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C A N C E R

Machine learning on syngeneic mouse tumor profiles 
to model clinical immunotherapy response
Zexian Zeng1,2†, Shengqing Stan Gu1,2,3,4†, Cheryl J. Wong1,5, Lin Yang1, Nofal Ouardaoui1, 
Dian Li1, Wubing Zhang1,6, Myles Brown3,4, X. Shirley Liu1,2,4*

Most patients with cancer are refractory to immune checkpoint blockade (ICB) therapy, and proper patient strati-
fication remains an open question. Primary patient data suffer from high heterogeneity, low accessibility, and lack 
of proper controls. In contrast, syngeneic mouse tumor models enable controlled experiments with ICB treatments. 
Using transcriptomic and experimental variables from >700 ICB-treated/control syngeneic mouse tumors, we 
developed a machine learning framework to model tumor immunity and identify factors influencing ICB re-
sponse. Projected on human immunotherapy trial data, we found that the model can predict clinical ICB re-
sponse. We further applied the model to predicting ICB-responsive/resistant cancer types in The Cancer Genome 
Atlas, which agreed well with existing clinical reports. Last, feature analysis implicated factors associated with ICB 
response. In summary, our computational framework based on mouse tumor data reliably stratified patients 
regarding ICB response, informed resistance mechanisms, and has the potential for wide applications in disease 
treatment studies.

INTRODUCTION
Immune checkpoint blockade (ICB) has been found to have clinical 
benefits in only a subset of patients with cancer (1–3). To optimize 
treatment selection and maximize the potential benefits, there is an 
urgent need to stratify patients for ICB treatment (4). Multiple 
methods to stratify patients for ICB treatment have been developed, 
including programmed death ligand 1 (PDL1) expression (5), 
microsatellite instability (5,  6), and tumor mutation burden (7). 
More recently, multiple integrative biomarkers derived from hu-
man samples have been reported that can better stratify patients for 
ICB response (8–11). However, the sensitivity of these methods is 
largely dependent on the size and quality of human samples, which 
suffer from high heterogeneity, low accessibility, and lack of 
proper controls.

Compared to human samples, syngeneic mouse models allow 
well-controlled experiments and provide a rich resource for study-
ing tumor immunity and immunotherapy response. Syngeneic 
mouse models are cancer cells implanted into immunocompetent 
host mice of the same genetic background (12,  13) and faithfully 
recapitulate the complexity of cancer cells and their interactions 
with the immune system (14). These readily available models enable 
studies of in vivo ICB response in a well-controlled manner and 
have been widely used to investigate the mechanisms underlying 
immunotherapy resistance. These numerous syngeneic mouse studies 
have resulted in a large volume of tumor expression profiles under 
various immunotherapy treatments (12, 13, 15). Transcriptomic 
analysis on a large collection of syngeneic tumors curated from these 

well-controlled experiments can help elucidate mechanisms under-
lying ICB response and resistance in human tumors (16, 17).

Both tumor transcriptomic data and demographic information 
are critical factors underlying ICB response. Dimension reduction 
leveraging known sample experimental information could guide 
the decomposition of the transcriptome toward more biologically 
relevant results and potentially improve the performance of clustering 
and classification (18, 19). There has been much work in developing 
models that make use of available sample labels (such as therapy 
response) (20–24). These approaches leverage the labels to increase 
mutual information between computed hidden factors and the 
known labels (19). Meanwhile, multiple dimension reduction methods 
have been developed in the past. Among them, nonnegative matrix 
factorization (NMF) is especially applicable to transcriptomic data 
as gene expression is inherently nonnegative, giving NMF the added 
benefit of easier interpretation (25–28).

To better understand factors underlying ICB immunotherapy 
response, we performed a meta-analysis on the syngeneic mouse 
models. We present a joint NMF model using iterative updates 
that incorporates experimental data and ICB response data to de-
compose and reduce the dimensionality of tumor transcriptomic 
data. We provided iterative update rules for our proposed tool 
trained on syngeneic mouse data and validated its power in predict-
ing human ICB response. The derived latent factors were conserved 
in clinical samples across a broad range of cancer types. We further 
explored major latent factors enriched in each cancer type and 
highlighted important pathways and genes for future investigation. 
In addition, our proposed method can be extended to predict a 
human sample’s likelihood to respond to a specific ICB treatment, 
suggesting that this framework has the potential to be a useful 
clinical decision support tool.

RESULTS
Overview of the joint dimension reduction framework
We used data from syngeneic mouse models treated with ICB to 
learn latent factors underlying ICB resistance and response. We 
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curated syngeneic mouse data from a previous study (15), where we 
systematically collected and processed 761 syngeneic tumor RNA 
sequencing (RNA-seq) samples from 26 published studies (table S1). 
These curated in  vivo RNA-seq samples were from 22 syngeneic 
mouse tumor models across 13 cancer types, of which 420 samples 
were ICB-treated (post-ICB) and 341 samples were their matched 
controls (treatment-naïve). Samples in the post-ICB group were 
treated with anti–programmed cell death protein 1 (PD1), anti-PDL1, 
anti-PDL2, anti–cytotoxic T lymphocyte–associated protein 4 
(CTLA4), or their combinations. To ensure data consistency, gene 
expression levels for all samples were quantified from raw sequencing 
reads using a single standardized pipeline. We also manually anno-
tated experimental variables for each sample by referring to the 
original article, including cancer type, cancer cell line, cell perturba-
tion, mouse genotype, mouse strain, implantation site, mouse ICB 
treatment, and ICB response status (table S1). The response labels 
for the control group were annotated on the basis of the response 
status of their matched treatment group. The syngeneic mouse data 
were used to construct the expression matrix (E, gene*sample), 
experimental variable matrix (P, experimental variable*sample), 
and response label matrix (R, response*sample) (Fig. 1A) (Materials 
and Methods).

