly limited to pairwise comparisons.
We develop here an empirical Bayesian approach that

is able to increase the accuracy of predictions by bor-
rowing information across the dataset, but which
removes the restriction of only considering pairwise
comparisons and allows us to analyse more complex
experimental designs. We are able to show that our
method gives equivalent or improved performance in
both simulated and biological data when compared to
existing methods for the discovery of differential expres-
sion in pairwise comparisons, and offers improvements
in performance for more complex designs.
In order to address the problem of more complex

experimental designs involving multiple groups of sam-
ples, we develop our method in a very general form by
first establishing a framework for describing diverse pat-
terns of differential expression within a dataset. Using
this framework to define a set of models, we seek to
establish posterior probabilities of each model. Finally,
we demonstrate the applicability of our method to these
experimental designs on simulated data, and are able to
show substantial improvements in performance using
our method.

Methods
We adopt and adapt the nomenclature of Robinson and
Smyth [9] to describe SAGE data as this seems generally
applicable to the data from high-throughput sequencing
technologies. A set of data acquired by sequencing a
cDNA library contains a number of sequence tags. Since
in SAGE data, there is only one tag per mRNA molecule,
Robinson and Smyth [9] examine methods for detecting
differentially expressed tags between samples. However,
in a number of applications made possible by high-
throughput sequencing, we may wish to group multiple
tags together and acquire a single count for that group-
ing. For example, with whole transcriptome mRNA or
small RNA data, we may wish to consider the total num-
ber of counts for all tags coming from a defined locus. In
either case, for each distinct tag or grouping of tags, we
have an ordered list, or tuple, of discrete counts with the
sample order the same in each tuple. In the work that fol-
lows, we therefore refer simply to tuples, without needing
to specify whether these are counts of individually
sequenced tags or aggregated counts of multiple tags.

The library size is a measure of the total number of
counts in a given library, or some surrogate measure of
library size as discussed by Bullard et al [12], and is used
as a scaling factor for the observed data.

Approach
We take an empirical Bayesian approach to estimate the
posterior probabilities of each of a set of models that
define patterns of differential expression for each tuple.
This approach begins by defining each of our models in
terms of similarity and difference between samples. For
a given model, we seek to define which samples behave
similarly to each other, and for which sets of samples
there are identifiable differences. In order to assess the
posterior probabilities of each model for each tuple, we
consider a distribution for the tuple defined by a set of
underlying parameters for which some prior distribution
exists. Samples behaving similarly to each other should
possess the same prior distribution on the underlying
parameters of the tuple, while samples behaving differ-
ently should possess different prior distributions. We
develop our method based on the negative binomial dis-
tribution for the tuple data, and derive an empirical dis-
tribution on the set of underlying parameters from the
whole of the data set.
An important advantage of our method is that the

evaluation of posterior probability for multiple models is
simply achieved. For this reason, the techniques
described are developed in a very general form.

Model definitions
In forming a set of models for the data, we consider
which patterns are biologically likely. In the simplest
case of a pairwise comparison, we have count data from
some samples from both condition A and condition B.
If we suppose that we have two biological replicates for
each condition, then there are four libraries, A1, A2, B1,
B2, where A1, A2 and B1, B2 are the replicates. In most
cases, it is reasonable to suppose that at least some of
the tuples may be unaffected by our experimental condi-
tions A and B. The count data for each sample in these
tuples will then share the same underlying parameters.
However, some of the tuples may be influenced by the
different experimental conditions A and B. For such a
tuple, the data from samples A1 and A2 will share the
same set of underlying parameters, the data from sam-
ples B1 and B2 will share the same set of underlying
parameters, but, crucially, these sets of parameters will
not be identical. We can thus treat our models as non-
overlapping sets of samples. Our first model, of no dif-
ferential expression, is thus defined by the set of sam-
ples {A1, A2, B1, B2}. Our second model, of differential
expression between condition A and condition B is
defined by the sets {A1, A2} and {B1, B2}.
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More complex models
In the simple example described, only two models are
plausible, and this framework may seem overly complex.
However, in experimental designs involving multiple
sample groups, many more models are possible. As an
example, we consider the next most complex experi-
mental design, involving samples from three distinct
conditions A, B and C. In this case, for a given tuple,
either the data are equivalently distributed across all
samples, or they are equivalently distributed under two
conditions but not under the third, or they are differ-
ently distributed in all three conditions. There are thus
five models which we need to consider.
In the first of these, all samples are equivalently dis-

tributed, and so the model is defined by the set {A1, A2,
..., B1, B2, ..., C1, C2, ...}. We then need to consider the
three models under which there is equivalent distribu-
tion under two conditions but not the third. The first of
these models can be described by the sets {A1, A2, ..., B1,
B2, ...}, {C1, C2, ...}, in which the data from condition A
and condition B are distributed equivalently, and the
data from condition C are differently distributed. Simi-
larly, we need to consider the other two models in
which a single condition differs from the other two, {A1,
A2, ..., C1, C2, ...}, {B1, B2, ...} and {B1, B2, ..., C1, C2, ...},
{A1, A2, ...}. Finally, we need to consider the model
defined by the sets {A1, A2, ... }, {C1, C2, ... }, {A1, B2, ...},
in which the data from all three conditions are differ-
ently distributed.
It is clear from considering even this relatively simple

