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Although health screening plays a key role in the management of chronic diseases associated with lifestyle choices, brain health is not 
generally monitored, remaining a black box prior to the manifestation of clinical symptoms. Japan is unique in this regard, as brain 
MRI scans have been widely performed for more than two decades as part of Brain Dock, a comprehensive health screening programme. 
A vast number of stored images (well over a million) of longitudinal scans and extensive health data are available, offering a valuable 
resource for investigating the prevalence of various types of brain-related health conditions occurring throughout adulthood.

In this paper, we report on the findings of our preliminary quantitative analysis of T1-weighted MRIs of the brain obtained from 13 
980 subjects from three participating sites during the period 2015–19. We applied automated segmentation analysis and observed age- 
dependent volume loss of various brain structures. We subsequently investigated the effects of scan protocols and the feasibility of cali-
bration for pooling the data. Last, the degree of brain atrophy was correlated with four known risk factors of dementia; blood glucose 
level, hypertension, obesity, and alcohol consumption.

In this initial analysis, we identified brain ventricular volume as an effective marker of age-dependent brain atrophy, being highly sen-
sitive to ageing and evidencing strong robustness against protocol variability. We established the normal range of ventricular volumes at 
each age, which is an essential first step for establishing criteria used to interpret data obtained for individual participants. We identified a 
subgroup of individuals at midlife with ventricles that substantially exceeded the average size. The correlation studies revealed that all 
four risk factors were associated with greater ventricular volumes at midlife, some of which reached highly significant sizes.

This study demonstrates the feasibility of conducting a large-scale quantitative analysis of existing Brain Dock data in Japan. It will 
importantly guide future efforts to investigate the prevalence of large ventricles at midlife and the potential reduction of this prevalence, 
and hence of dementia risk, through lifestyle changes.
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Graphical Abstract

Introduction
Chronic diseases related to lifestyle choices are becoming a ma-
jor public health problem. The World Health Organization 
(WHO) estimated that 61% of all deaths and 49% of the glo-
bal burden of disease were attributable to chronic diseases. 
Preventive strategies, notably health screening, plays a major 
role in identifying populations at risk during pre-symptomatic 
phases and early interventions. Strikingly, the brain, which is 
arguably the most important organ in the body, has not been 
a target of screening, effectively remaining a black box prior 
to the manifestation of a problem, by which time the problem 
is often too late to cure. Our brains are physically and chemical-
ly well isolated from the environment, and there are no simple 
and cost-efficient ways of examining their health status. MRI is 
likely the best available option for evaluating anatomical al-
terations of the brain, but has rarely been adopted as a health 
screening because of its high cost.

In this context, Japan is in a unique position. The number of 
MRI scanners per capita in Japan far exceeds these numbers in 
the member countries of the Organization of Economic 
Co-operation and Development, and it is not uncommon for 
brain MRIs to be performed as a part of Japan’s preventive 
health screening programme, Brain Dock. This situation allows 

for a rare glimpse of brain health throughout adulthood (from 
the ages of 20 to 90 years). The sheer volume of these data 
could extend to millions of images, as there are many sites 
that offer more than 10 years of annual follow-up data. 
Numerous MRI studies have reported age-dependent changes 
in the brain using MRIs (for example see review by Fox 
et al.1). However, their sample sizes rarely reached 1000 or en-
tailed a longitudinal period exceeding 5 years. The availability 
of a large longitudinal dataset would enable an investigation to 
address interesting questions, such as how the ageing process 
takes place within different parts of the brain, their averages 
and variances, numbers of outliers, and how they are related 
to lifestyles and long-term brain health.

Utilization of the Brain Dock data is not, however, 
straightforward for the following reasons. First, the data 
are distributed across many sites. Second, the scan protocols 
are heterogeneous because of the absence of nation-wide 
standardization. Third, the scans are typically of low reso-
lution, with a limited number of available contrasts. 
Historically, the scans were designed to detect anatomical 
abnormalities requiring immediate attention, such as neo-
plasms, aneurysms, inflammation, or evidence of strokes, 
and not for research on the brain’s anatomy and functions. 
Therefore, an assessment of the data quality and an 
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evaluation of the feasibility of quantitative analyses are es-
sential for fully exploiting the potential of these data.

Our long-term goal is to evaluate the potential implica-
tions of using these MRI data for early detection of popula-
tions at risk for dementia through the quantification of brain 
atrophy. According to the WHO, around 50 million people 
are currently suffering from dementia worldwide, and this 
number is expected to increase to 150 million by 2050. 
Previous studies’ findings have led to a consensus that 
many forms of dementia are chronic diseases that develop 
over a decade, with potentially 30–50% of the causes attrib-
uted to modifiable lifestyle-associated factors.2–11 According 
to the WHO and the Alzheimer’s Disease Association, these 
factors include lack of exercise, smoking, excessive use of al-
cohol, obesity, an unhealthy diet, midlife hypertension, and 
high blood sugar levels. Additional risk factors include de-
pression, low educational attainment, social isolation, and 
cognitive inactivity. As the healthcare costs of ageing popu-
lations are increasing at unsustainable rates in many coun-
tries, identifying opportunities for the prevention of 
dementia through the management of these modifiable risk 
factors is becoming increasingly urgent.

There are two key factors pertaining to the effective pre-
vention of lifestyle-related chronic diseases. First, given 
that the application of preventive measures to the entire 
population is unrealistic in terms of cost and efficiency, spe-
cific high-risk subgroups should be targeted. Second, it is 
widely believed that such measures are more effective if 
they are applied during the early phase of a disease. These 
two points are not specific to dementia and can be applied 
to all types of chronic diseases, which is precisely the purpose 
of population-wide health screening.

In this preliminary study, we tested whether the preva-
lence of brain atrophy in midlife could be characterized using 
T1-weighted images recorded under the Brain Dock pro-
gramme in Japan. We subsequently examined relationships 
between the degree of brain atrophy and four known risk 
factors of dementia: midlife hypertension, high blood glu-
cose levels, obesity, and alcohol consumption.