Measurement of the transcriptome (matrix E) is a snapshot of 
the sample state and reflects a mixture of various biological factors 
(29). To deconvolute this mixture and derive the biological signals 
contributing to ICB response, we developed a modified NMF model 
to jointly decompose E, P, and R, and find common latent factors 
that are manifested in these three data matrices. We formulated the 
problem as a joint dimension reduction to capture patterns of com-
mon variations across the E, P, and R matrices (Fig. 1A). Through 
iterative updates, it inferred an interpretable low-dimensional data 
representation, WE, WP, WR,and H, that captured the major sources 
of variation across the E, P, and R matrices (fig. 1A) (Materials and 
Methods). The matrices WE, WP, and WR serve as the basis for the 
lower-dimensional spaces, whereas the H matrix provides the 
coefficients for data to be projected in these spaces. The columns of 
the WE matrix (gene*factor k) can be used to extract markers by 
selecting the top-ranked genes or to identify pathways. The rows of 
H (factor*sample) can be used for sample clustering and classifica-
tion. Hereafter, we denote columns of the matrix WE as metagenes, 
defined as a positive linear combination of a set of genes. With the 
model trained, the decomposition outputs were further extended to 
predict a human sample’s ICB treatment–specific response (Fig. 1B) 
(Materials and Methods).
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Fig. 1. Illustration of the dimension reductions to integrate transcriptomic, phenotypic, and ICB response data. (A) The framework takes the gene expression 
matrix, mouse experimental variables, and ICB response data for joint dimension reduction through iterative updates. The model was trained with an extensive collection 
of syngeneic mouse model data with curated ICB response labels. The columns in the decomposition products WE can be collectively interpreted as metagenes to help 
inform the ICB resistance and response in the syngeneic mouse models. (B) Leveraging the decomposition outputs from the model, we could simulate an individual’s 
likelihood to respond to anti-PD1, anti-PDL1, or anti-CTLA4 treatment with available transcriptomic data.
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Training and validation of the framework on syngeneic 
mouse tumors
We trained the joint dimension reduction framework separately 
using the post-ICB and control syngeneic model data. For both 
training processes, we split the data into training, validation, and 
testing sets in the ratio of 6:2:2. The training data were used to opti-
mize the matrix reconstruction errors, and the validation set was 
used to tune the hyperparameters, including penalty terms for the 
phenotype and response matrix reconstruction errors and the 
number of latent factors k (Materials and Methods). In brief, 
the framework takes the gene expression matrix, mouse experimental 
variables, and ICB response as inputs and seeks lower-dimensional 
representations through iterative updates. The model quickly con-
verged monotonically on the training data for treatment and con-
trol tumors (fig. S1, A and C). We repeated the experiment 10 times 
with random initial seeds. The penalty terms for the phenotype 
matrix and response matrix govern their relative importance in 
matrix reconstruction and are tuned in the validation set based on 
prediction accuracy. We noted that this balance between optimizing 
reconstruction error and prediction accuracy could prevent model 
overfitting (fig. S1, B and D) (Materials and Methods). Of the 10 
replicates, the model with the best performance in the testing data-
set was used for downstream analyses (table S2 and fig. S1, B and D).

When evaluated on the testing datasets, our model accurately 
predicted ICB response labels for the syngeneic mouse models in 
both the treatment (76.5%, SE = 1.7%) and control (88.0%; 
SE = 1.1%) tumors (Materials and Methods). To benchmark these 
results, we compared our model to linear and nonlinear supervised 
machine learning models, including a stochastic gradient descent 
(SGD) classifier that contains linear models of logistic regression 
(LR), support vector machine (SVM) and perceptron, random 
forest classifier (RFC), k-nearest neighbor algorithm (K-NN), and 
multilayer perceptron (MLP). For these benchmarking methods, 
grid search was implemented by Scikit-learn to tune the model 
parameters (Materials and Methods). In the control group, com-
pared to the SGD classifier (82.3%, SE = 1.4%), RF (72.8%, SE = 0.9%), 
KNN (64.9%, SE = 2.2%), and MLP (67.4%, SE = 2.1%) (Fig. 2A), our 
model achieved the best mean prediction accuracy (88.0%, SE = 1.1%). 
In the treatment group, our model (76.5%, SE = 1.7%) significantly 
outperformed the RF (70.7%, SE = 1.3%), KNN (60.6%, SE = 1.7%), 
and MLP (61.3%, SE = 2.2%) models as well (Fig. 2D). To further 
validate our model, we curated 30 additional syngeneic samples 
from two public studies not used in the training. This external syn-
geneic validation set was collected in the same manner as the training 
data (Materials and Methods) and was composed of 14 post-ICB 
and 16 control samples. In this validation, our model achieved a 
prediction accuracy of 64.3 and 75.0%, respectively (Fig. 2, B and E).

After decomposition, the output matrices were expected to 
capture the sources of variation that underlie the heterogeneity of 
ICB resistance and response. We identified 45 metagenes each for 
the control (table S3) and treatment samples (table S4). These meta-
genes were differentially enriched between the responder and 
nonresponder samples (Fig. 2, C and F). When trained on control sam-
ples, our model identified metagene_25, metagene_19, metagene_3, 
metagene_8, metagene_14, and metagene_44 as collective contributors 
to ICB response (Fig. 2C and table S5). In contrast, metagene_42, 
metagene_31, and metagene_21 were collective contributors to ICB 
resistance (Fig.  2C and table S5). Each metagene’s underlying 
molecular representations could be inferred by its top-ranked genes. 