example that the number of potential models rises
rapidly as the number of different experimental condi-
tions increases. We should also note, however, that in
many cases we will be able to exclude particular models
based on biological knowledge (if, for example, we know
that condition B is a subtype of condition A, we might
exclude the model defined by {A1, A2, ..., C1, C2, ...}, {B1,
B2, ...}), and so the complexity of the system need not
grow too rapidly. Our task is now to determine the pos-
terior probability of each of our models, given the data,
for each tuple. This will allow us to form ranked lists of
the tuples, ordered by the posterior probabilities of a
particular model (for instance, a model of differential
expression between experimental conditions).
One interesting advantage of determining posterior

probabilities, rather than significance values (p-values)
for each comparison, is that, since we acquire posterior
probabilities for each model and each tuple, and since
these models are mutually exclusive, it is trivial to com-
bine models of interest by summing the posterior prob-
abilities. For example, if we are interested not in any
specific type of differential expression, but simply in
whether or not differential expression of any type exists
in our data, we can acquire the probability of differential

expression of any type by summing the posterior prob-
abilities of all (biologically plausible) models that
describe differential expression. We can then rank the
tuples on these probabilities as well as on the probabil-
ities of individual models.

Equivalence of distributions
Suppose we have the count data from a set of n samples
 = {A1, ..., An}, such that the observed data for a parti-
cular tuple, c, is given by (u1c, ..., unc) where uic is the
count for a particular tuple c for sample i. For each
sample Ai, we also have the library size scaling factor li.
For each tuple, then, we can consider the data to be

D u u l lc lc nc= {( , ),( , , )}n 1

Now we consider some model M on these data
defined by the sets {E1, ..., Em}. If, in this model, the
samples Ai and Aj are in the same set Eq, then we know
that they have the same parameters of underlying distri-
bution θq. We can define a set K = {θ1, ..., θm}. For nota-
tional simplicity, we will also define the data associated
with the set Eq as Dqc = {(uic : Ai Î Eq), (li : Ai Î Eq)}
Given a model M for the data, then the quantity of
interest for each tuple c is the posterior probability of
the model M given the data Dc, that is

  
( | ) ( | ) ( )

( )
M Dc

Dc M M
Dc

= (1)

We can then attempt to calculate ℙ(Dc |M) by consid-
ering the marginal likelihood

  ( | ) ( | , ) ( | )D M D K M K M Kc c= ∫ d (2)

Negative binomially distributed data
There are a number of possible distributions which
could be used for Dc|K, M and K|M. One approach that
seems natural is to assume that the data are Poisson dis-
tributed and the parameters Gamma distributed, thus
modelling the rarity of any individual molecule being
sequenced and allowing a form of the Poisson-Gamma
conjugacy to be used in calculating ℙ(Dc |M). However,
as Robinson and Smyth [8] point out, this model fails to
take into account the extra variability introduced by bio-
logical replication. An assumption that the data are
negative binomially (over-dispersed Poisson) distributed
may be used to account for this variability. Robinson
and Smyth [9] showed the existance of over-dispersion
in real data, and we are also able to see this in the data
set we introduce below. Furthermore, Lu et al [7] show
in simulated data that an assumption of a negative
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binomial distribution can be robust even if the data are
not truly negative binomially distributed.
In the case of equal library sizes, it is possible under

an assumption of a negative binomial distribution to
develop an exact test for the likelihood of observing the
data given non-differential expression. The problem of
unequal library sizes can be approached by generating
‘pseudodata’ that is approximately identically distributed
to the real data but has a common library size. This is
the approach taken by Robinson and Smyth [9]. As an
alternative to this approach, we use numerical methods
in an empirical Bayesian approach that allows us to
retain the real data, using library size as a scaling factor.
We consider a sample Ai belonging to the set Eq with
library size li. We now assume that the count in this
sample at tuple c, uic is distributed negative binomially,
with mean μqli and dispersion jq, where θq = (μq, jq).
Then one parametrization can be defined as
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There is unfortunately no obvious conjugacy that can
be applied as in the Poisson-Gamma case. However, if
we can define an empirical distribution on K then we
can estimate ℙ(Dc | M) numerically. We assume first
that the θq Î K are independent with respect to q. Then
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This assumption reduces the dimensionality of the
integral and thus improves the accuracy of the numeri-
cal approximation to the integral.
Next we suppose that for each θq Î K we have a set of

values Θq that are sampled from the distribution of θq.
Then we can derive the approximation [13]
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The task that then remains is to derive the set Θq

from the data.
Empirically derived distributions on K
We can derive an empirical distribution on K by exam-
ining the whole dataset. For each set of samples Eq, we
would like to find some estimate of the mean and dis-
persion of the distribution underlying the data from a
single tuple, Dqc. By similarly finding estimates of the
mean and dispersion for a large number of tuples, we
would have our sampling Θq. The chief difficulty here

lies in properly estimating the dispersion. For example,
suppose that the data from a given tuple shows genuine
differential expression. If the model that we are testing
assumes that there is no differential expression, then
the dispersion will be substantially over-estimated for
this tuple. Since we do not know in advance which
tuples are genuinely differentially expressed and which
are not, we need to consider the replicate structure of
the data in order to properly estimate the dispersions.
We define the replicate structure by considering the
sets {F1, ... Fs} where i, j Î Fr if and only if sample Aj is
a replicate of Ai.
Given this structure for the data, we can estimate the

dispersion of the data in a tuple Dc by quasi-likelihood
methods [14]. Quasi-likelihood methods have been
shown to give good estimations of the dispersion of a
single tuple in this setting [8]. We first define
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Taking this value for jc we can then re-estimate the
values 