Materials and methods
Site information
The study was performed using data obtained from the 
Midtown Clinic in Tokyo, Japan. The study was approved 

by the institutional review board of Midtown Clinic, Japan 
(#2021-08). The MRI scans were performed at three differ-
ent sites using 3 T SIEMENS scanners. A total of five differ-
ent protocols, adopting Siemens’ 3 T MRI 3D-Volumetric 
Interpolated Brain Examination sequences, were used with 
different image resolutions as shown in Table 1.

Subject population
We used data from subjects who received MRI scans be-
tween July 2015 and December 2019 in this study. The sam-
ple sizes and demographic information of the participants 
are presented in Table 1. We applied scan data without inclu-
sion or exclusion criteria. Because we used the available data 
retrospectively without randomization, there could be po-
tential bias in recruitments across scanning sites and/or im-
aging protocols. The participants received the MRI scans 
as an option to their routine annual checkup, often partially 
covered by their employers as a benefit. As a result, the popu-
lation could be biased to wealthier populations in Japan. 
Because of the high-quality image inspections performed 
during the scans, no cases with severe motion artefacts 
were found. A total of 5105 subjects underwent the mini- 
mental state examination test, with subjects in their forties, 
fifties, and sixties, respectively, attaining average scores of 
29.0, 29.0, and 28.9. The participants underwent blood 
tests, blood pressure measurements, and abdominal compu-
terized tomographies (CTs) to measure body fat (visceral fat 
area at the navel), and they completed a questionnaire about 
their drinking habits.

Automated brain segmentation for 
volume measurements
Automated segmentation was performed using Mvision 
(Corporate M, Tokyo, Japan), which was based on the 
multi-atlas pipeline implemented in MriCloud (Johns 
Hopkins University, Baltimore, MD, USA).12–16 As de-
scribed elsewhere, this pipeline segments the entire brain 
into five hierarchical structural levels, with the highest 
(coarsest) level comprising eight structures and the lowest 
(finest) level comprising 287 structures.13,14,17–19 The total 
number of defined structures across the five levels was 505. 
The raw volume numbers were converted into relative vo-
lumes by dividing the raw volume of each defined structure 
by the total volume (TotalVol), which was calculated by 

Table 1 Sample size and demographic information on the participants for each protocol

Sample size Women/men Ages (average ± std) Scanner type Matrix size/voxel size (mm)

Site 1: Protocol 1 2781 976 (1197)/1245 (1584)a 53.7 ± 11.2 (F), 53.2 ± 10.8 (M) Skyra/3T 320 × 320 × 120–128/0.78 × 0.78 × 1.2
Protocol 2 1497 473 (598)/742 (899) 54.5 ± 10.9 (F), 54.2 ± 10.2 (M) Skyra/3T 320 × 320 × 72–80/0.78 × 0.78 × 2.0
Site 2: Protocol 1 2847 882 (1041)/1495 (1806) 54.2 ± 11.5 (F), 54.0 ± 10.6 (M) Biograph mMR/3T 640 × 640 × 120/0.39 × 0.39 × 1.2
Protocol 2 3543 1007 (1268)/1036 (2275) 54.8 ± 11.0 (F), 54.4 ± 10.5 (M) Biograph mMR/3T 640 × 640 × 72/0.39 × 0.39 × 2.0
Site 3: Protocol 1 11 739 3324 (4.609)/4669 (7130) 50.7 ± 11.5 (F), 50.0 ± 10.4 (M) Spectra/3T 320 × 320 × 64/0.69 × 0.69 × 2.5

aNumbers in parentheses denote the number of scans, which exceeded the number of subjects because multiple scans were performed.
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summing all structures, including the brain, sulci, and cranial 
space volumes.

To evaluate the potential bias introduced by the normal-
ization of the structure volumes based on the proportional 
approach, residuals method was also tested, in which ad-
justed volumes (Voladj) was obtained from:

Vol −adj =Vol – b(TotalVol – TotalVolmean) 

Here, Vol is the raw volume of a segmented structure, b is the 
slope from the linear regression of Vol and TotalVol, and 
TotalVolmean is the mean of the total volumes across all 
subjects.20,21

Data processing and statistical 
analysis
Correlation analysis of volume as a function of the 
subject’s age
For the analysis of correlations of brain structures with age, 
normalized volumes were first converted to a log scale to im-
prove homoscedasticity, and polynomial fitting was per-
formed. To examine the influence of the polynomial 
orders, we used the GridSearchCV package in Python 3.6, 
which generated 2nd–5th orders depending on the struc-
tures. The results were compared with 2nd and 3rd order 
polynomial fittings, and the effects on correlation coefficients 
were minimal. The results for the 2nd-order polynomial 
were reported. For this analysis, we used high-resolution 
data with the one (first) data point for each subject (obtained 
using Protocol 1 at the first and second sites; n = 4598).

Evaluation of the impacts of different protocols
We performed an ANOVA to evaluate the impact of differ-
ences in protocols on volume measurements. To compare ef-
fect sizes, differences relating to protocol, sex, and age, and 
their interactions, were analyzed with a three-way ANOVA. 
To determine age effects, we divided the entire sample into 
eight decade-based age groups (twenties to nineties). The 
statsmodels library of Python 3.6 was used for the calculation.

Calibration of ventricular volumes across different 
image resolutions
We tested the performance of the calibration to reduce the ef-
fects of image resolution on the measurements of ventricular 
volumes. Because protocol effects cannot be completely re-
moved, the potential contribution of protocols was com-
pared with the contributions of age and sex. Reducing 
protocol effects has two important consequences. First, 
data from various sources can be pooled, thus greatly in-
creasing the sample size. Second, it enables the interpretation 
of future data by enabling their comparison with existing 
data in the database, even if the imaging protocols used are 
not exactly the same. For example, for a given structure vol-
ume, sex, and age, it can be determined whether the volume 
is within the normal range after proper calibration. This is an 
essential step for measuring brain atrophy as a practice to be 

adopted within Brain Dock. Evidently, a core assumption is 
that the image resolution is the single most influential factor 
among the protocol parameters. As described in the ‘Results’ 
section, this assumption was tested for the cortical and ven-
tricular volumes.

