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It is widely accepted that the nonlinear macroscopic mechanical behavior of soft tissue is
governed by fiber straightening and re-orientation. Here, we provide a quantitative
assessment of this phenomenon, by means of a continuum micromechanics
approach. Given the negligibly small bending stiffness of crimped fibers, the latter are
represented through a number of hypoelastic straight fiber phases with different
orientations, being embedded into a hypoelastic matrix phase. The corresponding
representative volume element (RVE) hosting these phases is subjected to
“macroscopic” strain rates, which are downscaled to fiber and matrix strain rates on
the one hand, and to fiber spins on the other hand. This gives quantitative access to the
fiber decrimping (or straightening) phenomenon under non-affine conditions, i.e. in the
case where the fiber orientations cannot be simply linked to the macroscopic strain state.
In the case of tendinous tissue, such an RVE relates to the fascicle material with 50 μm
characteristic length, made up of crimped collagen bundles and a gel-type matrix in-
between. The fascicles themselves act as parallel fibers in a similar matrix at the scale of a
tissue-related RVE with 500 μmcharacteristic length. As evidenced by a sensitivity analysis
and confirmed by various mechanical tests, it is the initial crimping angle which drives both
the degree of straightening and the shape of themacroscopic stress-strain curve, while the
final linear portion of this curve depends almost exclusively on the collagen bundle
elasticity. Our model also reveals the mechanical cooperation of the tissue’s key
microstructural components: while the fibers carry tensile forces, the matrices undergo
hydrostatic pressure.

Keywords: multiscale hypoelasticity, micromechanics, homogenized stiffness, fiber decrimping, scale-dependent
strain

1 INTRODUCTION

With the advent of mechanobiology (Van der Meulen and Huiskes, 2002), it has been widely
accepted that the behavior of cells and tissues is not only governed by genetic and chemical, but also
by mechanical stimuli, such as mechanical stress (“force per area” typically expressed through
Cauchy’s stress tensor) or mechanical strain (“length and angle changes,”mathematically expressed
by any strain measure of the Seth-Hill family (Seth, 1962, 1966; Hill, 1968; Farahani and Naghdabadi,
2000), including the Green-Lagrange strain tensor representing “engineering strain” and the
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logarithmic strain tensor representing “true strain”). However,
observing the mechanical stimuli may turn out as tricky, as they
strongly depend on the length scale on which they are defined, i.e.
on the size of the relevant areas and lengths. Hence, it is advisable
to quantify the mechanical environment directly felt by the
biological cells. By example, the oscillating hydrostatic pore
pressure in bone stimulates osteoblasts and osteocytes (Klein-
Nulend et al., 1995). These cell types, in turn, regulate tissue
metabolism, i.e. the apposition of new bone tissue, or the
resorption of old bone tissue, thereby changing the tissue
morphology, in particular so the vascular porosity (Pastrama
et al., 2018). This is the classical epitome of a mechanobiological
process: mechanics-driven tissue regulation.

At the same time, there exists a more direct and even more
profound type of mechanics-driven changes in tissue
morphology, not even involving explicit cellular activities: the
fiber reorientation and recruitment processes occurring in soft
tissues (Lake et al., 2009; Gusachenko et al., 2012), with the
aforementioned fibers being embedded in a gel-type substance
(Weiss and Gardiner, 2001). These processes, in general, cannot
be traced back to macroscopic deformations measured at the
tissue scale (i.e. that of hundreds of micrometers in the case of
tendons or arteries), but they are inherently linked to the
mechanical environment of the fibers themselves, and of the
soft gel-type matrix in-between theses fibers. Still, the fiber re-
orientation and recruitment processes do not involve any explicit
cellular activity, but merely the reaction of the hierarchically
organized microstructure to mechanical forces. However, this
reaction is a truly complex one, having challenged biomaterial
mechanicians for decades now. In this context, a major challenge
lies in the proper choice of a suitable deformation measure itself.
The widely used Green-Lagrange strain tensor links any energetic
state of the material microstructure to its initial configuration
(Holzapfel et al., 2000), and corresponding material behaviors are
often classified as “affine” (Gasser et al., 2006; Li et al., 2018), with
interesting ranges of applicability (Holzapfel et al., 2002,
Holzapfel et al., 2005; Kiousis et al., 2009; Pierce et al., 2010).
Still, various experimental data on stress-strain behavior of soft
tissues cannot be represented as explicit functions of the Green-
Lagrange strain tensor (Criscione et al., 2003a; Criscione et al.,
2003b) - this highlights the limitations of macroscopic
hyperelasticity. As a remedy, Freed and coworkers (Freed,
2008, Freed, 2009, Freed, 2010; Freed et al., 2010; Freed and
Einstein, 2012) proposed the use of macroscopic hypoelasticity
for soft tissues: then objective, i.e. observer-independent, rates of
macroscopic stress and strain tensors are linked to each other.
The hypoelasticity concept was introduced by Truesdell (1955),
and triggered intensive discussions (Bernstein, 1960b; Bernstein,
1960a; Xiao et al., 1997) on the integrability of relationships
between stress and strain rates into either Cauchy-elasticity
(where the Cauchy stress is a function of the deformation
gradient) or Green-elasticity (also called hyperelasticity -
where strain energy function depends on the Green-Lagrange
strain tensor). As a rule, both Cauchy-elasticity and Green-
elasticity turned out as special cases of hypoelasticity (Noll,
1955; Xiao et al., 1999), so that the physical nature of the
latter remained somewhat open at that point in time. A major

step forward was taken by Rajagopal and co-workers since 2003,
by resorting to the thermodynamic definition of elasticity, i.e. to
mechanical stress-driven, dissipation-free deformations
(Rajagopal, 2003, Rajagopal, 2007; Rajagopal and Srinivasa,
2007, Rajagopal and Srinivasa, 2009; Rajagopal, 2011). They
identified a class of non-dissipative, non-hyperelastic material
models - with the hypoelastic models just being a subclass of
those. As it was already the case in (Morin et al., 2018), this
thermodynamic perspective on hypoelasticity is a major
theoretical ingredient of the present paper. While being
assured of the absence of any type of dissipation, this
modeling approach does without the deformation gradient or
the Green-Lagrange strain tensor. Accordingly, the current
material behavior exclusively depends on the “here and now”,
without any reference to the initial configuration.