∧

ic
by maximum likelihood methods, choosing

the values for 
∧
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that maximise the likelihoods
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for each r.
We then iterate on our estimations of jc and 

∧

ic
until we achieve convergence.
This gives us a value for jc. We then need to estimate

the mean of the distribution underlying the data Dqc,
that is, for the set of samples in Eq, which we can easily
do by fixing the value acquired for jc and estimating
the mean μqc by maximum likelihood methods, choosing
the value for μqc that maximises the likelihood
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for each q.
We can then form the set Θq = {(μqc, jc)} by repeating

this process for multiple h, and are then able to calcu-
late ℙ(Dc | M) from Eqn 3.
This method of estimating the dispersion assumes that

the dispersion of a tuple is constant across different sets
of samples. In most cases, where the number of samples
is low, this is likely to be the best approach. Where
there is some expectation that the dispersion will be
substantially different between sets of replicates, there
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may be advantages to estimating the dispersions indivi-
dually for each of the different sets of samples in each
model, while still considering the replicate structure
within these sets. This is easily done by restricting the
data (and corresponding replicate structure) to Dqc

when estimating the dispersion in Eqn 4. We found no
substantial differences between these approaches in
simulation studies (unpublished data) and so show only
the results acquired when the dispersion of each tuple is
assumed constant.

Estimation of prior probabilities of each model
A number of options are available when considering the
prior probabilities of each model ℙ(M) required in Eqn
1. If we are able to estimate these from other sources,
this may provide the optimum solution. However, in
many cases we may not be able to provide a reasonable
estimate of prior probabilities. We propose that the
methods suggested by Smyth [15] for estimating propor-
tions of differentially expressed genes in analysis of
microarray experiments may reasonably be adapted to
estimate these priors. We begin by choosing (ideally
based on our prior knowledge about the models) some
value p to use as the prior probability for the model M
in order to estimate the posterior probability ℙ(M | Dc)
for the cth tuple. But then we can derive a new estimate

′ = 〈 〉p M Dc c( | )

for the prior probability of model M. By iterating until
convergence, we acquire estimates of the prior probabil-
ities for each model. In practice, we find that the initial
choice of the ps has no substantial effect on the values
to which they finally converge. This method is straight-
forward to implement, but potentially allows for positive
feedback and hence over-estimation of the prior prob-
ability of a model (and corresponding under-estimation
of the prior probabilities of the other models).
An alternative to this approach would be to establish

some distribution on the prior probabilities of our mod-
els and find the marginal posterior probability of the
data based on this distribution. One approach to this
might be to use the distribution of posterior probabil-
ities as an approximation to a distribution on the priors.
We could then use a numerical integration method to
re-estimate the posterior probabilities, and iterate as
before. However, in practice this method is extremely
computationally intensive and offers little improvement
in the accuracy of the predictions made (unpublished
data).

The scaling factor ℙ(Dc)
Finally, we need to consider the scaling factor ℙ(Dc) in
Eqn. 1. Since the number of possible models on M on

 is finite, though potentially large, the scaling factor ℙ
(Dc) can be determined by summing over all possible M,
given appropriate priors ℙ(M). In practice, the number
of models may be limited by only considering those that
are biologically plausible, or by imposing some distribu-
tion on the number of sets in M in a similar manner to
Lönnstedt et al’s approach [16] for analysis of variance
in microarray data.

Results and Discussion
We use both simulated and real data to compare the
method we have developed to the previously developed
methods of Robinson and Smyth [9] as implemented in
the edgeR [17,18] (version 1.4.7) Bioconductor [19]
package, the overdispersed log-linear model of Lu et al
[7], the overdispersed logistic model of Baggerly et al
[6], and the recently released methods DEGseq[10] (ver-
sion 1.2.2) and DESeq[11] (version 1.0.4). We compare
these methods to our empirical Bayes approach as
implemented in the R package baySeq (version 1.1.23),
with the default settings used for the baySeq and
edgeR packages. Overall, we found that the default set-
tings of the edgeR package seem to give good perfor-
mance. Alterations to the default settings, in particular
to the ‘moderation’ parameter, caused some small
improvements in performance for some simulations but
degraded it slightly in others. We have, therefore, used
the default settings here as in real-world applications it
will be difficult to determine how to alter these settings
to optimise performance. The recommended method of
operation for the DESeq package is to infer library sizes
from the data. However, we observed that this gave
extremely poor performance in simulations in which a
large proportion of the data are differentially expressed
in a single direction. We therefore use the known library
sizes in the implementation of the DESeq method, as
we also do for all other methods, with the exception of
DEGseq, which does not accept library size as a para-
meter. The DEGseq package has multiple modes of
operation; we found that the MA plot-based method
with random sampling (MARS) performed best on
simulated data (unpublished data) and have therefore
used this approach (with default settings otherwise) in
the comparison studies.