The calibrations of data with different image resolutions 
entailed z-score conversion. First, the raw volumes were con-
verted to the normalized volume ratios in a log scale as de-
scribed above. Second, for each age, average and standard 
deviations of the volumes were separately calculated for 
each protocol type. For this calculation, data for a ±2-year 
range (a total of 5 years) were combined to enhance the 
signal-to-noise ratio. The calculation was performed for the 
age range 30–75 years. Third, using average and standard de-
viation values, a 2nd-order polynomial fitting was performed 
for the age–volume relationship independently for data with 
scan resolutions of 1.2, 2, and 2.5 mm, respectively. This pro-
cedure yielded the mean volume V̅(age)resolution and standard 
deviation Vstd(age)resolution as a function of age for each reso-
lution. Fourth, using the 1.2 mm data as a reference, we ap-
plied the following equation for the data calibration 
between 1.2 and 2.0 mm and between 1.2 and 2.5 mm:

V(age)2.0mm
cor =[V(age)2.0mm − V̅(age)2.0mm]

∗[Vstd(age)1.2mm/Vstd (age)2.0mm]

+ V̅ (age)1.2mm, 

where V(age) and V(age)cor denote the volume values for each 
subject before and after the correction. This approach as-
sumed that the normal distributions of the populations 
scanned under different imaging protocols were identical.

For the confirmation of the calibration, the age–volume 
relationships of the data with the three different protocols 
were separately fitted to 3rd-order polynomial lines before 
and after the calibration. The fitting was performed by the 
Seaborn package of Python 3.6.

Characterization of population distribution of brain 
atrophy
Statistical characterization of measurement outcomes rela-
tive to population data is a key objective of health examina-
tions. We applied two approaches for estimating the quantile 
information of each subject: data-driven gradient boosting 
regression and normal-distribution modelling. For both 
models, the raw volumes were converted to normalized vol-
ume ratios in a log scale, as described above.

Based on the normal-distribution model, V̅(age)1.2mm and 
standard deviation Vstd(age)1.2mm were used to calculate 
z-scores. Given concerns regarding the non-normal distribu-
tion of ventricle volumes, gradient boosting regression 
was also performed to estimate quantiles of volumes of 
interest for each age group. For this calculation, the 
GradientBoostingRegression function in the scikit-learn 
package of Python 3.6 was used with the following para-
meters: number of estimators = 50, maximum depth = 2, 
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learning rate = 0.1, the minimum number of samples of a leaf 
= 50, and the minimum number of samples for split = 100.

Regression analysis for correlating ventricular 
volumes with clinical data
In this study, ventricular volumes were correlated with mea-
sures of four known risk factors: fasting blood glucose level 
(mg/dl), maximum blood pressure level (mmHg), frequency 
of alcohol consumption (times per week), and abdominal 
fat areas measured with a CT scan. The data at three differ-
ent image resolutions were first calibrated and pooled. To 
improve the normality of the distributions, the ventricular 
volumes and blood glucose levels, areas of abdominal fat, 
and blood pressure values were first converted to a logarith-
mic scale. The effect of age was minimized by first binning 
the data to each decade and subsequently performing inde-
pendent analyses for the following age groups: 40–49 years, 
50–59 years, and 60–69 years. The age-dependency of both 
independent variables (ventricular volumes) and dependent 
variables (clinical measures) were further reduced by using 
the V̅(age) and Vstd(age) functions obtained above and fitting 
out the age response. The multivariate robust linear regres-
sion was performed using statmodels in Python 3.6, in which 
the clinical measures, protocols, and repeated measurements 
were used as independent variables. The P-values associated 
with the determined slopes were reported.

Data availability
The approved IRB protocol allows sharing of population- 
aggregated data, which are available on request from the cor-
responding author.

Results
Effects of age
Table 2 presents a summary of the correlations of structures 
with age evidencing high correlation coefficients. Information 

on the constituent substructures of the total cortex and ven-
tricular volumes is also shown. The volume of the entire tel-
encephalon decreased by 1.8% over a 30-year period with 
R2 of 0.30. The entire cortex showed a greater degree of 
change (−4.3%/30 years) with a similar level of age correl-
ation (R2 = 0.32). The significant volume loss of the telen-
cephalon was attributed to the loss of cortical volumes, 
with the correlation of the total white matter to age being 
much smaller (R2 = 0.05, 30-year change = –1.3%). Within 
the cortex, the frontal lobes evidenced the highest degree of 
atrophy and the strongest correlation with age correlation, 
followed by the parietal and the temporal lobes. The occipi-
tal lobe and the limbic system demonstrated a weak correl-
ation with age. Ventricular volumes evidenced one of the 
strongest correlations with age (R2 = 0.34) with substantial 
changes occurring over 30 years (+51.7%). The anterior por-
tions of the lateral ventricles, including the anterior horn and 
the body of the lateral ventricle (hereinafter referred to as the 
anterior lateral ventricles) showed the greatest correlation 
with age and change over 30 years, which coincided with 
the volume loss in the frontal lobes. Other structures eviden-
cing strong correlations with age included the Sylvian fissure 
and the periventricular white matter low-intensity areas. The 
latter comprised white matter areas around the anterior horn 
of the lateral ventricles with low intensity in the T1-weighted 
images. The expansion of these areas often results from 
pathological substrates, such as extracellular fluid content, 
gliosis, disorganized axonal fibres, and demyelination, often 
referred to as white matter lesions and typically found near 
the ventricles.