Driving this philosophy to the next level of refinement, Morin
et al. (2018) introduced hypoelasticity already at the
microstructural level, thereby adopting an objective,
thermodynamically consistent formulation based on the Gibbs
potential (Rajagopal and Srinivasa, 2009, Rajagopal and Srinivasa,
2011): Strain rate and stress average rules (Hashin, 1983; Zaoui,
2002) arising from kinematic compatibility and mechanical
equilibrium of material volumes representing soft tissue
microstructures, together with Eshelby’s matrix-inclusion
problem reformulated for velocity gradients (Morin et al.,
2018), allowed for translating fiber deformations and re-
orientations into macroscopically non-affine material behavior,
in line with experimental observations (Goulam Houssen et al.,
2011; Screen et al., 2004b; Gupta et al., 2010; Jayyosi et al., 2017;
Krasny et al., 2017, Krasny et al., 2018). The present contribution
tackles the next logical step: elucidating the nature of the
associated macroscopic stiffness linking macroscopic Eulerian
strain rates and objective stress rates; and hence, allowing for the
establishment of hierarchical multiscale models, where the
“macroscopic” stiffness properties arising from the
homogenization over one (smaller) representative volume
element (RVE) enter as (microstructural) phase properties
within yet another (larger) RVE. At the same time, the
micromechanical formulation allows for downscaling the
strains subjected to an RVE, not only to fiber strains and re-
orientations, but also to matrix strains. This allows for the
detection of “unusual” material behavior, such as matrix
compression under an overall uniaxial tensile stress state
applied to the RVE. Accordingly, the paper is organized as
follows: First, a continuum micromechanics framework for
evolving elastic microstructures under large strains is
established, with the following key ingredients: a representative
volume element (RVE) obeying the scale separation principle and
being subjected to homogeneous strain rate boundary conditions,
thermodynamically consistent hypoelastic constitutive laws at the
phase level; and matrix-inhomogeneity problems used for
hypoelasticity upscaling (see Section 2). The following steps
are then taken by example of tendinous tissue: After
describing an algorithm for a hierarchical two-step
homogenization scheme (see Section 3), micromechanical
model results are presented in terms of sensitivity analyses
and predictions of experimentally observed stress-strain
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relations, together with corresponding fiber re-orientations, fiber
stretches, matrix stresses, and overall transverse stretches (see
Section 4). The paper is concluded by a Discussion (see Section 5).

2 CONTINUUM MICROMECHANICS OF
EVOLVING ELASTIC MICROSTRUCTURES
UNDERGOING LARGE STRAINS

2.1 Kinematics and Equilibrium
Continuum micromechanics provides estimates for the
“homogenized” constitutive behavior of materials, from
geometrical and mechanical information associated to their
microstructures. Accordingly, these materials are considered to
be, at the same time, micro-heterogeneous and macro-
homogeneous. In this context, the material is seen as the matter
filling a so-called representative volume element (RVE) of volume

Ω, which satisfies the separation of scales principle, reading as (Hill,
1963; Drugan and Willis, 1996; Zaoui, 1997, Zaoui, 2002):

d≪ ℓ≪L (1)

whereby d, ℓ, and L are respectively the characteristic lengths of
the (micro-)heterogeneities, of the RVE, and of the structure built
up by this material or of the loading applied to this structure. The
latter “structural length” may be quantified through the spatial
fluctuations of the macroscopic stresses Σ assigned to the
macroscopic material points making up the structure,
according to (Auriault et al., 2009);

L � ‖Σ‖
‖zΣ/zX ‖ (2)

withX as the position vector labeling macroscopic material points
within the given structure, e.g. within the considered organ.

Next, we adopt a statistical description of the microstructural
morphology found within the RVE, in terms of homogeneous
subdomains with given shape, volume fraction, and mechanical
properties. These subdomains are called the material phases and
provide an approximate description of the RVE. For the present
case, illustrated in Figure 1, we consider Nf cylindrical phases
with a length-to-diameter ratio going to infinity. These phases
represent fibers (with volume fraction fr, r � 1, . . ., Nf), and they
are embedded into a soft matrix phase, with volume fraction
fm � 1 − ∑Nf

r�1fr. The fiber orientations are quantified in terms of
two Euler angles θ and ϕ, which define a local spherical
coordinate system attached to the cylinder, as seen in Figure 2.

On the surface zΩ of the RVE, the macroscopic strain rate is
prescribed in terms of a microscopic velocity field v , reading
mathematically as (Hashin, 1983; Morin et al., 2018):

∀x ∈ zΩ: v x( ) � D · x (3)

with x as the microscopic location vector, zΩ as the external
boundary of the RVE with volumeΩ, v as the prescribed velocity
field, andD as the (Eulerian) macroscopic strain rate associated to
macroscopic pointX - a dependency which we will not explicitly
indicate in the following developments, in order to keep the
notation relatively compact. At the same time, we emphasize that
D is independent of the microscopic location vector x (hence,
Eq. 3 is referred to as “homogeneous boundary conditions”). We
let the microscopic velocity field prescribed at the RVE’s boundary
induce a continuous and differentiable velocity field v inside the
RVE; and we express the corresponding velocity gradient in terms
of strain rate and spin tensor fields, in accordance with their
customary definitions as the symmetric and the skew-symmetric
parts of the velocity gradient (Salençon, 2001):

∀x ∈ Ω: d x( ) � 1
2

z v

z x
x( ) + z v

z x
[ ]T

x( )⎛⎝ ⎞⎠ (4)

∀x ∈ Ω: ω x( ) � 1
2

z v

z x
x( ) − z v

z x
[ ]T

x( )⎛⎝ ⎞⎠ (5)

The local spin and strain rates give access to the evolution of
arbitrarily chosen local base vectors e attached to microscopic
material points, via (Salençon, 2001):

FIGURE 1 | Representative volume element with characteristic length ℓ,
subjected to homogeneous boundary conditions in terms of a microscopic
velocity field arising from one macroscopic strain rate.

FIGURE 2 | Definition of the local reference system e r , e θ , e ϕ associated
with a specific fiber phase; and associated Euler angles θ and ϕ.
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_e x( ) � d x( ) + ω x( )[ ] · e x( ) (6)

with the dot operator referring to the time derivative.
The microscopic definitions of the Eulerian strain rate and

spin, Eqs 4, 5, together with the homogeneous strain rate
boundary condition Eq. 3, entail the following average rules
(Hashin, 1983; Morin et al., 2018):

1
Ω∫Ω

d x( ) dΩ � 〈d〉 � ∑Nf

r�1
frdr + fmdm � D, (7)

1
Ω∫

Ω
ω x( ) dΩ � 〈ω〉 � ∑Nf

r�1
frωr + fmωm � 0, (8)

whereby the angular bracket notation 〈·〉 denotes the spatial
average over the volume of the RVE; dr and ωr are the averages
of d andω overΩr, the volume of the r-th fiber phase, while dm and
ωm are the averages of d and ω over Ωm, the volume of the matrix
phase. Moreover, the microscopic strain rates are considered to
generate microscopic traction forces t at the boundary of the RVE
and microscopic Cauchy stresses σ within the RVE. All these force
quantities are equilibrated, which mathematically reads as:

∀ x ∈ Ω: div σ(x ) � 0
∀ x ∈ zΩ: t x( ) � σ x( ) · n x( ) (9)

with div as the divergence operator and n as the outward normal
to the boundary at location x . The volume-normalized power of
the external (traction) forces on the RVE, referred to in the sequel
as external power density pext, reads as (Morin et al., 2017):

pext � 1
Ω∫

zΩ
t x( ) · v x( ) dS

� 1
Ω∫zΩ

D · x( ) · σ x( ) · n x( )[ ]dS
� D: 1

Ω∫
Ω
σ x( ) dΩ (10)

where use of the strain rate boundary condition Eq. 3 and of the
equilibrium conditions Eq. 9 was made. Equation 10 induces a
force quantity performing power (density) on the macroscopic
strain rate D, namely the macroscopic Cauchy stress Σ:

pext � Σ: D5 Σ � 1
Ω∫Ω

σ x( ) dΩ � ∑Nf

r�1
frσr + fmσm � 〈σ〉,

(11)

with σr and σm as the averages of σ over Ωr and Ωm,
respectively. For the forthcoming developments, it is useful
to consider all stress tensors appearing in Eq. 11 as being
expressed in terms of components with respect to a fixed base
frame e 1, e 2, e 3, see Figure 1, with indices written as
superscripts,