Comparison of methods for pairwise comparisons:
simulated data
We begin by applying the methods being evaluated to
the simulation studies described in Robinson and Smyth
[9]. We choose to replicate these simulation studies, and
the manner in which the results are presented, in order
to allow direct comparisons between our method and
previous approaches to this problem. The purpose of
these simulations is to establish the ability of the
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methods to rank the tuples in order of differential
expression and evaluate the number of true and false
positives for the top N tuples.
Random dispersion simulations
Robinson and Smyth [9] suggest one possible simulation
for high-throughput sequencing count data. The library
sizes, li, are sampled from a uniform distribution
between 30000 and 90000. These library sizes are con-
siderably smaller than those available from the current
generation of sequencing technologies. However,
increasing the library size to better reflect current levels
does not significantly alter the conclusions drawn,
because the ‘library size’ is, in effect, a scaling factor. All
tuples are simulated from a negative binomial distribu-
tion, and we simulate differential expression by varying
the means of the distribution from which they are
sampled.
For a non-differentially expressed tuple c, we simulate

the data with means lcli where the lc are sampled ran-
domly from a a set of values empirically estimated by
the edgeR method from a SAGE dataset consisting of
both normal and cancerous cells [20].
Ten percent of the ten thousand simulated tuples are

differentially expressed. In order to produce both over
and under-expression in our simulated data, we simulate
the differentially expressed data in one of two ways,
where the alternatives are chosen at random for each
tuple. We can simulate the data for the first n1 samples
with means c il b/ while the data from the remaining n2
samples are simulated with mean c il b Alternatively,
we can simulate the data for the first n1 samples with
mean c il b while the data from the remaining n2
samples are simulated with mean c il b/ .
Small (n1 = n2 = 2) and moderate (n1 = n2 = 5) num-

bers of libraries are compared, with large (b = 8) and
moderate (b = 4) differential expression. Dispersions are
randomly sampled from a gamma distribution with
shape = 0.85 and scale = 0.5.
For the baySeq method, posterior probabilities were

calculated for each tuple for each of two models, one
defining differential expression between the first n1
libraries and the second n2 libraries and one defining no
differential expression between any library. Figure 1
shows the estimated posterior probability of differential
expression plotted against the estimated log fold change
for a single simulation with b = 8 and n1 = n2 = 5. We
see a ‘wine glass’ shaped plot, characteristic of this
analysis.
The ‘stem’ of the goblet is made up of tuples with low

fold change and reasonably high levels of expression.
With these tuples, it is relatively easy to identify them as
non-differentially expressed, and so these tuples have
low posterior probability of differential expression. How-
ever, some tuples with low fold change also have very

low absolute values. With low absolute values in a tuple,
it becomes harder to determine whether or not the
tuple is genuinely differentially expressed or not, and so
these values tend to have slightly higher posterior prob-
abilities of differential expression than tuples with high
absolute values but low fold change. The top of the
stem, with a posterior probability of differential expres-
sion of around 0.2, is thus composed of tuples that have
only one or two counts observed in any sample. For
these very low expression tuples, changes of only one or
two counts in a sample can lead to a relatively large fold
change difference. However, these small changes do not
substantially affect the posterior probability and so,
although we see a spread in the fold change at the top
of the stem, the posterior probability of differential
expression remains low for these tuples. We tend not to
see a similar spread for the tuples near the base of the
stem as these tuples tend to have a high expression. For
a tuple with a high expression to show a high fold
change, but nevertheless have a low posterior probability
of differential expression, there must be a very high dis-
persion associated with such a tuple, which will not
often occur.
In the arms of the wine glass, we see that as the fold

change increases, the posterior probability of differential
expression also increases, although there is a wide range
of posterior probabilities for (for example) a fold change
of 4. We see this range of posterior probabilities of dif-
ferential expression for a given fold change as the

Figure 1 Estimated posterior probabilities of differential
expression against observed fold-change. Estimated posterior
probabilities of differential expression against observed fold-change
from a single simulation of ten thousand tuples, of which one
thousand are truly differentially expressed (DE) and nine thousand
are not differentially expressed (non-DE).
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posterior probability also depends heavily on both the
dispersion observed within the data, and the level of
expression of the tuple, since, as before, it is easier to
tell whether or not a highly expressed tuple is genuinely
differentially expressed or not. For high posterior prob-
abilities of differential expression, we see an increased
density of tuples, predominately consisting of truly dif-
ferentially expressed tuples.