The derived metagenes implicated different molecular or functional 
pathways. We reasoned that capturing these various metagenes, 
which collectively contribute to the ICB resistance and response, 
was key to our model’s good prediction performance (tables S5 and 
S6). Examining some of the metagenes identified as contributors to 
ICB response more closely, the top-ranked genes in metagene_25 
included Pdcd1, Cd8b1, and Cd3g, suggesting a high level of infil-
trating cytotoxic T lymphocytes (CTLs) in response tumors (30, 31), 
and the top-ranked gene in metagene_3 was Lats2, a tumor sup-
pressor gene, which has been shown to suppress Yes associated pro-
tein (YAP) activity and cell proliferation (32–34). Together, these 
data suggest that the framework was able to deconvolute data varia-
tions in the expression profiles to derive potentially biologically 
meaningful signals contributing to ICB response.

Predictive power of the framework on clinical ICB response
Trained on the syngeneic mouse data, the model was then extended 
to predict ICB response in human clinical samples with the assump-
tion that latent factors learned from syngeneic mouse data could 
inform the ICB response in human clinical samples. To evaluate the 
effectiveness of our derived latent factors, we projected these latent 
factors to patient clinical samples to evaluate its ICB response 
prediction. We systematically collected pre-ICB samples from clini-
cal trials for which we had matched cancer types in the syngeneic 
models. Transcriptome data profiled by RNA-seq were obtained 
from these samples before patients underwent ICB therapy. On the 
basis of the patients’ reported clinical prognosis, these samples were 
labeled as either responders or nonresponders. In total, we curated 
764 human pre-ICB clinical samples from 15 clinical ICB trials to 
evaluate our prediction performance (Materials and Methods). We 
also applied our model on the tumor expression datasets containing 
only a few hundred genes profiled by the NanoString assay to evaluate 
its predictive power on a limited subset of genes. The predicted like-
lihood of response was defined as a continuous number computed 
across the human genes, cancer types, and treatment types. We also 
dichotomized the likelihood of response to a binary variable (re-
sponder or nonresponder) (Materials and Methods) to aid visual-
ization. Last, all tumors were ranked by their predicted ICB response 
scores (Fig. 3A and fig. S2). We found that a higher tumor response 
prediction score was associated with better ICB response (Fig. 3A) 
and better posttreatment survival (Fig. 3B), demonstrating the re-
sponse prediction score’s prognostic value. We noted that our 
model achieved a lower prediction performance in the ipilimumab 
(anti-CTLA4)–progressed samples compared to treatment-naïve 
samples (fig. S2 versus Fig. 3A). A possible explanation is that our 
model was trained on data from control tumors and thus not powered 
to model the tumors that progressed after a first-line ICB (35). The 
major goal of our study is to model tumor immunity and identify 
factoring influencing ICB response from syngeneic mouse tumor 
data. Although our model is different from the approaches that 
were trained and tested on human samples, we still found that 
the model can predict clinical ICB responses well. Overall, our 
approach achieved comparable or better average prediction accu-
racy [mean area under the receiver operating characteristic curve 
(AUC)  =  0.74] than other expression-based biomarkers such as 
CTL (mean AUC = 0.69), PDL1 level (mean AUC = 0.72), and 
interferon- response (mean AUC = 0.68) (Fig. 3C). Together, we 
demonstrated that the framework has predictive power on clinical 
ICB response.
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Prediction of cancer types that could benefit from ICB
To more rigorously test our model’s performance in predicting ICB 
response, we applied it to samples from The Cancer Genome Atlas 
(TCGA) and predicted the ICB sensitivity for each cancer type. 
We sought to test whether our predictions of ICB-sensitive or 
ICB-resistant cancer types match clinical observations. Among 
TCGA cancer types, 13 had corresponding syngeneic mouse models 
in the training data. We predicted the likelihood of each sample’s 
response to ICB treatment with anti-PD1, anti-PDL1, and anti-CTLA4. 
This predicted likelihood of ICB response differed primarily by 

cancer type and less by the type of ICB treatment (Fig. 4A). Among 
the 13 cancer types, skin cutaneous melanoma (SKCM) and head 
and neck squamous carcinoma (HNSC) were predicted to have the 
highest median likelihood of response, whereas liver hepatocellular 
carcinoma (LIHC), sarcoma (SARC), and estrogen receptor–positive 
breast cancer (BRCA-ER+) were predicted to have the lowest median 
likelihood of response to ICB treatment (Fig.  4A). These predic-
tions are consistent with the clinical trial reports assessing anti-PD1 
or anti-PDL1 monotherapy on the same cancer types (Fig.  4B) 
(Spearman’s rank correlation, P = 0.03) (36). In addition, our model 
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models, SGD classifier (SGDC), RFC, K-NN, and MLP. For the baseline methods, grid search was applied to tune each model’s parameters on the training set (60%). Model 
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consistently predicted the likelihood of response to anti-PDL1 to be 
lower than anti-PD1 within each cancer type, which was also shown 
in the reported clinical findings (36).

To avoid prediction bias driven by the input feature of cancer 
type, we masked cancer type in the input matrix and reevaluated the 

ICB response for all TCGA samples. This enabled us to predict ICB 
response for cancer types not included in the syngeneic mouse 
training data. With cancer type masked, our model predictions 
remained consistent with reported clinical trial outcomes under 
anti-PD(L)1 treatment (fig. S3A and table S8) (36). Specifically, the 
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lymphoid neoplasm diffuse large B cell lymphoma was predicted to 
have the highest median likelihood of response among all cancer 
types. In contrast, glioblastoma multiforme (GBM) and LIHC were 
predicted to have the lowest median likelihood of responding to 
anti-PD1. These predictions are again highly consistent with clinical 
observations (37). Last, we predicted that the same individual could 
respond differently to each of the ICB regimens (fig. S3B), raising 
the possibility to use our framework to prioritize ICB treatment for 
patients with cancer.