∀r ∈ {1, ‥, Nf,m}: σr � ∑3
i�1

∑3
j�1

σ ijr e i ⊗ e j

Σ � ∑3
i�1

∑3
j�1

Σij e i ⊗ e j

(12)

and then derive these components with respect to time, yielding a
stress rate component average law of the format

∀{i, j} ∈ {1, 2, 3}2: ∑Nf

r�1
fr _σ

ij
r + fm _σ ijm � _Σij

(13)

2.2 Hypoelasticity
The matrix phase and the Nf different fiber phases making up the
RVE exhibit a hypoelastic constitutive behavior (Truesdell, 1955).
In more detail, the microscopic strain rate tensor d is linked to an
objective rate of the microscopic stress tensor σ△. For the sake of
simplicity (Morin et al., 2018), we here choose the Jaumann rate,
reading mathematically as (Jaumann, 1911; Szabó and Balla, 1989)

σ△ � _σ + σ · ω − ω · σ (14)

since alternative, yet mathematically more laborious objective rates
deliver, as a rule, very similar results (Morin et al., 2018). The link
between strain and stress rate follows from the requirement of zero
dissipation for elastic processes, which, when written as function of
the Gibbs free energy per unit mass, Gρ(σ), reads as (Rajagopal and
Srinivasa, 2009, Rajagopal and Srinivasa, 2011; Morin et al., 2018):

D � σ: d − σ: ρ
z2Gρ

zσzσ
( ): σ△ � 0 (15)

implying the following expression for the strain rate;

d � ρ
z2Gρ

zσzσ
: σ△ (16)

Equation 16 can be recast into the form originally given by
Truesdell (1955):

σ△ � C: d (17)

with the microscopic hypoelasticity (or stiffness) tensor being
derived from the microscopic Gibbs free energy as:

C � ρ
z2Gρ

zσzσ
( )−1

(18)

Considering homogeneous stiffness properties across the Nf

fiber phases and the matrix phase,

∀r ∈ {1, ‥, Nf}: Cr � 〈C〉Ωr

Cm � 〈C〉Ωm

(19)

we arrive at the following hypoelastic phase behavior:

∀r ∈ {1, ‥, Nf}: σ△
r � Cr: dr

_σm � Cm: dm
(20)

whereby we anticipated the vanishing spin of the matrix phase,
ωm � 0, which, when specifying Eq. (14) for the matrix phase,
yields:

σ△
m � _σm (21)

2.3 Upscaling Hypoelasticity
The question arises of how to upscale the microscopic hypoelastic
law Eq. 17 to the macroscopic level, i.e. to a relation linking
macroscopic stress and strain measures. As a first step in this
direction, we extend the reasoning of Zaoui (2002), by observing
the linearity of the differential Equations 9, 17, which, together
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with boundary condition Eq. 3, imply a multi-linear relation
between the macroscopic and microscopic strain rates:

∀r ∈ {1, ‥, Nf}: dr � Ar: D
dm � Am: D

(22)

with Ar and Am as the fourth-order strain rate concentration
tensors associated with the r-th fiber phase and with the matrix
phase, respectively. The aforementioned linearity implies the
existence of a similar relation for the spin, reading as:

∀r ∈ {1, ‥, Nf}: ωr � Rr: D (23)

with Rr as the fourth-order strain rate-to-spin concentration
tensor associated with the r-th fiber phase.

Following again the tradition of continuum micromechanics
(Zaoui, 2002), the mechanical interactions within the RVE
depicted in Figure 1 are estimated by coupling a number of
matrix-inhomogeneity problems in the sense of the famous paper
of Eshelby (1957). Accordingly, the strain rate and strain rate-to-
spin concentration tensors are estimated by means of a Mori-
Tanaka scheme (Mori and Tanaka, 1973; Benveniste, 1987),
following a strategy given in greater detail in (Morin et al., 2018):

∀r ∈ {1, ‥, Nf} : Ar � A
∞
r : ∑Nf

i�1
fiA

∞
i + fmA

∞
m

⎡⎢⎣ ⎤⎥⎦−1

∀r ∈ {1, ‥, Nf} : Rr � R∞
r : ∑Nf

j�1
fjA

∞
j + fmA

∞
m

⎡⎢⎢⎣ ⎤⎥⎥⎦−1
with ∀r ∈ {1, ‥, Nf} : A

∞
r � I + Pr : Cr − Cm( )[ ]−1

∀r ∈ {1, ‥, Nf} :
R∞

r � −REsh
r : C−1

m : I + Cr − Cm( ): Pr[ ]−1: Cr − Cm( ) (24)

In Eq. 24, the following physical quantities are introduced: I is the
fourth-order unity tensor, Pr � SEshr : C−1

m is the Hill tensor of the r-th
fiber phase. SEshr is the classical Eshelby tensor: within an infinite 3D
domain exhibiting the elastic properties of the matrix, this fourth-
order tensor relates an eigenstrain rate acting on an inclusion
representing the r-th fiber phase, with the corresponding total
strain rates in that inclusion. REsh

r is an Eshelby-like tensor
extending Eshelby’s original ideas towards spins: it relates an
eigenstrain rate acting on an inclusion representing the r-th fiber
phase with the corresponding spin of that inclusion. In a base frame
e r, e θ, e ϕ, being aligned with the direction of the r-th fiber phase, see
Figure 2, the non-zero components of the aforementioned tensors
read as (Eshelby, 1957; Morin et al., 2018):

SEshθθθθ � SEshϕϕϕϕ �
5 − 4]m
8(1 − ]m)

SEshθθϕϕ � SEshϕϕθθ �
−1 + 4]m
8(1 − ]m)

SEshθθrr � SEshϕϕrr �
]m

2(1 − ]m)
SEshϕrϕr � SEshrϕrϕ � SEshrϕϕr � SEshϕrrϕ � SEshrθrθ � SEshθrθr � SEshθrrθ � SEshrθθr �

1
4

SEshθϕθϕ � SEshϕθϕθ � SEshϕθθϕ � SEshθϕϕθ �
3 − 4]m
8(1 − ]m)

(25)

REsh
θrrθ � REsh

ϕrrϕ � REsh
θrθr � REsh

ϕrϕr � −1
4

REsh
rθrθ � REsh

rϕrϕ � REsh
rθθr � REsh

rϕϕr �
1
4

(26)

where ]m � −(C−1
m )θθϕϕ/(C−1

m )θθθθ refers to the elastic Poisson’s
ratio of the isotropic matrix into which the fiber phase
oriented in direction e r is embedded. The strain
concentration tensor of the matrix phase, Am, follows from
evaluation of Eq. 241 and Eq. 243 for r � m, yielding in
particular A∞

m � I. It is also helpful to evaluate Eq. 244 for r �
m, yielding R∞

m � Rm � 0, a result which we have already
anticipated in Eqs 20, 21.