As in Robinson and Smyth [9], false discovery rate
(FDR) curves are used to assess the ability of the meth-
ods to successfully rank the tuples. False discovery rates
for these data are calculated by [9] on the basis of one
simulation. For increased robustness, we estimate mean
false discovery rates for the top N tuples over 100 simu-
lations (Figure 2). For the baySeq method, the tuples
were ordered by the posterior probability of differential

Figure 2 Mean FDR curves for different numbers of libraries and degrees of differential expression. Mean FDR curves, based on 100
simulations, comparing the performance of multiple methods in identifying pairwise differential expression. The data contain 1000 truly DE
tuples and 9000 non-DE tuples and are simulated with varying number of libraries n1 and n2, different degrees of differential expression b, and
randomly chosen dispersions for each tuple (~ Γ (0.85, 0.5)).
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expression and true and false positive rates were calcu-
lated on the basis of this ordering. For the edgeR, the
overdispersed log-linear, overdispersed logistic, DESeq
and DEGseq methods, the tuples were ordered on the
basis of the p-values estimated by each method.
In these simulations, the baySeq method appears to

perform as well or better than the existing methods.
The performance of the baySeq approach is virtually
identical to that of edgeR for small numbers of libraries
(n1 = n2 = 2). For larger numbers of libraries, baySeq
appears to offer an improvement in performance over
edgeR. For small b, the overdispersed log-linear
approach seems to show comparable performance to
edgeR and baySeq. For larger b, however, particularly
for higher numbers of selected tuples, the edgeR and
baySeq methods perform considerably better than the
log-linear approach. The log logistic, DESeq and DEG-
seq methods always perform poorly compared with
both the edgeR method and the baySeq approach.
To establish whether this difference in performance

for these methods is meaningful in a practical sense, we
estimate from these analyses that if we were to validate
the top 200 tuples identified by edgeR, baySeq, and the
overdispersed log-linear model fit, for n1 = n2 = 2, b = 4
we would expect 92.66 false positives for the baySeq
method, 91.13 from edgeR and 98.65 for the overdis-
persed log-linear approach. For n1 = n2 = 2, b = 8, we
would expect 36.88, 36.46, and 64.43 false positives
from baySeq, edgeR and the overdispersed log-linear
approaches respectively. However, for the higher num-
bers of libraries, where n1 = n2 = 5, for b = 4 we expect
18.60, 29.44 and 24.74 false positives, while for b = 8 we
expect 1.33, 3.25 and 5.42 false positives from the bay-
Seq method, edgeR and the overdispersed log-linear
approach respectively. For higher numbers of libraries,

therefore, we achieve a practically meaningful improve-
ment by using the baySeq method.
Fixed dispersion simulations
For completeness of comparison with previous methods,
we also consider a less realistic simulation first devel-
oped by Lu et al [7]. We simulate ten library sizes as
before. The tuples are again simulated from a negative
binomial distribution but now with a fixed dispersion j
of either 0.17, 0.42 or 0.95. 5000 non-differentially
expressed tuples are simulated with mean lli, and 5000
tuples are chosen to be differentially expressed; those
from libraries 1-5 are again simulated with mean lli
while those from libraries 6-10 are simulated with mean
blli, and so we see only over-expression of libraries
6-10 in the data. These simulations are applied with l =
0.0002 and b = 4.
As in Robinson and Smyth [9], we examine the results

by considering receiver-operating characteristic (ROC)
curves for all analyses (Figure 3). The performance of
the DEGseq methods is strikingly poor. Further investi-
gation showed that this loss of performance is associated
with the large proportion of tuples that are differentially
expressed in the same direction, that is, all up-regulated
in libraries 6-10. If either the proportion of differentially
expressed tuples is reduced sufficiently, or if similar pro-
portions of up-regulation and down-regulation exist in
the data, then the performance the DEGseq method
improves substantially. This poor performance occurs
becuase of the assumption by the DEGseq method that
the mean of the log-ratios between samples is approxi-
mately zero. In this case, because the differential expres-
sion always occurs in the same direction, this
assumption fails. This may be a problem in real-life
applications if large numbers of genomic features are all
affected similarly.

Figure 3 Mean ROC curves for data with constant dispersion. Mean ROC curves, based on 100 simulations, comparing the performance of
multiple methods in identifying pairwise differential expression. The data contain 5000 truly DE tuples and 5000 non-DE tuples and are
simulated from a negative binomial distribution with constant dispersion for all tuples j = 0.17, 0.42 or 0.95.
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Of the remaining methods, we see that as the disper-
sion increases, the performance of all the methods
decreases; however, the baySeq approach appears to
outperform all existing methods for all values of j, in
that, for low false positive rates, the baySeq method
has higher true positive rates. This effect is particularly
noticeable for simulations involving higher dispersion.
The overdispersed logistic model in general performs
worse than the overdispersed log-linear method. In turn,
the overdispersed log-linear approach is outperformed
by the DESeq method, which is outperformed by the
edgeR method. This roughly corresponds to the relative
performance of these methods on the more realistic
simulations.