We further examined whether the likelihood of response was 
associated with reported biomarkers and found a positive correla-
tion with inferred CTL infiltration level (Fig. 4C and fig. S4, A and 
B). CTL infiltration has been shown to be a predictive marker of 
ICB response in several cancer types (38, 39), particularly for SKCM 
(40). Furthermore, the association between CTL infiltration and 
anti-PD1 response tends to be higher than that between CTL infil-
tration and anti-CTLA4 response (compare Fig.  4C and fig. S4B; 
P = 0.001, paired t test), suggesting that the inferred CTL infiltration 
level can be used as a potential biomarker to prioritize anti-PD1 
regimen.

Metagenes implicate potential mechanisms of ICB response
To examine the genetic features that underlie differential ICB re-
sponse, we further evaluated the enrichment of metagenes in differ-
ent cancer types. Specifically, metagene_25 is enriched in SKCM, 
which has a high response rate to anti-PD1 (Fig. 4D). The top-ranked 
genes in metagene_25 were Pdcd1, Cd8b1, and Cd3g (Fig. 5A), rep-
resentative of CTL infiltration. Gene set enrichment analysis of genes 
in metagene_25 identified pathways of immunoregulatory inter-
actions and antigen processing and presentation (Fig. 5, B and C). 
Metagene_25 also shows a positive correlation with improved pa-
tient survival and increased CD8+ T cell infiltration (Fig. 5, D and E). 
This is consistent with existing knowledge that higher antigen pre-
sentation and T cell infiltration in melanoma underlie its superior 
immune response and that higher intratumoral immune activity 
correlates with a better prognosis.

Metagene_31 is enriched in LIHC, which has a low response rate 
to ICB treatment (Fig.  4D). We noted that metagene_31 is also 
highly enriched in the syngeneic mouse models that are resistant to 
ICB treatment (Fig. 2C). The top genes in metagene_31 include 
Col2a1, Col9a1/2, and Sox8 (Fig. 5F and table S5), and enriched 
pathways include extracellular matrix (ECM)–receptor interactions 
and collagens (Fig. 5, G and H). Sox8 is a transcription factor in-
volved in embryogenesis and is highly expressed in most hepatocellular 
carcinomas, where it has been shown to promote tumor cell prolif-
eration (41). Tumor Immune Dysfunction and Exclusion (TIDE) 
(8) analysis suggested that Sox8 is highly expressed in alternatively 
activated M2 tumor-associated macrophages (TAMs), which re-
strict intratumoral CTL infiltration. Col2a1 encodes the alpha-1 
chain of type II collagen, a component of the ECM. Collagen induc-
tion has also been reported to confer immune evasion by physically 
impeding CTL infiltration (42). Moreover, metagene_31 level was 
positively correlated with the gene signature of alternatively activated 
M2 TAMs (Fig. 5I), which suppress CTL response (43).

We also found that metagene_19 is highly enriched in acute 
myeloid leukemia (LAML), which is highly responsive to anti-PD1, 
and depleted in GBM (table S10), a cancer type that is resistant 
to anti-PD1 (37, 44). Pathway enrichment using the top genes 
in metagene_19 (table S5) showed regulation of the inflammatory 

response and myeloid cell differentiation. This is consistent with 
previous studies reporting that GBM is an immune-cold cancer and 
harbors little proinflammatory immune infiltration (45), whereas 
LAML inherently harbors mainly myeloid cells. Furthermore, the 
top-ranked genes in this metagene include Trim12a and Trim5, 
which encode ubiquitin E3 ligases involved in autophagy. Our 
results suggest further experimental investigation into these genes 
regarding their roles in the proinflammatory immune response. 
Together, these results suggest that metagenes derived from our 
computational framework can reflect biological features, highlight 
informative pathways, and suggest potential immunomodulatory 
targets.

DISCUSSION
In this study, we developed a joint dimension reduction framework 
to decompose expression and experimental variables from syngeneic 
mouse data to better understand tumor immunity and reveal fac-
tors influencing immunotherapy response. We found that the model 
trained on mouse tumors has predictive power on clinical ICB re-
sponse. Leveraging the trained model, we systematically predicted 
the cancer types that are more likely to benefit from ICB based on 
TCGA data and achieved results consistent with reported clinical 
studies of anti-PD1 or anti-PDL1. The framework not only allows 
more specific prediction of ICB response in different cancer types 
but also reveals cancer type–specific features associated with ICB 
response. Our feature analysis demonstrated that our model could 
provide informative biological insights underlying the differential 
response to ICB treatment in a range of cancer types by suggesting 
potential immunomodulatory genes. To the best of our knowledge, 
this is the first and most comprehensive meta-analysis of syngeneic 
mouse tumors and ICB treatment data.

We have systematically predicted the likelihood of response for 
each TCGA sample (table S8). LAML was predicted to have a high 
response rate to anti-PD1, whereas GBM was predicted to have a 
low response rate. Metagene_19 is among the most differentially 
enriched metagene in these two cancer types. We reasoned that 
metagene_19 might be one of the major factors underlying the 
response in LAML and resistance in GBM. Closer examination of 
top-ranked genes in metagene_19 identified Trim12a and Trim5, 
two ortholog ubiquitin E3 ligases involved in autophagy. Autophagy 
has been reported to regulate antigen presentation in cancer cells 
(46) and phagocytosis in antigen-presenting cells (47), which col-
lectively coordinate antitumor immune responses. Moreover, our 
recent work using in  vivo CRISPR screens identified multiple 
ubiquitin E3 ligases as potential regulators of ICB response through 
their modulation of the myeloid composition in the tumor micro-
environment (48). Therefore, our study raises the possibility that 
Trim12a and Trim5 might also be involved in the proinflammatory 
immune responses. Further studies are needed to verify their in-
volvement in modulating the tumor microenvironment and cancer 
immune response.