Inserting the two concentration relations Eq. 21 and Eq. 23, as
well as the Jaumann rate Eq. 14, into the constitutive relation
Eq. 17, yields a relation which links the microscopic phase-
specific stress tensor components with respect to a fixed base
at the current time instant, to both the macroscopic strain
rate tensor and the microscopic stresses themselves. This
reads mathematically as:

∀r ∈ {1, ‥, Nf} : _σr � Cr: Ar: D − σr · Rr: D( ) + Rr: D( ) · σr

_σm� Cm: Am: D (27)

It is useful and illustrative to recast the expression Eq. 27 in index
notation (with the indices being written as superscripts):

∀{i, j} ∈ {1, 2, 3}2:
∀r ∈ {1, ‥, Nf} : _σ ijr � cijklr Alkmn

r − σ ikr R
kjmn
r + Rikmn

r σkj
r[ ]Dnm

_σ ijm � cijklm Alkmn
m Dnm (28)

whereby the Einstein convention on repeated indices is
adopted. Insertion of this expression into the stress
component rate average law Eq. 13 yields an expression
linking macroscopic stress rates to macroscopic strain
rates, reading as:

∀{i, j} ∈ {1, 2, 3}2 :
_Σij � ∑Nf

r�1
fr cijklr Alkmn

r − σ ik
r R

kjmn
r + Rikmn

r σkjr( ) + fmc
ijkl
m Alkmn

m[ ]Dnm (29)

which induces a homogenized stiffness tensor with the following
components (indices written as superscripts):

∀{i, j, m, n} ∈ {1, 2, 3}4 :
Cijmn

hom � ∑Nf

r�1
fr cijklr Alkmn

r − σ ikr R
kjmn
r + Rikmn

r σkj
r( ) + fmc

ijkl
m Alkmn

m

(30)

This homogenized stiffness Chom exhibits several peculiar,
particularly non-classical features: It shows only minor
symmetry properties, i.e. Cijkl

hom � Cijlk
hom � Cjikl

hom � Cjilk
hom,

associated with the symmetry of the involved stress and
strain tensors. Moreover, it depends not only on
morphological features and microscopic stiffness
properties, as quantified through the first term of the
right-hand side of Eq. 30, but also on the microscopic
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stress states, in conjunction with the strain rate-to-spin
concentration tensors Rr. The latter are symmetric with
respect to the two first indices and skew-symmetric with
respect to the two last indices, i.e. Rijkl

r � Rjikl
r � −Rijlk

r .

3 HIERARCHICALLYORGANIZED FIBROUS
MICROSTRUCTURES IN TENDINOUS
TISSUE

3.1 Sequence of RVEs and Phase Properties
The fibers introduced as phases within an RVE may not exhibit
invariant material properties, but properties arising from yet
another fibrous microstructure found within the
aforementioned fiber phases. This is the case with tendinous
tissue where parallel fibers called fascicles, with lengths spanning
over several millimeters and 200 microns diameter (Niven et al.,
1982; Kastelic et al., 1978), are made up by crimped collagen
bundles, with lengths spanning over several millimeters and
100–300 nm diameter (Kastelic et al., 1978; Birk and Trelstad,
1986; Provenzano and Vanderby, 2006). Both types of fibers, the
fascicles and the collagen bundles, are embedded into a gel-type
matrix. This situation calls for the introduction of two types of
RVEs at different scales, see Figure 3: An RVE with a
characteristic size of ℓtis � 500 microns is associated with
tendinous tissue (labelled by the subscript tis), and made up of
parallel fibers making up a fascicle phase (labelled by the subscript
fas) with a characteristic size of � 200 microns, being
embedded into a matrix phase (labelled by the subscript m).
The material making up the fascicle phase is represented by yet
another RVE with a characteristic size ℓfas. The latter needs to
fulfill the size condition ℓfas ≤ (Fritsch and Hellmich, 2007),
as this RVE exhibits the homogeneous material properties of the

fascicle phase. This fascicle-related RVE is made up of collagen
bundles (labelled by the subscript col) with a characteristic size
of � 100. . .300 nm embedded in a soft matrix (labelled by
the subscript μ). The collagen bundles are crimped (Abrahams,
1967; Kastelic et al., 1978; Hansen et al., 2002), and in order to
represent this situation in the framework of the RVE seen in
Figure 1, we introduce differently oriented straight fiber
phases, all associated with mean initial crimping angle
θfascol (t � 0), with t � 0 indicating the start of the mechanical
loading. The relevance of this modeling strategy arises from
the very low bending stiffness of collagen bundles. In more
detail, AFM-based micromechanical bending tests on single
electron-spun or bovine Achilles tendon-derived collagen type
I fibrils exhibit an apparent bending modulus of 0.1 . . .0.3 MPa
(Yang et al., 2008b,a). Values of this magnitude are negligible
with respect to the stretching stiffness of collagen type I
bundles, amounting to 500 MPa according to X-ray-assisted
tensile testing (Sasaki and Odajima, 1996a).

The larger RVE is subjected to tissue-related macroscopic
strain rates Dtis, while the smaller RVE is subjected to fascicle-
related macroscopic strain rates Dfas, which are identical to the
fascicle phase-related strain rates dtis

fas; hence, D
fas ≡ dtisfas.

This hierarchical representation is complemented by the
following phase properties (concerning elasticity, volume
fractions, and fiber orientations):

• The bundle phase and both matrix phases exhibit a
hypoelastic constitutive behavior according to Eq. 17.
Moreover, for the sake of simplicity, they are considered
to behave isotropically, so that:

C � 3k J + 2 μK (31)

with k and μ as the bulk and shear moduli, and J and K as the
spherical and deviatoric parts of the fourth-order identity tensor
respectively. The elastic isotropic constants k and μ can also be
expressed in terms of the Young’s modulus E and of the Poisson’s
ratio ], through:

k � E

3(1 − 2])
μ � E

2(1 + ])
(32)

The collagen bundles exhibit a Young’s modulus of Ecol �
500 MPa, according to the X-ray-assisted tensile tests of Sasaki
and Odajima (1996a) on hydrated collagen fibrils of a bovine
tendon; and a Poisson’s ratio of ]col � 0.34, as obtained from
acoustic experiments (Cusack and Miller, 1979; Vass et al., 2017;
Morin et al., 2018). The two matrices are characterized by the
same elastic constants, defined through a Young’s modulus of
Em � Eμ � 2.5 MPa, arising from a few micrometer deep
nanoindentations in hyaline cartilage, a tissue with a large gel-
type matrix volume fraction and non-recruited, disordered fibers
(Franke et al., 2007). Motivated by the aforementioned acoustic
tests as rare examples of Poisson’s ratio measurements on soft
tissues at low length scales, we assign the value of ]m � 0.34 also to
the two matrix phases, depicted in Figure 3. As a further
justification for this choice, we refer to Poisson’s ratio

FIGURE 3 | Two-scale micromechanical representation of tendinous
tissue: (top) RVE of tendinous tissue, made up by fascicle phase embedded
into gel-type matrix phase; (bottom) fascicle-related RVEmade up by straight
collagen bundle phases oriented in different directions and also
embedded into a gel-type matrix phase.
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measurements on polymer gels and polyvinylalcohol gels, which
indeed deliver similar experimental values (Li et al., 1993;
Urayama et al., 1993).

• Image processing allows for the determination of the
volume fraction of each phase: at the lower scale,
processing transmission electron microscopy (TEM)
images showing cross-sections of fascicles give access to
the volume fraction of collagen bundles inside a fascicle,
ftis
fas; amounting to 0.95 according to Figure 3 of

(Patterson-Kane et al., 2012). A collection of TEM

results, as documented in Table 1, shows that the
volume fraction of the bundles within a fascicle-related
RVE, ffas

col , ranges between 0.6 and 0.9.
• Finally, image processing also gives access to the orientation
of the fiber-type fascicle and bundle phases: Within an RVE
of tendinous tissue, the fascicles are initially parallel and
oriented in the axial direction, i.e. θtisfas(t � 0) � 0, with time
point t � 0 referring to a (still unloaded) situation at the
beginning of the mechanical loading. In this case, the value
of the longitudinal angle ϕ does not matter. Within the
fascicle-related RVE, the angle θfascol corresponds to the crimp

TABLE 1 | Volume fractions of collagen bundles within a fascicle-related RVE, determined from transmission electron micrographs (TEM) of transverse cross sections taken
across different species and anatomical locations.