Characterization of volume 
distributions of the normal 
population
Figure 1 depicts histograms of ventricular volumes for each 
decade obtained using high-resolution data (Protocol 1, 
Sites 1 and 2, n = 5628). Several notable features of 
brain atrophy were observed. First, a consistent shift 

Table 2 Brain structures evidencing strong correlations with age among the subjects

Correlation (R2) Change (30–60 years) Size at 30 years

Telencephalon 0.297 (0.293/0.300)b −1.76% (−1.72/−1.80) 39.6% (39.7/39.4)
Cortex 0.320 (0.323/0.317) −4.35% (−4.34/−4.35) 20.9% (20.8/21.1)

Frontal lobe 0.298 (0.292/0.304) −7.80% (−7.60/−8.00) 6.98% (6.89/7.06)
Parietal lobe 0.090 (0.107/0.073) −4.74% (−4.94/−4.54) 3.72% (3.67/3.77)
Temporal lobe 0.115 (0.117/0.114) −2.10% (−1.89/−2.30) 5.30% (5.28/5.32)
Occipital lobe 0.005 (0.006/0.003) −1.99% (−2.33/−1.64) 2.68% (2.75/2.60)
Limbic Cortex 0.002 (0.002/0.002) −0.10% (−1.13/0.88) 1.74% (1.65/1.82)

Ventricles 0.321 (0.318/0.324) +59.8% (63.0/56.7) 0.63% (0.66/0.61)
Anterior ventricles 0.308 (0.307/0.309) +68.6% (70.9/66.3) 0.44% (0.46/0.41)
Posterior ventricles 0.298 (0.293/0.302) +54.7% (56.8/52.6) 0.13% (0.14/0.12)
Inferior ventricles 0.203 (0.220/0.185) +14.6% (18.8/10.3) 0.07% (0.06/0.08)

Sylvian fissure 0.371 (0.368/0.374) +20.3% (19.5/21.2) 0.35% (0.37/0.33)
Periventicular WM-LI areaa 0.410 (0.419/0.401) +48.5% (62.2/34.8) 0.03% (0.02/0.04)

aWM-LI denotes white matter low-intensity area. 
bThe numbers in the parentheses are from left and right hemispheres.
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in the distribution towards larger volumes was apparent 
due to ageing. Second, the distributions were strongly 
skewed towards the larger ventricular volumes. Third, a 
portion of the population showed impressive resilience 
against atrophy (<1.5% ventricular volume) even in their 
sixties.

As shown in Fig. 2A–D, the distributions of the ventricu-
lar volumes more closely approximated the normal distri-
butions after conversion to a logarithmic scale, although 
they were still skewed towards higher volumes (data shown 
were from Protocol 1, Sites 1 and 2). Assuming normal dis-
tributions, the population distributions can be modelled 
using averages and standard deviations, as shown in 
Fig. 2E. This type of population characterization is an 
essential first step for interpreting data obtained from 
individuals.

Effects of protocols on the 
segmentation results
Ventricle volumes
An ANOVA was performed for data with the same reso-
lution obtained from two different sites. The P-value be-
tween the two sites at 1.2 mm (Site 1: Protocol 1 versus 
Site 2: Protocol 1) was 0.094. Similarly, the P-value between 
the two sites at 2.0 mm (Site 1: Protocol 2 versus Site 2: 
Protocol 2) was 0.125. The interactions of the protocols 
with two dominant biological effects (age and sex) did not 
reach statistical significance (P > 0.436). Therefore, data 
with the same slice resolutions were pooled for the subse-
quent analysis. The effect of the protocol across the three 
different slice thicknesses (1.2 versus 2.0 versus 2.5 mm) 
was highly significant (P < 0.001). The amount of its 

Figure 1 Histograms of ventricular volumes for each decade using a linear scale. The x-axis shows the normalized ventricular volume 
(% relative to all structures combined) and the y-axis shows the frequency.
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contribution to the total variance was 1.15%, approaching 
¼ of the sex effect (4.12%), while the age effect had the 
largest contribution (30.2%). These results can be clearly ap-
preciated in Fig. 3A and B, in which the log ventricle volumes 
of the male and female participants were plotted against the 
subjects’ ages. The differences were more evident for younger 
subjects whose ventricle sizes were smaller, whereas they 
shrank with an increase in ventricular size. These differences 
were most likely due to increased partial volume effects in 
images with lower resolutions. This finding suggests that 
lower resolution images have less power to differentiate ven-
tricular size for subjects with smaller ventricles and are there-
fore not ideal for characterizing age-dependency for younger 
populations.

Cortical volumes
The data from the two sites with the same slice thickness (Site 
1 versus Site 2 with 1.2 or 2 mm slice thickness) were statis-
tically different (P < 0.0001) unlike the ventricular volumes. 
Therefore, we were unable to pool the data from two sites 
where the same slice resolution was applied. The effect of 
protocol differences was much larger than that obtained 
for ventricular sizes; the effect size (contribution to the total 
variance) of the protocol difference (23.1%) was larger than 
that of sex (2.1%) and age (15.7%). The cortical volumes 
tended to be overestimated at lower resolutions for all 
ages, although the loss of cortical volumes occurred for all 
protocols at similar rates. This finding suggests that data 

from different protocols could not be easily calibrated and 
pooled across the five protocols. Homogenization of proto-
cols assumes more importance than ventricle-based analyses 
for data combined from multiple sites. Alternatively, each 
site would need to create its own database for interpreting 
cortical volume data.

Given non-significant differences in the volumes of ventri-
cles with the same slice thickness obtained using different 
scanners, we decided to perform calibration across studies 
that used different image resolutions. Figure 3C and D shows 
ventricular volumes as a function of subject age after calibra-
tion. These plotted volumes indicate that the calibration 
method could effectively reduce the effect of image reso-
lution. The three-way ANOVA performed for three different 
resolutions showed non-significant differences (P = 0.923).

Investigation of brain atrophy using ventricles
In this preliminary study, we focused on ventricular size as an 
index of age-dependent loss of brain tissues because they 
have a high level of correlation with age. Moreover, com-
pared with the cortex, which also shows a high correlation 
with age, ventricle volumes are more robust against variabil-
ities in image protocols. Furthermore, we deemed cross- 
protocol calibration based on image resolution to be feasible.

Applying the above-described calibration approach and a 
normal-distribution model in a logarithmic scale, we charac-
terized the age-dependent distribution using data pooled 
from five different protocols (Fig. 4). Accordingly, it became 

Figure 2 Distributions of ventricular volumes within a logarithmic scale and fitting to the normal-distribution model. (A)–(D) 
The actual histograms and results of fitting to normal distributions for the thirties, forties, fifties, and sixties age groups, respectively. Data from 
male subjects are shown for demonstration purposes. (E) The fitted normal-distribution curves over four decades.
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possible to estimate the z-score of each subject, which is one 
of the ultimate goals of the Brain Dock programme.