One caveat of applying our model on the syngeneic mouse model 
data is the potential batch effect from samples generated by different 
groups across sequencing platforms. To address this, in our initial 
data preprocessing (15), we downloaded the raw sequencing reads 
from each study and processed the data through a single standard-
ized pipeline. We further normalized the transcriptome by quantile 
normalization to calibrate the scaling and distribution differences 
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across samples for each syngeneic model. We then performed batch 
effect correction between studies using ComBat within each syngeneic 
model (49). Notably, the combination of quantile normalization 
and ComBat was reported to most effectively remove batch effects 
(50). Another caveat is the uneven sample size in different models. 
Some models were underrepresented, whereas others were over-
represented. This representation distribution reflects the popularity 
of these models among researchers and the public availability of data. 
It may be improved in the future as more data become available. 
Another caveat is the criteria for determining the response to ICB, 
which can vary by study. These caveats limit the predictive power of 
our framework and can potentially be improved with more data 
available. Nonetheless, with the large data cohort that we collected, 
we derived informative biological features underlying the differences 
in ICB response and identified potential immunomodulatory tar-
gets for future study.

In summary, our model trained on syngeneic mouse tumor data 
has predictive power on clinical ICB response, implicating that 
analysis of syngeneic mouse tumors could help understand human 
tumor immunity and immunotherapy response. We perceive that 
this predictive power is attributable to the metagenes jointly trained 
from transcriptomic, experimental data, and ICB response data. 
Furthermore, the model was trained using a large collection of 
syngeneic mouse tumors from well-controlled experiments. Analyses 
of data from syngeneic mouse models, human clinical trials, and 
TCGA samples across diverse cancer types demonstrated the wide 
applicability of our model. Therefore, this method has the potential 
to be easily adapted and applied to other study domains. In addi-
tion, potential future applications of our model not covered in this 
study include outlier identification, feature imputation, and semi- 
supervised learning. In the future, we anticipate that more ICB-treated 
single-cell data will become available, which can further improve 
the resolution of our framework in modeling single-cell–level 
metagene features.

MATERIALS AND METHODS
Experimental design—Structure of the dimension 
reduction framework
Our proposed model is a modification of NMF to jointly de-
compose multiple matrices, including a gene expression matrix  
E ∈  R ≥0   n  e  × n  s    , experimental variable matrix  P ∈  R ≥0   n  p  × n  s    , and response 
matrix  R ∈  R ≥0   n  r  × n  s    . Experimental variables included cancer type, 
cancer cell line, cell perturbation, cell genotype, mouse genotype, 
mouse strain, implantation type, implantation site, mouse ICB 
treatment, and response status for each syngeneic tumor sample. 
We let ne, np, and ns denote the number of genes, number of experi-
mental variable data points, and number of samples, respectively. 
One-hot encoding was applied to the categorical phenotypic and 
response data. The model seeks lower-dimensional representations, 
  W  E   ∈  R ≥0   n  e  ×k  ,   W  P   ∈  R ≥0   n  p  ×k  ,   W  R   ∈  R ≥0   n  r  ×k  , and  H ∈  R ≥0  k× n  s     to jointly factorize 
the E, P, and R matrices and can be formulated as E~WEH, 
P~WPH, and R~WRH

  
[

  
E

  P  
R

  
]

 ~
[

  
 W  E  

   W  P    
 W  R  

  
]

 H  (1)

We let k denote the latent factor number and let i (1 ≤ i ≤ k) be 
the ith column vector of the matrix E. Ei can be approximated by 

matrix WE and ith column of H, which is formulated as Ei~WEHi. 
The matrices WE, WP, and WR serve as the basis for the lower- 
dimensional spaces, whereas the H matrix provides the coefficients 
for data to be projected in these spaces. We require the decomposi-
tion products to be nonnegative so that the model results can be 
additively interpreted with ease. Given the input matrices, our model 
seeks a solution to the following minimization problem

  argmin L(E,  W  E   S ) +  L(P,  W  P   S ) +  L(R,  W  R   S)  (2)

 and  are nonnegative regularization hyperparameters that govern 
the relative importance of the reconstruction terms, and L is the 
error function for the matrix reconstruction. Frobenius norm and 
the information divergence (I divergence) are the most often used 
discrepancy measures, and both measurements correspond to the 
maximum likelihood estimation given an assumed latent generative 
model (20). With nonnegative matrices X and Y, I divergence mea-
sures their discrepancies by

  D(X∣∣Y ) =  ∑ 
i,j

      X  i,j   log  X  i,j   /  Y  i,j   −  X  i,j   +  Y  i,j     (3)

We note that I divergence is a generalized Kullback-Leibler (KL) 
divergence and could reduce to KL divergence if X and Y matrices 
are representations of probabilities (20, 51–53). In this application, 
we assume that expression data E is Gaussian-distributed and that 
phenotype data P and response labels R are Poisson-distributed

   E  ,   =   ∑ 
i=1

  
k
     e  ,i,   and  e  ,i,   ~ N( e  ,i,  ∣  W  E    ,i    H  i,  , )  