Reference Tendon Species Segmentation procedure Volume fraction [−]

Screen et al. (2005) tail rats tophat filter and contrast enhancement 0.83
Goh et al. (2008) tail mice (1.6) None 0.56
Goh et al. (2008) tail mice (2.6) None 0.79
Goh et al. (2008) tail mice (4) None 0.85
Goh et al. (2008) tail mice (11.5) None 0.78
Goh et al. (2008) tail mice (23) None 0.76
Goh et al. (2008) tail mice (29) None 0.81
Goh et al. (2008) tail mice (31.5) None 0.78
Goh et al. (2008) tail mice (35.3) None 0.76
Juneja and Veillette (2013) tail mice tophat filter 0.80
Patterson-Kane et al. (2012) SDFT horse median filter 0.72
Parent et al. (2011) tail adult rats None 0.54
Pingel et al. (2014) Achilles human median filter 0.62
Hansen et al. (2010) ACL human tophat filter and contrast enhancement 0.68
Hansen et al. (2009) PT human contrast enhancement and median filter 0.76

SDFT, superior digital flexor tendon; PT, patellar tendon; ACL, anterior cruciate ligament. Age of the mice in months is reported between brackets.

FIGURE 4 | Microscopic images of tendinous tissue: (A) rat tail tendon in transmitted light, copied from the Figure 3 copied from (Dlugosz et al., 1978), copyright
granted by Elsevier LTD, scale bar: 25microns; (B) forward second harmonic generation (SHG) image of amature Sprague-Dawley rat tail tendon, copied from the Figure
5C of (Williams et al., 2005), copyright granted by Elsevier LTD, scale bar: 10 microns; (C) SHG polarization from individual bundles analyzed with an analyzer oriented
parallel to the rat tail tendon bundle, copied from the Figure 2C of (Williams et al., 2005), copyright granted by Elsevier LTD, scale bar: 50 microns; (D,E) histological
longitudinal-sections of a rat tail tendon fascicle, copied from the Figures 4A,B of (Niven et al., 1982), copyright granted by Elsevier LTD, respective image width: 530 and
740 microns; (F) SHG imaging of the rat tail tendon fascicle microstructure after few cycles preconditioning, copied from Figure 2C of (Goulam Houssen et al., 2011),
copyright granted by Elsevier LTD, scale bar: 50 microns; (G) porcine knee posterior cruciate ligament SHG image, copied from Figure 3 of (Lee et al., 2017), copyright
granted by SPIE and agreement from the corresponding author, image width: 90 microns.
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angle, which can be measured via image processing as
reported in Figure 4. Accordingly, this latitudinal angle
θfascol ranges between 15 and 45°. In this context, the
longitudinal angle does matter. Since the fibers are
crimped in the 3D space (De Campos Vidal, 2003; Kalson
et al., 2012), four different values are introduced,
ϕfascol,r � 0, 90, 180, 270°; and they are associated with four
collagen bundle phases, the behavior of which is fully
identical.

3.2 Algorithm for Two-step Homogenization
The large deformation and the morphology evolution render the
problem highly non linear and require the development of an
incremental algorithm. Therefore the time line is discretized into
time increments Δt. These increments are bounded by time
points tn, n � 1, ‥, Nt, so that:

Δt � tn+1 − tn for n � 1, ‥, Nt (33)

The implicit dependence of the concentration operators on the
orientation of the fiber phases asks for an explicit scheme for all
time derivatives, which is defined as follows:

_a tn( ) � a tn+1( ) − a tn( )
Δt (34)

Assuming that the problem has been solved until time step tn
(with a known corresponding configuration), we have to
determine the configuration at time step tn+1, as well as all
associated mechanical and morphological quantities, and we
proceed as follows:

1. We collect properties and operators known at time point tn: for
the tendinous tissue-related RVE, we have Atis

fas(tn),Rtis
fas(tn),

and Atis
m (tn), they all depend on the stiffnesses Ctis

fas(tn) and
Ctis

m (tn) as well as on the orientation θtisfas(tn). However, in the
present paper, we abstain from modeling fascicle re-
orientation due to unusual load cases. Such reorientation
modeling would require the introduction of multiple
fascicle phases, which is beyond the scope of the present
paper. On the other hand, for the fascicle-related RVE, we
have collagen bundle phase-specific concentration tensors
A

fas
col,r(tn) and R

fas
col,r(tn), as well as the matrix-related

concentration tensor Afas
μ (tn); all these tensors depend on

the latitudinal angles θfascol,r(tn).
2. This allows for estimating the phase-related strain rates and

spins, by specifying Eq. 22 and Eq. 23 for the two-step
homogenization scheme depicted in Figure 3:

dtis
fas tn( ) � A

tis
fas tn( ) : Dtis tn( )

dtis
m tn( ) � A

tis
m tn( ) : Dtis tn( ) (35)

dfas
col,r tn( ) � A

fas
col,r tn( ) : dtis

fas tn( )
ωfas
col,r tn( ) � R

fas
col,r tn( ) : dtis

fas tn( )
dfas
μ tn( ) � A

fas
μ tn( ) : dtis

fas tn( )
(36)

3. As a direct consequence, the orientation change of
each collagen bundle phase within a fascicle-related RVE

can be estimated based on discretized versions of Eq. 6,
reading as:

∀ e j attached to the r − th collagen bundle phase

e j tn+1( ) � e j tn( ) + dfas
col,r tn( ) + ωfas

col,r tn( )( ) · e j tn( ) Δt (37)

4. The constitutive relation Eq. 20, in combination with Eq. 14, is
discretized and specified for the two-step homogenization scheme of
Figure 3, providing access to the updated stress state in the phases, at
time tn+1. This reads for the tendinous tissue-related RVE as:

σtis
fas tn+1( ) � σtis

fas tn( ) +
C

tis
fas tn( ) : dtis

fas tn( ) − σtis
fas tn( ) · ωtis

fas tn( ) + ωtis
fas tn( ) · σtis

fas tn( )( )Δt
σtis
m tn+1( ) � σtis

m tn( ) + C
tis
m tn( ) : dtis

m tn( )Δt
(38)

and for the fascicle-related RVE as:

σfas
col,r tn+1( ) � σfas

col,r tn( ) +
C

fas
col tn( ) : dfas

col,r tn( ) − σfas
col,r tn( ) · ωfas

col,r tn( ) + ωfas
col,r tn( ) · σfas

col,r tn( )( )Δt
σfas
μ tn+1( ) � σfas

μ tn( ) + C
fas
μ tn( ) : dfas

μ tn( )Δt
(39)

In these equations, we identified the material derivative with the
partial derivative, according to the first-order approximations
detailed in (Morin et al., 2018).