Figure 4 reveals that the number of subjects with substan-
tially larger ventricles appeared to increase among those in 
their late thirties and above, which is expected from the non- 
normal distribution observed in Fig. 2. Although careful in-
terpretation is needed, as the sample size also increased for 

subjects towards the forties and fifties, it is reasonable to as-
sume that large ventricles in the subjects who have passed 
their late thirties (z-score > 2.0) are acquired and not inher-
ited traits.

Given potential deviation from the normal distribution, 
population percentiles equivalent to z-scores of 1 (15.9%) 
and 2 (2.3%) were calculated using a gradient boosting re-
gressor (Fig. 4, dotted line). Larger discrepancies from the 
normal-distribution model were observed among subjects 
below 40 years and above 70 years as the sample size de-
creased towards the edge of the age distribution. In areas 
with fewer data, the model-based estimation (i.e. the normal- 
distribution model) may be more robust. For the 40–60 year 
age group, slight effects of the skewed distributions were ob-
served: the z-score = ±2.0 lines from the normal-distribution 
model were slightly lower than the data-driven estimation 
obtained with the gradient boosting regression.

Correlation with clinical and lifestyle data
The results of the linear regression analysis are shown in 
Table 3. In Table 3, P-values <0.05 are indicated by under-
lines and those <0.0125 (Bonferroni corrected for four inde-
pendent measurements) by boldface for visual clues. Figure 5
visually depicts data that were binned according to the de-
gree of the clinical and lifestyle data. The larger ventricular 
volume was significantly related to higher fasting blood 
glucose levels in men who were in their fifties and sixties 

Figure 3 Scatter plots for age–volume relationships before and after calibration with three different scan resolutions. (A and B) 
Ventricular volumes from raw data in a logarithmic scale as a function of age for male (A) and female (B). (C and D) Ventricular volumes obtained 
after calibration using data with 1.2 mm slice thickness as a reference. The fitted curves are 3rd-order polynomial lines with 95% confidence 
intervals. After the calibration, the difference among the three protocols was non-significant (P = 0.923), based on the F-values of three-way 
ANOVA.

Figure 4 Estimation of z-scores of ventricular size based on 
the normal-distribution model and gradient boosting 
regression. Estimation of z-scores (or equivalent percentiles) of 
ventricular size based on the normal-distribution model (solid lines) 
and gradient boosting regression (dotted lines) for the pooled data.
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(P < 0.0008). For areas of abdominal fat, the correlations 
with ventricular volume were weaker than that of blood glu-
cose levels, but male populations in their forties and fifties 
showed moderately low P-values (P < 0.05). Clearer correla-
tions were found for blood pressure levels and drinking fre-
quencies. High levels of P-values (P < 0.001) were found in 
male populations in their forties and fifties with hypertension 
and in female populations in their fifties. P-values were low 
(P < 0.001) for drinking frequency for both men and women 

in their forties and fifties. Figure 6 shows four representative 
plots for the linear regiression results from male subjects in 
their 50s.

To test the effect of potential bias introduced by the brain 
size normalization based on the propotional approach, we 
tested regression using Voladj values and the re-calculated 
P-values were provided in Table 3 (values inside the paren-
theses). We found the results from two different types of nor-
malization approaches gave similar results.

Table 3 Results of linear regression analyses of ventricular volumes and four risk factors

n R2 P−valuea Slope

Blood glucose level 40 Female 2719 0 0.973 (0.852) −9.00E−05
Male 4614 0.001 0.130 (0.0179) 3.00E−04

50 Female 2518 0 0.987 (0.0681) 3.00E−04
Male 4282 0.005 2.87E−4 (4.59E−8) 1.00E−03

60 Female 1518 0.001 0.0172 (0.0289) 7.00E−04
Male 2128 0.005 7.27E−4 (6.47E−4) 9.00E−04

Abdominal fat 40 Female 1896 0 0.874 (0.817) 5.80E−03
Male 3743 0.002 0.0405 (0.0845) 2.19E−02

50 Female 2010 0 0.927 (0.171) 8.40E−02
Male 3543 0.001 0.0234 (0.0313) 1.93E−02

60 Female 1313 0 0.694 (0.654) 7.70E−03
Male 1935 0 0.573 (0.528) 3.90E−03

Blood pressure 40 Female 2722 0.001 0.228 (0.0156) 7.00E−04
Male 4615 0.007 5.26E−4 (2.79E−5) 1.70E−03

50 Female 2521 0.016 4.42E−4 (7.64E−10) 2.50E−03
Male 4279 0.011 7.88E−5 (4.72E−11) 2.20E−03

60 Female 1523 0.001 0.0645 (0.0648) 8.00E−04
Male 2125 0.003 0.0113 (0.00419) 1.30E−03

Frequency of alcohol consumption 40 Female 2659 0.006 8.00E−6 (1.70E−4) 8.20E−03
Male 4570 0.04 3.02E−4 (4.63E−4) 6.20E−03

50 Female 2438 0.004 3.55E−4 (7.90E−4) 6.70E−03
Male 4224 0.013 4.66E−15 (1.21E−12) 1.24E−02

60 Female 1465 0.001 0.215 (0.330) 4.00E−03
Male 2105 0.003 0.0138 (0.0224) 6.30E−03

aValues inside the parentheses are based on brain size normalization using residuals method. For visual clues, values below 0.05 are underlined and below 0.0125 (Bonferroni 
corrections with four independent measurements) are shown by bold fonts.

Figure 5 Relationship between four potential risk factors and ventricular volumes. For each analysis, the populations were binned 
according to the extent of risk factors, and their averaged ventricular volumes were presented. The error bars are standard errors and the 
numbers inside the bars are sample sizes.
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For those with significant correlations, the R2 values 
(ratio of contributions of each factor to the total vari-
ance) remained within a range of 0.3–1.7%. These 
small effect sizes are expected given the large number 
of potential risk factors that can affect brain atrophy, 
indicating the need for large sample sizes for their 
characterization.