   P  ,   =   ∑ 
i=1

  
k
     p  ,i,   and  p  ,i,   ~ PO( p  ,i,  ∣  W  P    ,i    H  i,  )  

   R  φ,   =   ∑ 
i=1

  
k
     r  φ,i,   and  r  φ,i,   ~PO( r  φ,i,  ∣  W  R    φ,i    H  i,  )  (4)

Although we have assumed Gaussian and Poisson distributions 
in this application, because of the summable property of Gaussian 
and Poisson random variables (54), the underlying assumptions 
could be changed to accommodate the uncertainty observations in 
the input data. Given these underlying assumptions, for this appli-
cation, we denote our model as

 argmin ∥  ̂   W  E    ∘ (E −  W  E   H )  ∥ F  2   + D( ̂   W  P    ∘ P ∥  ̂   W  P    ∘  W  P   H ) + 
                                                D(R ∥  W  R   H)  (5)

We let XY denote standard matrix multiplication and let X ∘ Y 
denote element-wise matrix multiplication.   ̂   W  E     and   ̂   W  P     are feature- 
weight matrices empirically learned from the training data as prior 
information to guide the model toward biologically relevant results 
(55). When our model is extended from syngeneic mouse data to 
human sample prediction,   ̂   W  E     and   ̂   W  P     can be used to mask data not 
applicable to human samples, such as the cancer cell line.

Maximum likelihood estimation
Assuming that E,, P,, and R, are statistically independent con-
ditional on WE, WP, WR, and H, the likelihood of p(E, P, R∣WE, WP, 
WR, H) can be denoted as
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  ∏ 
,

     N( E  ,  ∣  ∑ 
i=1

  
k
      W  E    ,i    H  i,  , k )  ∏ 

,
     PO( P  ,  ∣  ∑ 

i=1
  

k
      W  P    ,i    H  i,   )  ∏ 

φ,
     PO 

                            ( R  φ,  ∣  ∑ 
i=1

  
k
      W  R    φ,i    H  i,  )  (6)

The log-likelihood function of (6) is

  lnp(E, P, R∣ W  E  ,  W  P  ,  W  R  , H ) = −   n ─ 2   ln(2 ) −   n ─ 2   ln(k ) −   1 ─ 2k    
 

                                             ∑ 
,

     
(

 E  ,   −   ∑ 
i=1

  
k
      W  E    ,i    H  i,  )

   
2
   

  −  ∑ 
,

      ( W  P   H)  ,   −  P  ,   log  ( W  P   H)  ,   + log( P  ,   + 1)  

  −  ∑ 
φ,

      ( W  R   H)  φ,   −  R  φ,   log  ( W  R   H)  φ,   + log( R  φ,   + 1)  

   =   +    1 ─ 2k   ∥ E −  W  E   H  ∥ F  2   + D(P ∥  W  P   H ) + D(R ∥  W  R   H)  (7)

Here =+ denotes the equal function after removing irrelevant con-
stant terms that do not depend on WE, WP, WR, and H. We see that 
this function (7) is equal to the objective function (5) after removing 
the additive or constant terms, demonstrating that our model is a 
maximum likelihood estimator with the given assumptions of 
uncertainty in the data matrices E, P, and H

Multiplicative updates
Our model seeks lower-dimensional representations WE, WP, WR, 
and H to optimize the objective function (5). Multiplicative update 
rules are applied through the gradient of the objective function with 
respect to WE, WP, WR, and H (56). The iterative algorithms to 
update WE, WP, WR, and H are 

   W  E   =  W  E   −     W  E      ∘ ∇   W  E     f(W, H)  

   W  P   =  W  P   −     W  P      ∘ ∇   W  P     f(W, H)  

   W  R   =  W  R   −     W  R      ∘ ∇   W  R     f(W, H)  

  H = H −    H    ∘ ∇  H   f(W, H)  (8)

 are parameters to control the stepwise learning rate. The deriv-
atives of the objective function with respect to WE, WP, WR, and H 
are derived as

   ∇   W  E      f(W, H ) = − 2( ̂   W  E    ∘ (E −  W  E   H ) )  H   T   

    ∇   W  P     f(W, H ) =  ̂   W  P     H   T  −  (      ̂   W  P    ∘ P ─ 
 ̂   W  P    ∘  W  P   H

   ∘  ̂   W  P    )    H   T    

    ∇   W  R      f(W, H ) =  H   T  −  (     R ─  W  R   H   )    H   T    

    ∇  H   f(W, H ) = − 2  W E  T ( ̂   W  E    ∘ (E −  W  E   H ) ) +     W  P     T  ̂   W  P    −    W  P     T

                     (      ̂   W  P    ∘ P ─ 
 ̂   W  P    ∘  W  P   H

   ∘  ̂   W  P    )   +   W R  T  −    W  R     T  (     R ─  W  R   H   )     (9)

The subtraction terms in the derivatives can lead to negative ele-
ments. To address this, Lee and Seung (56) proposed to adapt the 

learning rate  to avoid generation of negative elements. After inte-
grating the learning rate , the negative terms in the update rules are 
cancelled out and the subtraction in the update rules is avoided. 
Upon the derivatives,  for each basis matrix is denoted as

      W  E     =    W  E   ───────────  
2( ̂   W  E    ∘  W  E   H )  H   T 

    

       W  P     =    W  P   _ 
 ̂   W  P     H   T 

   and      W  R     =   W  R   _ 
 H   T 

   

     H   =   H  ─────────────────────   
2   W  E     T ( ̂   W  E    ∘  W  E   H ) +    W P  T  ̂   W  P    +   W R  T 

    (10)