5. In addition, the homogenized stiffness according to Eq. 30 is
specified for both the fascicle-related and the tendinous tissue-
related RVE, reading as:

Cijmn
fas tn+1( ) � ffas

μ Cijkl
μ tn+1( )Afas,lkmn

μ tn+1( ) +∑Nf

s�1
ffas
col,s Cijkl

col,s tn+1( )Afas,lkmn
col,s tn+1( )[

− σfas,ikcol,s tn+1( )Rfas,kjmn
col,s tn+1( ) + Rfas,ikmn

col,s tn+1( )σfas,kj
col,s tn+1( )]

Cijmn
tis tn+1( ) � ftis

m C
ijkl
m tn+1( )Atis,lkmn

m tn+1( ) + ftis
fas Cijkl

fas tn+1( )Atis,lkmn
fas tn+1( )[

− σtis,ikfas tn+1( )Rtis,kjmn
fas tn+1( ) + Rtis,ikmn

fas tn+1( )σtis,kj
fas tn+1( )] (40)

whereby Cfas ≡ Ctis
fas.

6. Finally, the macroscopic stress is computed at time tn+1
according to:

Σtis tn+1( ) � Σtis tn( ) + Ctis tn( ): Dtis tn( )Δt (41)

In case the macroscopic stress Σtis, rather than the
macroscopic strain rate Dtis, is prescribed, an estimate of the
corresponding effective strain rate is computed as:

Dtis,est tn( ) � 1
Δt Ctis tn( )[ ]−1 : Σtis tn+1( ) − Σtis tn( )( ) (42)

This estimate then enters the aforementioned algorithm, namely via
Eq. 35, and the resulting stress according to Eq. 41 is compared to the
applied stress. If the corresponding stress difference exceeds a
prescribed error threshold, a new estimate for Dtis is computed by
means of amodified verison of Eq. 40, where the latest estimate for the
tissue stiffness according toEq. 40 is used. This process is repeated until
the aforementioned stress difference becomes negligibly small.

It is illustrative to document corresponding model predictions
in terms of stretches. The stretch associated with a line element
which is originally oriented in direction e i, is computed from the
deformation gradient tensor, F, as follows:
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λi tn, e i( ) � e i · FT tn( ) · F tn( ) · e i( )1/2 (43)

whereby the deformation gradient tensor itself is computed from
the strain rate and spin tensors (respectively D and Ω):

F tn( ) � D tn−1( ) +Ω tn−1( )[ ]Δt + 1( ) · F tn−1( ) (44)

These equations can be specialized for the cases of the axial and
transverse stretches of tendinous tissue undergoing a uniaxial
stress of the form Σtis � Σtis

33e 3 ⊗ e 3, yielding:

λtisaxial tn, e 3( ) � e 3 · Ftis,T tn( ) · Ftis tn( ) · e 3( )1/2
λtistransverse tn, e 1( ) � e 1 · Ftis,T tn( ) · Ftis tn( ) · e 1( )1/2 (45)

where the base vectors e 1 and e 3 are those depicted in Figure 2.
We are also particularly interested in the stretches of the collagen
bundle phases, reading as:

λcolaxial tn, e r t0( )( ) � e r t0( ) · f col,T tn( ) · f col tn( ) · e r t0( )( )1/2 (46)

where the base vector e r is also seen in Figure 2.

4 MICROMECHANICAL MODELING
RESULTS

4.1 Sensitivity Analysis: Uniaxial
Stress-stretch Behavior Governed by
Collagen Bundle Properties
First, the algorithm of Section 3.2 was used for analyzing the
sensitivity of the micromechanical model responses to changes in
three model input quantities associated with the collagen bundle
phases: the Young’s modulus Ecol, the initial crimping angle
θfascol (t � 0) � θinicol - here we consider the same initial value for
all collagen bundle phases - and for the volume fraction ffas

col .
Three different values for Ecol, seven different values for θinicol, and
four different values forffas

col have been chosen, see Table 2. These
values cover the ranges of experimental data described in Section
3.1. Correspondingly, Nsim � 3 × 7 × 4 � 84 micromechanical
simulations based on the algorithm of Section 2.3 were
performed. Guided by stress-stretch experiments which are
customary in soft tissue research (see Section 4.2 for further
details), the aforementioned simulations concerned uniaxial
stress states, and corresponding stretches in the longitudinal
tissue direction. Focusing on fiber re-orientation rather than
fiber volume changes, a limited interval of stresses was
investigated, ranging from 0 to 10 MPa (see Section 5 for a
more detailed discussion on this aspect). This nonlinear behavior

was quantified in terms of initial and final tangents. Thereby, the
initial tangent was defined as the average, over the first 25 kPa of
stress, of the tangents to the uniaxial stress-stretch curve; and the
final tangent was defined as the average, over the last 500 kPa of
stress, of the tangents to the uniaxial stress-stretch curve.
Moreover, the coordinates of their intersection point in the
stress-stretch plane are referred to as intersection stress and
intersection stretch, respectively. Based on these quantities,
and on the evolving crimping angle, the following metrics
were used to analyze the model response, see also Figure 5:

• the slope of the initial tangent, referred to as initial slope;
• the slope of the final tangent, referred to as final slope;
• the intersection stretch;
• the intersection stress;
• the straightening angle, defined as the difference between
the values for the crimping angle at the beginning and the
end of each of the 84 simulations.

A metric-specific hypersurface over the hyperplane spanned
by the normalized parameters

x1 � Ecol − EMIN
col

EMAX
col − EMIN

col

x2 � θinicol − θini,MIN
col

θini,MAX
col − θini,MIN

col

x3 � ffas
col − ffas,MIN

col

ffas,MAX
col − ffas,MIN

col

(47)

was fitted by means of second-order polynomial with first-order
interactions, reading mathematically as (Tinsson, 2011):

TABLE 2 | Parameters studied in the sensitivity analysis.

Parameter Minimum value Step value Maximum value

Ecol [GPa] 0.3 0.2 0.7

θinicol [°] 15 5 45

f fascol
0.6 0.1 0.9

FIGURE 5 | Model-predicted stress-stretch curve for tendinous tissue
subjected to uniaxial tensile stress state; for Ecol � 500 MPa, Em � Eμ �
2.5 MPa, θinicol � 27.5°, f fascol � 0.6, and f tisfas � 0.95; with indication of metrics
used in sensitivity analysis: initial slope (see red tangent), final slope (see
blue tangent), tangent intersection point (see circular mark) - the coordinates
of the latter quantify intersection stress and intersection stretch.
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Y � β0 +∑3
i�1

βixi + ∑3
i,j�1,j>i

βijxixj +∑3
i�1

βiix
2
i (48)

where xi, with i � 1, 2, 3, refers to the normalized parameters
according to Eq. 47, Y is one of the five previously cited output
metrics of the model, β0 covers the portion of the metric Y which
is not depending on x1, x2, and/or x3; and where βi, βij, and βii,
with i, j � 1, 2, 3, reflect the sensitivity of the model with respect to
the parameters x1, x2, and x3. It turns out that the polynomial
expression Eq. 48 represents the micromechanical model results
very well, quantified by a coefficient of determination amounting
to 99% for all the tested metrics. The corresponding coefficients
βi, βij, βii, with i � 1, 2, 3, are depicted in Figure 6, where three
stars indicate a significant contribution of the corresponding
normalized parameter on the micromechanical model result,
as tested by a Student’s t test with (Nsim − 3) parameters. The
following observations are noteworthy:

1. Intersection stress and intersection strain are very sensitive to
the initial crimping angle, while the effect of bundle volume
fractions is much less pronounced, and the bundle elasticity
remains even insignificant in this context.