Overall, younger female populations did not show high le-
vels of significance. This result could be attributed to experi-
mental conditions in addition to biological contributions. 
First, the sample size of women was relatively smaller than 
that of men. Second, as shown in Fig. 5, only a small propor-
tion of the population had higher (worse) blood glucose le-
vels and blood pressure, leading to a small dynamic range 
that was less suitable for correlation analysis. Third, in this 
study, young female populations had the smallest ventricular 
size. As shown in Fig. 3, the low-resolution data had less 
power to differentiate ventricular sizes within this popula-
tion; the lowest boundary for ventricular size that can be dif-
ferentiated using the 2.5 mm slice thickness is about –4.1 in a 
logarithmic scale (1.67% of the total brain volume). This is-
sue would impede an investigation of the correlations 

between ventricular sizes and clinical data for populations 
with small ventricles.

Discussion
Potential of large-scale brain MRI 
study
Whereas previous large-scale, MRI-based brain ageing stud-
ies covering the entire span of adulthood are very rare, this 
situation has shifted in recent years, with the initiation of 
large projects funded by federal governments. These studies 
usually have a clear focus in terms of diseases, populations, 
or biological questions. For example, more than US$200 
million has been invested in the Alzheimer’s Disease 
Neuroimaging Initiative, which was initiated in 2004 with 
800 elderly subjects and was expanded to cover 2000 sub-
jects, entailing repeated scans.22 The Adolescent Brain 
Cognitive Development Study, which targeted paediatric po-
pulations, generated more than 10 000 images.23 More re-
cently, the Biobank Project in the UK, which has received 

Figure 6 Representative scatter plots with linear regression results. Results are from male subjects in their 50s. (A) Blood glucose levels. 
(B) Abdominal fat areas. (C) Blood pressure levels. (D) Drinking frequencies. The lines were based on robust linear regressions and the ranges 
(shaded areas) indicate 99% confidence intervals. The multivariate linear regression was used for the fitting with P-values of 2.87E−4 (A), 0.0234 
(B), 7.88E−5 (C), and 4.66E−12 (D).
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more than US$70 million in funds since 2015, has begun col-
lecting brain MRI scans for subjects aged between 40 and 69 
years, with a long-term target of providing longitudinal 
scans for up to 100 000 subjects. As of December, 2020, 
43 000 scans have been generated, of which 1400 have 
been scanned twice.24,25

The scarcity is due to the high costs and efforts required, 
especially for longitudinal follow-ups. In this respect, 
Japanese Brain Dock data are unique. There are over 1000 
sites providing MRI services in Japan. Numerous sites have 
been operating for more than 15 years, with many partici-
pants, aged 20–90 years, returning after 1–2 years. The sheer 
amount and duration of available data could easily eclipse 
research-based studies. However, these data entail several 
disadvantages compared with well-organized research stud-
ies. First, the demography of the participants is skewed to-
wards wealthier individuals, who can afford costly scans or 
who have health benefits that include MRI scans. Second, 
the scan protocols are not standardized, and many scans 
are based on typical clinical scan protocols that tend to use 
thicker slices.

Despite these limitations, an examination the potential 
implications of these data is merited. The scientific question 
pertains to whether biologically or clinically important infor-
mation about the brain ageing process, pathological ageing, 
and relationships with clinical or lifestyle data can be ex-
tracted. From a more engineering-oriented perspective, the 
knowledge accumulated from these past data could be useful 
for managing population-level brain health in the future.

Using ventricles as a marker of the 
brain atrophy
A core question relating to the characterization of brain age-
ing concerns its location. The maximum amount of informa-
tion on location that can be extracted from one image is for 
each voxel. More than 1 million voxels in a brain are appar-
ent at a 1 × 1 × 1 mm resolution and theoretically, the age- 
dependence of brain atrophy at the level each voxel can be 
examined, which is the purpose of voxel-based morphom-
etry.26 However, the vast amount of locational information 
obtained for each subject quickly becomes a statistical bur-
den with an increase in the sample size and the initiation of 
correlation studies with non-image parameters. To apply 
brain MRI data for complex correlation analyses practically, 
the location dimension evidently needs to be reduced. By de-
fining 505 structures using a segmentation tool, the location-
al information dimension would be reduced more than 
1000-fold. However, a list of 505 volumes is probably still 
too large to handle in an evaluation of brain health.

In this study, our dimension-reduction strategy was based 
on two factors. First, we hypothesized that structures eviden-
cing high age dependency would be good candidates for 
monitoring brain ageing. Although there are some conflict-
ing reports, regional variability of age-dependent volume 
loss, shown in Table 2, is in agreement with the majority 
of previous publications. For example, our results showed 

that the cortex had a higher degree of age-related volume 
loss, whereas white matter was preserved to a greater ex-
tent.27–29 Within the cortex, the frontal lobes have widely 
been identified as the region with the earliest onset of atro-
phy,29–33 whereas preservation of the limbic system, includ-
ing the hippocampus, has also been reported.28,29,32,33

Age-dependent increase of ventricular size was uniformly ob-
served across all publications.

The second dimension-reduction strategy focused on ro-
bustness against differences in protocol. We found that ven-
tricular volumes satisfied these conditions and therefore used 
them to characterize atrophy progression due to ageing. 
However, this choice does not preclude the possibility that 
there are other structures that could be more suitable as mar-
kers for monitoring brain health. For example, it is possible 
that a certain pathological condition would affect a specific 
structure and, thus, measurements of such a structure could 
provide a better indicator of the disease (e.g. cerebellar vo-
lumes in ataxia patients). On the other hand, a recent study 
has shown that the size of lateral ventricles could be a sensi-
tive marker of brain functions.34 Clearly, more research is 
needed to enable further exploitation of the data.