Comparison of methods for pairwise comparisons:
biological data
We next apply the methods to a set of data acquired by
Illumina sequencing small RNAs (20-24 nucleotide)
from leaf samples of Arabidopsis thaliana (Gene Expres-
sion Omnibus accession number GSE16959). The
experimental data are taken from two wild-type samples
and two RDR6 (RNA-dependent RNA polymerase 6)
knockout samples. It is known that RDR6 is required
for production of tasRNAs (trans-acting small RNAs)
[21]. We would therefore expect to see differential
expression of tasRNAs in a comparison between the
wild-type and the mutant samples; specifically, under-
expression of tasRNA associated small RNA sequences
in the RDR6 knockouts.
We consider only those sequence reads that perfectly

matched the Arabidopsis genome as defined by The
Arabidopsis Information Resource (TAIR) [22] (version
9). Sequences were matched using the PatMaN algo-
rithm [23]. A total of 70619 unique small RNA
sequences matching the genome were observed in the
data, and the total number of genome matching reads,
used to define the library sizes, were 1840563, 594356,
1477155 and 276006 for the two wildtype and two
RDR6 mutant knockout samples respectively. We exam-
ined this data for overdispersion by performing likeli-
hood-ratio tests on the reads acquired for each
sequence by fitting both a Poisson model and an alter-
native negative binomial model, allowing for both differ-
ences in library size and between the two sample types.
Although many sequences showed no significant varia-
tion from the Poisson model, a substantial number
showed very significant variation (Figure 4). This effect
is noticeable particularly in those sequences which have
a high average count, presumably because it is for these
sequences that overdispersion can reasonably be
detected.
We identified 678 different small RNA sequences that

perfectly matched the tasRNA loci (TAS1a, TAS1b,

TAS1c, TAS2, TAS3 and TAS3b) and matched nowhere
else in the genome. 21 of these small RNA sequences
showed higher expression in the RDR6 mutant than in
the wild-type samples and these were excluded, leaving
657 potential true positives. We applied the methods to
the count data for each small RNA sequence, seeking
differential expression between the wild-type samples
and the RDR6 knockout samples. We then ranked the
sequences by the extent to which they are reported as
differentially expressed by each method. We would
expect a sizeable fraction of our 657 potential true posi-
tives to appear near the top of the list.
Figure 5 shows the number of tasRNA associated

sequences that are identified by the various methods
against the number of small RNA sequences selected as
differentially expressed for the top three thousand small
RNA sequences. Both edgeR and baySeq identify con-
siderably more tasRNA-associated small RNAs than the
DESeq method and the overdispersed logistic and over-
dispersed log-linear approaches, with the overdispersed
logistic model performing particularly poorly. The bay-
Seq method in general identifies more tasRNA asso-
ciated small RNA sequences than edgeR for a given

Figure 4 (Log) p-values of real sequence data under null
hypothesis of no overdispersion against mean expression
levels of each sequence. (Log) p-values of real sequence data
under the null hypothesis of no overdispersion and alternative
hypothesis of overdispersion. We acquire these for each sequence
by performing likelihood-ratio tests on the fit of a Poisson model
and an alternative negative binomial model, allowing for both
differences in library size and between the two sample types.
Although a number of sequences show no significant variation from
the Poisson model, a substantial number show very significant
variation. The sequences for which overdispersion is particularly
significant are those with high mean expression levels, as these are
the sequences for which overdispersion can most easily be
detected.
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number of selected small RNA sequences. Perhaps sur-
prisingly, DEGseq does well in this comparison, identi-
fying only slightly fewer tasRNA-associated small RNAs
than baySeq and edgeR for low numbers of selected
small RNAs, and slightly more tasRNA-associated small
RNAs once the number of small RNAs selected is
greater than 500.

Multi-group experimental designs
We next illustrate the application of our method to a
more complex experimental design involving multiple
experimental conditions. We return to the example dis-
cussed in the Methods section, in which we have
sequence data from three conditions; condition A, con-
dition B and condition C, with n libraries from each
condition. There are five different models for these data;
one in which there is no differential expression of any
kind, three models in which one of the conditions
shows differential expression compared to the other two
conditions, and one model in which data from all three
conditions are different from each other.
We investigate the ability of our method to detect

such patterns of differential expression by adapting the
more realistic simulations proposed by Robinson and
Smyth [9]. In total, data from 3n libraries are simulated,
of which two thousand tuples are in some manner dif-
ferentially expressed. The library sizes, and dispersions

of each tuple are simulated as before, as are tuples with
no true differential expression.
Five hundred tuples are simulated to have equivalently

distributed data between condition A and condition B,
with data from condition C differently distributed. In
order to simulate both over and under-expression in the
data, we simulate the data in one of two ways, where
the alternatives are chosen at random for each tuple.
We can simulate the data from condition A and condi-
tion B from a distribution with mean c il b/ and the
data from condition C from a distribution with mean
c il b . Alternatively, we simulate the data from condi-
tion A and condition B from a distribution with mean
c il b and the data from condition C from a distribu-
tion with mean c il b/ .
Another five hundred tuples are simulated similarly

such that tuples have equivalently distributed data in
conditions A and C, but differently distributed data in
condition B, while a third five hundred tuples are simu-
lated such that tuples have equivalently distributed data
in conditions B and C, but differently distributed data in
condition A.
A further five hundred tuples are simulated in such a

way that the data from all three conditions are differ-
ently distributed. For a given tuple, we simulate data
from condition X1 from a distribution with mean lcli.
For condition X2, we simulate from a distribution with
mean c il b2 , and for condition X3 we simulate from
a distribution with mean c il b2 Conditions A, B and
C are randomly allocated to be conditions X1,X2, X3 for
each tuple, and so we see various patterns of differential
expression between these samples.
We again evaluate the methods by looking at the false