2. A similar situation is encountered with the initial slope, while
the final slope, profoundly driven by the bundle modulus,
shows some dependence on the bundle volume fraction and
on the initial crimping angle.

3. The straightening angle is virtually exclusively driven by the
initial crimping angle.

4.2 Comparison to Stress-stretch
Experiments
Next, micromechanical model results are directly compared to
the experimental data stemming from uniaxial stress-stretch tests
on bovine, human, and murine tendons (see Table 3 as well as
Figures 7,8). These tests had been performed in vitro at (high)
strain rates of 10–100%/s, suggesting a subordinate role of viscous
effects. Therefore, bundle-related parameters within the ranges
given in Table 3 were adopted, targeting high coefficients of
determination R2 and small residual errors ϵ:

R2 � 1 − ∫Σmax

Σ�0 Λmod(Σ) − Λexp(Σ)[ ]2dΣ
∫Σmax

Σ�0 Λexp(Σ) − �Λexp[ ]2dΣ ; (49)

ϵ � 1
Σmax

∫Σmax

Σ�0
Λmod(Σ) − Λexp(Σ)
∣∣∣∣ ∣∣∣∣dΣ; (50)

whereby the integrals are computed on the whole stress history,
Λmod(Σ) and Λexp(Σ) being the longitudinal stretches
corresponding to a uniaxial stress Σ, respectively computed
by the model or reached experimentally, and �Λexp being the
average, over the entire load history, of the experimentally
measured stretches. We note that the stress-stretch curves
reported by Screen et al. (2004b) show an unusual start of
the so-called toe region in the stress-stretch curve, involving
decreasing slopes at small strains. Such effects cannot be
explained by fiber re-orientation, and may rather result from
instrumental challenges. We abstain from a deeper analysis of
this issue, and simply start considering corresponding

FIGURE 6 | Sensitivity coefficients βi, βij, βii according to Eqs 47, 48, with the indices 1, 2, and 3 relating to modulus, crimping angle, and volume fraction,
respectively; determined for five metrics Y associated with the uniaxial stress-stretch behavior on the level of the tendinous tissue. The stars denote the significance level
of the coefficients: three (resp. two and one) stars for a p-value below 10–3 (resp. 10–2 and 0.05); n.s. stands for non significant.
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experimental data whenever a minimum slope has been reached
in the toe region.

For all simulations, the modulus value Ecol of Sasaki and
Odajima (1996a), amounting to 500 MPa, was taken as
reference, being able to represent all considered experimental
data in a satisfactory manner, see Table 3 and Figure 7.
Optimization of the values taken for fcol

fas and θinicol was guided
by the sensitivity analysis of Section 4.1, leading to the results of
Table 3. As observed in the experiments of (Abrahams, 1967;
Hansen et al., 2002), the pseudo-linear portion of the stress-
stretch curve is associated with the crimping angle approaching
an almost constant level.

5 DISCUSSION AND CONCLUSION

In this study, we have traced back the non-linear behavior of
soft tissues in general, and more specifically of tendons, to
normal and shear deformations as well as to rigid body motions
(rotations) of straight, elongated, long, and stiff fibers

(representing collagen bundles in the case of tendons)
embedded in soft matrices.

The corresponding micromechanical representation directly
reflects the extreme lengths of the 50 μm thick collagen bundles,
spanning over several millimeters. This was evidenced by a series
of transmission electron micrographs (TEM) (Provenzano and
Vanderby, 2006; Craig et al., 1989; Parry and Craig, 1984;
Svensson et al., 2017) showing tens of thousands of bundles
over test domains spanning several milimeters, without any
indication of ending bundles or bundle joints. Also the
mechanical role of the gel-type matrix, the deformation of
which is essential for the behavior of the overall fascicle and
tendinous tissue-related RVEs, is consistent with experimental
observations: Inhibiting the binding of matrix-proteins like
decorin to the collagen fibrils changes the stress-strain
behaviors by leaving more deformational freedom to the
fibers, which eventually results in tendon lengthening with
respect to untreated control tissues (Caprise et al., 2001). Our
model also accounts for the crimped nature of the bundles;
however, in a simplified manner: the collagen bundle phases

TABLE 3 | Collection of experimental references for stretch-stress data given in Figures 7, 8, together with optimized values for initial fiber orientation and collagen volume
fraction, in order to reach the coefficients of determination and the residual errors in the last two columns; all other model input data are found in Table 4.

Reference Tendon Species θinicol ffascol R2 ε (%)

0 Sasaki and Odajima (1996b) Achilles bovine 25 0.75 0.951 0.20
1 Lewis and Shaw (1997) Achilles young human 22.5 0.675 0.983 0.13
2 Hashemi et al. (2005) PT young human 17.5 0.65 0.990 0.09
3 Hashemi et al. (2005) PT young human 27.5 0.6 0.984 0.22
4 Butler et al. (1986) PT young human 12.5 0.725 0.894 0.16
5 Butler et al. (1986) ACL young human 17.5 0.675 0.990 0.08
6 Butler et al. (1986) LCL young human 17.5 0.625 0.979 0.14
7 Butler et al. (1986) PCL young human 17.5 0.6 0.993 0.09
10 Screen et al. (2004b) tail Wistar rats 30 0.8 0.914 0.29
12 Screen et al. (2004b) tail Wistar rats 35 0.8 0.770 0.57
13 Screen et al. (2004b) tail Wistar rats 37.5 0.8 0.738 0.55
14 Screen et al. (2004b) tail Wistar rats 32.5 0.725 0.788 0.53

PT, patellar tendon; ACL, anterior cruciate ligament; LCL, lateral colateral ligament; PCL, posterior cruciate ligament.

TABLE 4 | Input values for the micromechanical model.

Angles

θfascol [°] [15–45] see Figure 4

θtiscol [°] 0 Kastelic et al. (1978)

ϕfascol [°] 0, 90, 180, 270 De Campos Vidal (2003); Kalson et al. (2012)

ϕtiscol [°] 0 Kastelic et al. (1978)

Volume fractions

f fascol [0.6–0.9] see Table 1
f tiscol 0.95 Patterson-Kane et al. (2012)

Mechanical parameters

Ecol [MPa] 500 Sasaki and Odajima (1996b)
Em [MPa] 2.5 Franke et al. (2007)
Eμ [MPa] 2.5 Franke et al. (2007)
]col 0.34 Cusack and Miller (1979)
]m 0.34 Cusack and Miller (1979); Urayama et al. (1993); Li et al. (1993)
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FIGURE 7 |Comparison of the experimentally-measured (crosses) and predicted (solid line) stress-stretch curve; and evolution of the collagen fibril inclination angle
θcol (dashed line). Numbering of the subfigures refers to Table 3. Note that stress and angle values are labelled at the left and right sides of the diagrams, respectively.
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are not wavy, but straight - still, they are oriented in different
direction in space: this is consistent with the helical, rather than a
planar, nature of crimping, as seen from the microcopic observations
of (De Campos Vidal, 2003). As mentioned before, the omission of
actual curvature modeling is consistent with the low bending stiffness
of the bundles (Yang et al., 2008b,a): what counts upon decrimping is
the recruitment of stretching stiffness in combination with matrix
shearing - a mechanism which is explicitly considered by our model.
This renders our model as a prime candidate for making larger scale
finite element models more realistic and reliable, in the same way as
already shown for arterial tissue in greater detail (Bianchi et al.,
2020).