The robustness of the measurement of ventricular volume 
was probably attributable to the clear contrast between the 
tissue and cerebrospinal fluid, which was stable across proto-
col differences. Conversely, the boundary between grey and 
white matter was more susceptible to variability, and even if 
the resolution was the same, the data derived from different 
scanners led to significant differences. This is to be expected 
given the high sensitivity of tissue contrasts relating to vari-
ous scan parameters, including flip angles and pulse timing. 
Currently, the vast majority of available MRI scans in the 
Japanese Brain Dock system have slice thicknesses above 
2 mm. Our findings indicated that ventricular volume could 
be a good initial candidate for investigating the prevalence 
of brain atrophy using available data. In the future, it would 
be important to use more homogenized high-resolution 
T1-weighted images to support a more detailed analysis of 
various brain tissue structures. For example, various applica-
tions of data science technology have been postulated in re-
cently publications for the dimension reduction through 
the usage of feature extraction tools, in which features 
from voxels of the entire brain or a large number of segmen-
ted structural units were used.35–37

Prevalence of brain atrophy in 
middle-age populations
After calibrating and pooling all of the data, we character-
ized average and standard deviations of the ventricular vol-
ume for each age group (Fig. 4). This was likely the most 
important achievement of this study. The Brain Dock pro-
gramme is designed to identify populations with potentially 
or highly abnormal results and recommend further disease- 
targeted evaluations for these groups. Establishment of a 
normal range of ventricular volumes for each age enables 
evidence-based decision making tailored for each individual 
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who avails of the MRI service, as in the case of various lab 
tests, such as blood and urine tests that are components of 
health checkups. Our results indicate that MR images can 
be quantitatively interpreted in a similar manner. Of course, 
abnormal values do not always indicate clinically adverse 
findings. For example, known anatomical variations occur 
in the cerebrospinal fluid space and are regarded as clinically 
insignificant (e.g. cavum septum pellucidi, cavum vergae, 
and mega cisterna magna). Therefore, further research is re-
quired for clinical interpretation. Nonetheless, it is reason-
able to assume that accelerated ventricular enlargement is 
not ideal. We found a notable increase in populations with 
ventricles that considerably exceeded two standard devia-
tions who were at least in their late thirties. Because we did 
not observe these data points in younger populations, we as-
sumed that they were mostly acquired rather than innate 
features.

At the same time, a large number of subjects showed im-
pressive resilience against ageing. Ventricular size in 11% 
of the population in their sixties was less than the average 
size of those in their thirties. Future studies should attempt 
to identify modifiable risk factors that contribute to not 
only the accelerated progression of ventricular enlargement, 
but also to a brain anatomy that is young in appearance.

Our findings aligned with recent publications about esti-
mation of brain ages from features in T1-weighted 
images.38,39 Once the age–volume relationship of a structure 
of interest is obtained, the age can be estimated from the vol-
ume. The discrepancy between the estimated and real ages 
could be used as an indication of the brain health. Our ap-
proach used a single structure for the analysis. Recent publi-
cations have reported more advanced approaches, in which 
multiple structures were integrated using machine learning 
tools.35,40 These approaches have been extended not only 
to evaluate brain ageing processes but also to diagnose 
neurological diseases.

Correlation with four types of clinical 
and lifestyle data
The correlation between modifiable risk factors and brain atro-
phy assumes importance of this study, as it implies that addres-
sing these factors could change the course of brain 
deterioration. Previous publications have reported that rela-
tionships exist between brain atrophy and diabetes, hyperten-
sion, obesity, and alcohol consumption.41–44 However, to the 
best of our knowledge, this is the first study reporting on the 
simultaneous evaluation of all four factors using the same da-
taset with such a large sample. Of these factors, we found that 
hypertension and the frequency of alcohol consumption had 
the greater impacts on ventricular enlargement. The contribu-
tions of these factors to the total variance were, at most, 1–2% 
(R2 values in Table 3). Strikingly, this finding coincides with 
previous estimations of risk factors of Alzheimer’s disease in 
which hypertension (2%), more than 21 units of alcohol con-
sumption weekly (1%), and obesity (1%) were identified as 
risk factors at midlife and diabetes (1%) in later life.45

In our study, the significant differences tended to occur in 
populations in their fifties, which could be due to several rea-
sons. First, this group comprised the largest population in 
our study sample. Second, the effects of lifestyles are ex-
pected to be cumulative over time. However, as various types 
of lifestyle-related diseases start to set in, the quality of clin-
ical and lifestyle data also deteriorates; blood glucose and 
blood pressure may be managed with drugs, and body 
weight and alcohol consumption may decrease due to illness. 
As subjects age, their past histories encompassing clinical 
and lifestyle information become more critical for accurate 
analyses. This could be the reason why correlations were 
not stronger in their sixties than fifties in this cross-sectional 
study.

There are numerous publications reporting on the rela-
tionships between brain volume loss and modifiable risk fac-
tors. For example, midlife obesity has been linked to lower 
brain volumes, which is associated with cognitive decline46

and dementia.47,48 The Biobank study, conducted in the 
UK, is probably the largest study on population health that 
includes brain MRI scans. In light of its findings, Dekkers 
et al.49 reported a significant negative correlation between 
obesity and subcortical grey matter volumes. High blood 
glucose levels have been associated with brain volume 
loss50 and low cognitive performance.51,52 Likewise, correla-
tions between brain volume and hypertension have been re-
ported.53,54 A relatively large-scale study (n = 550) reported 
that alcohol consumption led to both brain volume loss and 
cognitive decline over a 30-year period.55 The frontal lobes 
have been identified as the brain structure most susceptible 
to deterioration,56 while the medial temporal lobes are also 
affected in older populations.57 Studies have also reported 
recovery of brain volumes after periods of abstinence (for a 
review, see Kril et al.44 and Garavan et al.58). The findings 
of these studies suggest that early detection of populations 
at risk (with an increased atrophy rate revealed in MRI 
scans) and interventions entailing lifestyle changes could 
have beneficial impacts, which is the precise aim of Brain 
Dock.