Using the above derivatives, we obtain the following update 
rules for WE, WP, WR, and H. Block coordinate descent scheme is 
applied, in which we optimize with respect to only one rule while we 
keep others fixed, and then vice versa. Notably, to increase inter-
pretability and further extend our model to human clinical response 
prediction, we implement the decompositions using hand-solving 
equations instead of the SGD optimizer (57)

   W  E   ←  W  E   ∘    ( ̂   W  E    ∘ E )  H   T  ─  
( ̂   W  E    ∘ AH )  H   T 

    

    W  P   ←    W  P   ─ 
 ̂   W  P     H   T 

   ∘  (      ̂   W  P    ∘ P ─ 
 ̂   W  P    ∘  W  P   H

   ∘  ̂   W  P    )    H   T    

    W  R   ←    W  R   ─ 
 H   T 

   ∘  (     R ─  W  R   H   )    H   T    

  

H ← H ∘   
2  W E  T ( ̂   W  E    ∘ E )  +     W  P     T  (      ̂   W  P    ∘ P _ 

 ̂   W  P    ∘  W  P   H
  ∘  ̂   W  P    )   +    W  R     T  (     R _  W  R   H  )  

    ─────────────────────────────    
2   W  E     T ( ̂   W  E    ∘  W  E   H ) +     W  P     T  ̂   W  P    +    W  R     T 

    (11)

Immunotherapy response prediction on external data
After training our model on the syngeneic tumor data, decomposi-
tion products WE, WP, and WR can be used for downstream immu-
notherapy response prediction on external data. We let Eet and Pet 
denote the external expression matrix and phenotype data, respec-
tively. When applying the model to human ICB response predic-
tion, as human clinical samples do not have mouse genotype or 
other mouse-specific information, we accommodate these feature 
discrepancies by masking the feature weight matrix   ̂   W  P     as zeros, so 
that these features are not involved in the iterative updates. Similarly, 
we use the feature weight matrix   ̂   W  E     to accommodate the gene dis-
crepancies between mouse and human gene symbols. After obtain-
ing WE, WP, WR,   ̂   W  P    , and   ̂   W  E     and external data Eet and Pet, we aim 
to solve the function

 argmin ∥  ̂   W  E    ∘ ( E  et   −  W  E    H  et   )  ∥ F  2   + D( ̂   W  P    ∘  P  et   ∥  ̂   W  P    ∘  W  p    H  et  )  (12)

to derive coefficient matrix Het through iterative updates as

   H  et   =  H  et   −     H  et      ∘ ∇   H  et     f(W, H)  (13)

The derivative of the objective function with respect to H is 
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    ∇   H  et     f(W, H ) = − 2   W  E     T  [  ̂   W  E    ⨀ (E −  W  E    H  et   ) ] +     W  P     T  ̂   W  P    − 

                                           W  P     T  [      ̂   W  P    ∘  P  et   ─ 
 ̂   W  P    ∘  W  P    H  et  

   ∘  ̂   W  P    ]     (14)

The Het is specified as

      H  et     =    H  et    ──────────────────   
2   W  E     T ( ̂   W  E    ∘  W  E    H  et   ) +     W  P     T  ̂   W  P   

    (15)

to remove the negative subtraction terms. Last, we could obtain Het 
through iterative updates with

   H  et   ←  H  et   ∘    
2   W  E     T ( ̂   W  E    ∘  E  et   ) +    W  P     T  [     

 ̂   W  P    ∘  P  et   _ 
 ̂   W  P    ∘  W  P    H  et  

  ∘  ̂   W  P    ]  
   ───────────────────────   

2   W  E     T ( ̂   W  E    ∘  W  E    H  et   ) +     W  P     T  ̂   W  P   
    (16)

With coefficient matrix Het obtained, we could further use the 
WR to reconstruct the response matrix Ret for the external data 
using the formula Ret = WRHet. The number of columns in Ret cor-
responds to the number of samples in the external data. In the Ret 
matrix, the response rate is predicted as a range of values instead of 
a binary outcome. As we have noted, the type of ICB treatment is 
specified in the Pet matrix. Therefore, we could change the ICB 
treatment in the Pet matrix to simulate an individual’s likelihood to 
respond to different ICB treatments. In this scenario, our model is 
extended to simulate the likelihood of ICB response based on an 
individual’s gene expression and phenotype data.

Experiment setting and benchmarking
We split the collection of syngeneic datasets into training (60%), 
validation (20%), and testing (20%) sets. The split was repeated 
10 times with random initial seeds. The training data are used to opti-
mize the matrix decomposition based on the reconstruction errors, 
while the validation set is used to tune the hyperparameters  and  
and the number of factors k based on the ICB response prediction 
accuracy. During training, the maximum number of iterations for 
the multiplicative updates was set to be n = 500. Early stopping cri-
terion was specified as relative error below tolerance  = 0.01 within 
10 runs. Feature weight matrices   ̂   W  E     and   ̂   W  P     were empirically 
learned from the training dataset through correlation studies be-
tween the feature value and sample ICB response. The feature 
weights can serve as prior information to guide the decomposition 
toward biologically relevant results and greatly improve the consisten-
cy between runs (55). Before modeling, we selected a subset of rep-
resentative genes (n = 5000) with highest feature weights in   ̂   W  E     to 
achieve a more balanced sample-to-feature ratio and to reduce noise.