discovery rates. In this analysis, we are interested in the
ability of our method to accurately identify each of the
different types of differential expression by simulta-
neously considering all possible models for the data. We
can also consider the ability of our method to detect dif-
ferential expression of any kind by taking the sum, for
each tuple, of the posterior probabilities of all five mod-
els describing differential expression. We can thus con-
sider four FDR curves for each type of differential
expression present in the data, and an additional FDR
curve for data showing differential expression of any
kind.
For the pre-existing methods, in the overdispersed

log-linear and the overdispersed logistic approaches, we
are able to form linear models that describe all possible
patterns of differential expression present in the data.
For the edgeR, DEGseq and DESeq methods, we are
only able to carry out pairwise comparisons and so we
carry out three analyses on each dataset, one for each
pattern of differential expression in which a single
experimental condition is differentially expressed when

Figure 5 Number of tasRNA-associated small RNAs identified
as differentially expressed in RDR6 knockout experiment.
Number of tasRNA-associated small RNAs against the number of
differentially expressed small RNAs at the top of each list acquired
by each method in an analysis of small RNA data from two wild-
type samples and two RDR6 knockout samples. We expect tasRNA-
associated small RNAs to be under-expressed in the RDR6 knockout
samples, and hence to find these amongst the differentially
expressed tuples.
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compared to the other two. We are unable to consider
directly, by the method of pairwise comparisons, the
pattern of differential expression in which all three
experimental conditions are differentially expressed, and
so we do not use the edgeR, DEGseq or DESeq meth-
ods for the identification of tuples of this type.

We present the data (Figure 6) for b = 8 and n = 2 or
n = 5. Again, for increased robustness, we estimate
mean false discovery rates for the top N tuples over 100
simulations for all models. As would be expected, for all
methods the false discovery rates are almost identical
for the three models in which a single experimental

Figure 6 Mean FDR curves for analyses of more complex experimental designs. Mean FDR curves, based on 100 simulations, comparing
the performance of multiple methods in identifying more complex patterns of differential expression. The data are simulated from samples
coming from three experimental conditions A, B and C, giving a total of five possible patterns of differential expression. We show here the false
discovery rates for the identification of tuples where one experimental condition differs from the other two ({A1, ..., An, B1, ..., Bn} {C1, ... Cn}) and
for the identification of tuples where all three experimental conditions are different ({A1, ..., An}{B1, ... Bn}{C1, ... Cn}). The data are simulated with
varying number of libraries n in each experimental condition.
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condition is differentially expressed when compared to
the other two conditions. We therefore show only the
results for differential expression of conditions A and B
compared with condition C, together with the results
for the case where all three experimental conditions are
differentially expressed. In this more complex experi-
mental design, baySeq outperforms all existing meth-
ods, particularly as the number of libraries available
increases. Perhaps surprisingly, the edgeR method does
better than either the overdispersed log-linear or over-
dispersed logistic method in discovery of differential
expression that can be expressed in terms of a pairwise
comparison, as, to a lesser extent, does the DESeq
method. The DEGseq method, however, does not per-
form as well as any of the alternatives in these
comparisons.
Figure 7 shows how baySeq performs for the differ-

ent models. The false discovery rate for the model in
which all three experimental conditions differ from each
other is considerably higher than that for pairwise com-
parisons, indicating the additional difficulty of fitting
this more complex model. If we consider the suggestion
described in the Methods section, of finding differential
expression of any type by summing the posterior prob-
abilities of all models describing differential expression,
we see that the false discovery rate for tuples identified

in this way is very low, particularly as the number of
libraries available increases. This might suggest that
some of the false discovery of the individual models
may be due to differential expression of one type on
occasion being mistaken for differential expression of
another type.

Conclusions
We present an empirical Bayes method, baySeq, that
can simultaneously establish posterior probabilities of
multiple models of differential expression and performs
as well as or better than any existing techniques for
identifying pairwise differential expression in count data.
More significantly, this method enables the analysis of
experimental designs involving multiple sample groups
while using the whole data set to establish parameters
on the level of dispersion present. This allows consider-
ably greater accuracy in the analysis of more complex
experimental designs than has previously been possible,
and is hence a significant step forward in the analysis of
the data being produced by high-throughput sequencing
technologies. That the method produces posterior prob-
abilities of models of differential expression, rather than
significance values, offers a number of advantages in
downstream analysis; for example, it becomes a simple
matter to find an expected number of differentially

Figure 7 Comparison of baySeqmethod’s performance for different models in complex experimental designs. Mean FDR curves, based
on 100 simulations, comparing the performance of the baySeq method in identifying differential expression of different types in an analysis of
more complex experimental designs. The data are simulated from samples coming from three experimental conditions A, B and C, giving a total
of five possible patterns of differential expression. We show here the false discovery rates for the identification of tuples where one experimental
condition differs from the other two ({A1, ..., An, B1, ... Bn}{C1, ... Cn}) and for the identification of tuples where all three experimental conditions are
different ({A1, ..., An}{B1, ... Bn}{C1, ... Cn}). We also show false discovery rates for the identification of tuples showing differential expression of any
kind.