It is very illustrative to study the model-predicted microscopic
stresses prevailing in the collagen bundles and in the matrix
inbetween, see Figure 9: Under uniaxial macroscopic tensile
loading, all the bundle phases are loaded in tension, while the
matrix undergoes compression. This fits perfectly with the
experimental observation of fluid being pressed out of
tendinous tissue upon macroscopic uniaxial tensile load (Lanir
et al., 1988; Hannafin and Arnoczky, 1994; Thornton et al., 2001).
We also observe that the fibrillar stretch is much smaller than the
tendon stretch. Accordingly, toe region-related stretching is
microstructurally accomodated by rigid body movements
(rotations) of the fibers, a mechanism already described in the
landmark work of Diamant et al. (1972). In this context, we also

note that the order of magnitude of model-predicted stretches at
the collagen bundle level agrees well with the measurements of
Screen et al. (2002, 2004a). This microstructurally modeled
mechanical behavior naturally avoids unphysical Poisson
effects including even auxetic behavior, as they are known
from traditional hyperelastic modeling (Skacel and Bursa,
2016; Volokh, 2017; Skacel and Bursa, 2019). As a remedy,
Fereidoonnezhad et al. (2020) introduced a formulation
involving “matrix strain stiffening.” By comparison, our model
does not introduce any fiber or matrix strain stiffening, but
constant hypoelastic values in accordance with experimental
data characterizing the microstructural components of soft
tissue. In more detail, instead of enforcing increased load
bearing of the matrix, and primarily so throughout the lower
stretch regime, our model reveals that already then, non-
negligible fiber stretches contribute to the overall tissue
response, see also Figure 9 (top left).

Still, our model exhibits several limitations. This first concerns
the fixation of the volume fractions used in the simulations
presented herein. This simplification may indeed restrict the
predictive potential of our micromechanical model, as follows
from the following deliberations:

• at low macroscopic stretch, the fibers re-orient and virtually
do not stretch; hence they hardly change their volume;

FIGURE 8 |Comparison of the experimentally-measured (crosses) and predicted (solid line) stress-stretch curve of fascicles of rat tail tendons; and evolution of the
collagen fibril inclination angle θcol (dashed line). Numbering of the subfigures refers to Table 3. Note that stress and angle values are labelled at the left and right sides of
the diagrams, respectively.
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• at high stretch, the fibers are elongated, and their volume
does change.

Such big differences in volume change between low and
high macroscopic stretch are not expected for the matrix.
Hence, remarkably changing fiber volume fractions may be
indeed expected; and such probably higher fiber volume
fractions at higher stretches are consistent with our model
underestimation for stresses reaching values between 5 and
10 MPa in several of the prediction curves (see curves (2), (3),
and (4) in Figure 7). The significance of considering the
actually load-dependent volume fractions would clearly
increase when modeling the tissue behavior under higher
stress levels than those seen in Figures 7, 8. For such stress
states, it would hence be advisable to update, not only the fiber
orientations, but also the fiber volume fractions after every
load step.

The second limitation of the model relates to its restriction to
elasticity, leaving out classical mechanical properties, in particular
viscous, plastic, and damage effects (Puxkandl et al., 2002; Weiss
et al., 2002; Haut and Haut, 1997). Potential inclusion of viscous
and viscoelastic effects into the herein presented model may start
with the extension of the hypoelastic constitutive Eq. 20 towards

suitable hereditary integrals similar of those proposed by
Boltzmann (1874) or Volterra (1909) for the small strain
regime (Gurtin and Sternberg, 1962). At higher stress levels,
extensions towards so-called non-linear viscoelasticity may be
necessary (Pipkin and Rogers, 1968; Johnson et al., 1996). As
concerns the upscaling of such a viscoelastic phase behavior, one
may take again inspiration from small strain homogenization
theory (Laws andMcLaughlin, 1978; Eberhardsteiner et al., 2014).
In more detail, Laplace-Carson transforms of the aforementioned
hereditary integrals may deliver sequences of formally (hypo-)
elastic problems to which the strategy of Section 2.3 remains fully
applicable. Potential inclusion of plastic effects into the herein
presented model may start with the extension of the hypoelastic
constitutive Eq. 20 towards eigenstrain rates the evolution of
which obeys suitable plastic flow rules. Thereafter, eigenstrain
rate upscaling may follow from extension of respective
homogenization theories developed for the small strain regime
(Dvorak, 1992; Pichler and Hellmich, 2010; Königsberger et al.,
2020), thereby extending recent developments for hard tissues
(Fritsch et al., 2009; Blanchard et al., 2016; Morin et al., 2017)
towards the realm of soft tissues.

The third limitation concerns the non-coverage of
multiphysics effects, such as mechano-electrochemical

FIGURE 9 | Micromechanical model predictions for tendinous tissue subjected to uniaxial tension: axial stretch in collagen bundle (top left), latitudinal angle of
collagen bundle (top right), mean stress in interfascicular matrix (bottom left), and transverse stretch in tendinous tissue (bottom right), as functions of axial stretch in
tendinous tissue.
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couplings including osmotic pressures (Wilson et al., 2005; Masic
et al., 2015), leading to phenomena which have been described as
“inverse poroelasticity” (Ehret et al., 2017). Again, we think that
eigenstrain upscaling appears as an interesting option to consider
such effects as well.

From a micromorphological viewpoint, one may also ask
whether the relatively simple micromechanical representation
sketched in Figure 3 may be another limitation of the present
model. Diagram (10) and (12) of Figure 8might indeed indicate a
situation where more than one fiber recruitment process takes
place; hence, the existence of more than one prominent initial
latitudinal fiber angle. However, these diagramsmight also simply
reflect experimental uncertainties rather than model limitations.

Conclusively, we presented a novel micromechanical model
providing a natural access to the non-affine, non-auxetic,
microstructurally driven elastic behavior of tendon; resting on
hypoelastic phase properties combined with an objective
kinematics, giving access to proper strain-to-strain and strain-
to-spin relations across the hierarchical organization of tendons. In
this context, our model may well be seen as an interesting,
computationally efficient, complement to the growing number
of fiber network models proposed for soft tissues (Chandran
and Barocas, 2006; Stylianopoulos and Barocas, 2007; Cyron
et al., 2013; Picu et al., 2018). With these models, we share the
explicit consideration of non-affine fiber re-orientations leading to
pronounced lateral contractions under uniaxial tensile loading.
Still, our present approach goes beyond the scope of the
aforementioned network models when it comes to the explicit
introduction of the mechanical behavior of the gel-type matrices.
Most remarkably, model-predicted hydrostatic pressures
prevailing in the interfascicular matrix (also known as the
endotenon, which hosts vascular cells according to (Kannus,
2000; Godinho et al., 2017)) exhibit a magnitude which
stimulates a variety of biological cells in the musculo-skeletal
system; see (Scheiner et al., 2016) for a compilation of various
experimental sources and data; and the stimulatory effect of
hydrostatic pressures in the tens of kilopascals range has been
shown explicitly for endothelial vascular cells as well (Ohashi et al.,
2007). This opens perspectives for extending the current fiber-

matrix interaction model towards the realm of tissue remodeling,
in a way already realized for bone (Pastrama et al., 2018).
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