We apply advanced machine learning methods to benchmark 
the performance of our proposed model. Both linear and nonlinear 
models were used, including LR, SVM, RFC, K-NN, and MLP. For 
the evaluated models, grid search was applied to tune each model’s 
parameters using fivefold cross-validation on the training set (60%). 
Model performance was measured on the testing dataset (20%). 
Specifically, the search parameters include loss options (“hinge,” 
“log,” “squared hinge,” and “perceptron”) and penalty options 
(“l2” and “elasticnet”) for the linear models; criterions (“gini” and 
entropy) and max depth (range from 5 to 50 with interval spacing 
equal to 5) for the RFC; number of neighbors (range from 5 to 
50 with interval spacing equal to 5) for the K-NN, learning rate 
(“invscaling” and “adaptive”), and activation function (“relu” and 

“logistic”); and a selection of number of hidden layers for the 
MLP. Prediction accuracy is used as selection criteria for parameter 
tuning and model selection. Once the model was tuned, it was 
applied to the testing set to evaluate prediction accuracy. Mean and 
SE of the prediction accuracy were reported for the trained models. 
Let   R  i   and  ̂   R  i     denote true and predicted labels; prediction accuracy 
was defined as   ∑ i=1  s    ( R  i  ,  ̂   R  i    ) / s ,  ( R  i  ,  ̂   R  i    ) = 1 if  R  i    and   ̂   R  i     belong to the 
same class, where s is the number of samples to be tested.

When evaluating our model on the human clinical trial samples, 
we used Cox proportional hazards regression analysis to test the 
association between the predicted likelihood of ICB response and 
patient survival. The predicted score difference between responders 
and nonresponders was examined by the Mann-Whitney U test. 
Gene set enrichment was performed using the enrichAnalyze 
function in the MAGeCKFlute R package (58), and the enriched 
pathways were visualized using functions from MAGeCKFlute (58). 
In the analysis of TCGA data, the CTL level is estimated through 
the bulk-tumor expression average of CD8A, CD8B, GZMA, GZMB, 
and PRF1.

Syngeneic data collection and preprocessing
We queried datasets deposited in the Gene Expression Omnibus 
(59) that matched a manually curated list of syngeneic mouse models 
or syngeneic cancer cell lines (table S10). For studies involving ICB 
treatment of anti-PD1, anti-PDL1, anti-PDL2, and anti-CTLA4, we 
manually annotated the experimental characteristics of each sam-
ple. The response status for each sample was curated from the original 
published studies. For the samples that do not have response infor-
mation annotated, we labeled samples’ response statuses based on 
their diameter (size) change after treatment. Following a consensus 
(60), we used a 30% reduction as the cutoff to call a sample’s re-
sponse status. To keep data consistent between human and mouse 
and different datasets, we dichotomized the responses to a binary 
label. In total, we collected 761 syngeneic tumor RNA-seq samples 
from 26 published studies (table S1). To ensure consistency, raw 
sequencing reads were downloaded from each study and processed 
through a standardized pipeline called RNA-seq IMmune Analysis 
Pipeline (RIMA) (https://liulab-dfci.github.io/RIMA/). RIMA is an 
automated Snakemake pipeline developed by our group to stream-
line RNA-seq data processing, including but not limited to read 
alignment, quality control (QC), expression quantification, and 
batch effect removal. Read alignments were performed with STAR 
(v.2.4.2a) (61) on FASTQ files against the mm10 reference genome 
assembly (mm10, Genome Reference Consortium Mouse Build 38) 
from the National Cancer Institute Genomic Data Commons (GDC). 
RNA-seq QC was performed on the aligned BAM files using RSeQC 
(v2.4) (62). With the reads appropriately aligned, expression levels 
were quantified by SALMON (v.0.14.0) (63) on the BAM files. We 
normalized and batch-controlled the transcripts per million data 
by quantile normalization and ComBat (49) within each syngeneic 
mouse model.

External data for validation
To evaluate the accuracy of the model’s ICB response prediction, we 
downloaded and processed the additional datasets GSE109485 and 
GSE137818 that consisted of 12 and 18 syngeneic mouse samples, 
respectively. A total of 16 pre-ICB samples and 14 post-ICB samples 
were included in these external datasets. The ICB response and 
mouse experimental variables were annotated from the original 

https://liulab-dfci.github.io/RIMA/
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articles (table S2). Furthermore, we applied our model to patient 
clinical samples to evaluate its ICB response prediction on human 
samples. To evaluate the effectiveness of prediction, we systematically 
profiled expression data from clinical trial samples that underwent 
anti-CTLA4, anti-PD1, or anti-PDL1 treatments. Transcriptome 
data profiled by RNA-seq were obtained from these samples before 
patients underwent ICB therapy. On the basis of the patients’ reported 
clinical prognosis, these samples were labeled as either responders 
or nonresponders. For each dataset, we standardized the transcrip-
tomic data across patients by quantile normalization. In total, we 
collected cancer patient cohorts with available RNA-seq data and 
immunotherapy response from 764 ICB-treated tumors spanning 
16 clinical trials (9, 30, 64–76). We also collected available patient 
overall survival and progression-free survival information from 
these studies. Furthermore, we extended the model to predict the 
likelihood of ICB response using the clinical samples from TCGA. In 
this evaluation, we only included samples that matched the cancer type 
in the mouse training data. A total of 12 cancer types [liver hepato-
cellular carcinoma (LIHC), sarcoma (SARC), breast cancer (BRCA), 
kidney renal clear cell carcinoma (KIRC), colon adenocarcinoma 
(COAD), mesothelioma (MESO), pancreatic adenocarcinoma (PAAD), 
stomach adenocarcinoma (STAD), lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC), head-neck squamous cell 
carcinoma (HNSC), and skin cutaneous melanoma (SKCM)] from 
TCGA were included. For TCGS breast cancer tumors, we split tumors 
according to the Prediction Analysis of Microarray 50 (PAM50) 
subtypes (luminal A, luminal B, HER2, basal, and triple negative).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm8564

View/request a protocol for this paper from Bio-protocol.
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