Hardcastle and Kelly BMC Bioinformatics 2010, 11:422
http://www.biomedcentral.com/1471-2105/11/422

Page 12 of 14



expressed tuples, or to combine posterior probabilities
of multiple models.
In developing this method, we have established a well-

defined framework for describing diverse patterns of dif-
ferential expression between samples. We then take an
empirical Bayes approach in order to establish posterior
probabilities of each model for each tuple. We achieve
this by assuming that the data for each tuple is negative
binomially distributed. This assumption is supported by
the presence of over-dispersion in true data (Figure 4)
and the work by Lu et al [7] showing that an assump-
tion of a negative binomial distribution can be robust
even if the data are not truly negative binomially distrib-
uted. We then estimate empirical prior distributions for
the parameters of these negative binomial distributions.
This is a very natural approach as high-throughput
sequencing provides a large set of data from which to
estimate prior distributions. An interesting feature of
this approach is the flexibility we gain in choosing how
to estimate the parameters of the negative binomial dis-
tributions. We have chosen to use quasi-likelihood
methods here as they seem to give better performance
than maximum-likelihood approaches (unpublished
data). However, other methods of estimating these para-
meters (for example, Robinson and Smyth’s [9] moder-
ated conditional maximum likelihood, or Anders and
Huber’s [11] method for linking the variance of the
negative binomial distribution to the mean) might be
adapted to further improve the performance of our
method. We can also deal easily with the problem of
different library sizes, as this parameter can be built
directly into the assumptions about the distribution of
the data.
Our method is relatively computationally intensive,

but has been implemented to take advantage of parallel
processing, such that an analysis of pairwise differential
expression of ten thousand tuples coming from ten sam-
ples takes approximately 7.5 minutes running on a
machine with eight 2 GHz processors. We compare
baySeq to the method implemented in the edgeR pack-
age, because this has been reported to outperform other
existing approaches for pairwise comparisons [9], and is
the most commonly used method for analysis of count
data (based on Bioconductor download statistics). We
also include comparisons to two recently developed
methods for pairwise comparisons, DESeq and DEGseq,
and to the older overdispersed logistic and overdispersed
log-linear methods as these latter approaches allow for
analysis of more complex experimental designs.
Comparisons of the methods on pairwise data are

made on the basis of previously developed simulation
studies [9], as well as on real biological data, and the
baySeq method developed here performs comparably
to, and in some cases better than any existing approach.

We also see that one of the recently developed methods,
DEGseq, shows extremely poor performance when
there is a high proportion of unidirectional differential
expression, although it is comparable to both edgeR and
baySeq in other circumstances. When the dispersion
of data is constant, the proportion of differentially
expressed tuples is high, and the differential expression
is unidirectional, there appears to be a clear improve-
ment in performance by baySeq compared to all other
methods using their default parameters (Figure 3).
For analyses of data with random dispersions (Figure

2), baySeq performs almost identically to edgeR for
small numbers of libraries, but show a marked improve-
ment in performance for larger numbers of libraries.
The overdispersed log-linear method performs almost
identically to baySeq for low levels of differential
expression, but shows substantially worse performance
for higher levels of differential expression. The DESeq
and DEGseq methods show noticably worse perfor-
mance compared to baySeq as both the level of differ-
ential expression and the number of libraries increases,
with DEGseq performing particularly poorly. The over-
dispersed logistic method is always amongst the worst
performers.
Analysis of real biological data again suggests that

our method performs at least as well, and potentially
better, than edgeR, while both methods appear to sub-
stantially outperform the overdispersed log-linear and
logistic methods. The DESeq method again appears to
perform poorly compared to baySeq. However, in
these data DEGseq shows performance comparable to
baySeq.
The chief advantage of the empirical Bayes method

developed here, however, is its ready applicability to
more complex experimental designs, although at present
these methods remain limited to comparisons involving
multiple groups, and are not able to account for, for
example, paired samples. One possible extension to this
work is thus the generalisation of the methods to some
form of generalised linear model approach. However,
our method is able to simultaneously identify multiple
types of differential expression from a single experiment.
In comparisons of the methods using simulations of an
experimental design involving multiple groups (Figure
6), the baySeq method appears to offer substantial
improvements over existing methods. Figure 7, which
compares the performance of the baySeq method in
identifying different patterns of differential expression,
suggests that we should expect some loss of perfor-
mance for the baySeq method for more complex pat-
terns of differential expression. However, we can also
see that combining models to acquire, for example, pos-
terior probabilities of differential expression of any kind,
is a valuable approach.
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Our method thus provides performance as good as or
better than previous methods whilst enabling experi-
menters to simultaneously consider many diverse sam-
ple types in a single sequencing experiment. We believe
that this is a valuable approach representing an impor-
tant step forward for the analysis of count data from
sequencing experiments.

Availability and Requirements
The empirical Bayes method developed in this paper are
implemented in the software package baySeq[24] for
the cross-platform computing environment R [25] (ver-
sion 2.3 or greater). baySeq is released under the GPL-
3 licence as part of the Bioconductor project [19] at
http://www.bioconductor.org/packages/2.6/bioc/html/
baySeq.html
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