Brain MRI for studying dementia
Recent studies have shown that dementia is attributable to 
modifiable risk factors related to life.2–10 In addition, there 
is increasing evidence from epidemiological, clinical, im-
aging, and biomarker studies indicating that cognitive im-
pairment induced by Alzheimer’s disease may be a clinically 
silent disorder that begins in midlife, with its terminal phase 
characterized by dementia.9,59–62 Interventions that target in-
dividuals at midlife to address health-related behavioural 
changes around modifiable risk factors may reduce indivi-
duals’ risk of developing dementia in later life and, as a con-
sequence, the prevalence of dementia.5,8,63 The prevention of 
dementia through the early detection of populations at risk 
and the enforcement of healthier lifestyles would be key strat-
egies for population-level health management. However, the 
link between the appearance of any specific biomarker in 
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asymptomatic individuals and the subsequent emergence of 
clinical symptoms remains unclear.10,60 If such a link can 
be established, it will open up a crucial window of opportun-
ity for interventions targeting modifiable risk factors.60

Brain MRI is one of the modalities that can be applied for 
directly observing the brain anatomy, and consequently, dir-
ectly measuring parameters relating to brain atrophy and 
white matter lesions. There is an abundant literature describ-
ing relationships between atrophy of certain brain regions 
and occurrences of dementia, such as Alzheimer’s disease. 
The hippocampal atrophy is one of the key anatomical fea-
tures of Alzheimer’s disease. Many studies have also re-
ported dementia-associated atrophy in various brain 
regions, including other limbic structures (amygdala and en-
torhinal cortex), temporal lobe structures, grey matter nu-
clei, and cortical grey matter. However, these findings, 
which were derived from comparison of patients with de-
mentia and age-matched control groups, inevitably focusing 
on late-life (typically with an average age of 70 years) popu-
lations. It is unclear whether such late-life features could also 
be an effective marker for early detection of dementia at 
midlife.

In this study, we demonstrated the feasibility of quantita-
tively identifying people with statistically large ventricles at 
each age. We further demonstrated that the emergence of 
large ventricles was apparent in participants from their late 
thirties onward. What is particularly concerning was the 
non-normal distributions that was skewed towards larger 
sizes, potentially indicating emergence of pathological cases. 
Further, the volumes had significant correlations with 
known risk factors for dementia. These risk factors are ac-
knowledged to cause brain volume loss at midlife and to be 
associated with the onset of dementia. In light of these find-
ings, we can assume that there is an association between po-
pulations with significantly large ventricles and the risk of 
dementia. However, we were unable to determine the 
cause-and-effect relationship in this cross-sectional study. 
To do so would require a prospective longitudinal study of 
a large population for several decades. Another potentially 
compounding factor was idiopathic normal pressure hydro-
cephalus that often occurs in late-life and induces ventricular 
enlargement.11 Nonetheless, the extensive brain MRI data-
base in Japan could be an important resource for future re-
search aimed at investigating whether early intervention 
through lifestyle changes would lead to the reduction of ac-
celerated brain atrophy as well as dementia risk.

Conclusion
We performed a feasibility analysis to characterize midlife 
brain atrophy using Japanese health checkup data. There ex-
ists a large MRI data repository in Japan encompassing all 
stages of adulthood, which would be ideal resource for per-
forming a large-scale epidemiological study of midlife brain 
atrophy and its association with lifestyle. We found that ven-
tricular volumes are highly sensitive to ageing and remain 

robust against protocol variability. Using them as a marker, 
we examined correlations with four known modifiable risk 
factors of accelerated brain atrophy and dementia: high 
blood glucose level, hypertension, obesity, and alcohol con-
sumption. We found significant correlations existing be-
tween ventricular volumes and these risk factors. This 
study reveals the promising potential of using existing health 
checkup data in Japan to manage brain health conditions, in-
cluding dementia.

Competing interest
S.M. is one of the co-founders of AnatomyWorks and 
Corporate M. S.M. is CEO and K.O. is a consultant of 
AnatomyWorks. These arrangements are being managed 
by the Johns Hopkins University in accordance with its con-
flict of interest policies.

References
1. Fox NC, Schott JM. Imaging cerebral atrophy: Normal ageing to 

Alzheimer’s disease. Lancet. 2004;363(9406):392–394.
2. Galvin JE. Prevention of Alzheimer’s disease: Lessons learned and 

applied. J Am Geriatr Soc. 2017;65(10):2128–2133.
3. Kloppenborg RP, van den Berg E, Kappelle LJ, Biessels GJ. Diabetes 

and other vascular risk factors for dementia: Which factor matters 
most? A systematic review. Eur J Pharmacol. 2008;585(1):97–108.

4. Plassman BL, Williams JW Jr, Burke JR, Holsinger T, Benjamin S. 
Systematic review: Factors associated with risk for and possible pre-
vention of cognitive decline in later life. Ann Intern Med. 2010; 
153(3):182–193.

5. Barnes DE, Yaffe K. The projected effect of risk factor reduction on 
Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–828.

6. Deckers K, van Boxtel MP, Schiepers OJ, et al. Target risk factors 
for dementia prevention: A systematic review and delphi consensus 
study on the evidence from observational studies. Int J Geriatr 
Psychiatry. 2015;30(3):234–246.

7. Biessels GJ. Capitalising on modifiable risk factors for Alzheimer’s 
disease. Lancet Neurol. 2014;13(8):752–753.

8. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential 
for primary prevention of Alzheimer’s disease: An analysis of 
population-based data. Lancet Neurol. 2014;13(8):788–794.

9. Hof PR, Glannakopoulos P, Bouras C. The neuropathological 
changes associated with normal brain aging. Histol Histopathol. 
1996;11(4):1075–1088.

10. Mitchell S, Ridley SH, Sancho RM, Norton M. The future of demen-
tia risk reduction research: Barriers and solutions. J Public Health 
(Oxf). 2017;39(4):e275–e281.

11. Ohara T, Doi Y, Ninomiya T, et al. Glucose tolerance status and 
risk of dementia in the community: The hisayama study. 
Neurology. 2011;77(12):1126–1134.

12. Ceritoglu C, Tang X, Chow M, et al. Computational analysis of 
LDDMM for brain mapping. Research support, N.I.H., extramural 
research support, non-U.S. Gov’t. Front Neurosci. 2013;7:151.

13. Djamanakova A, Tang X, Li X, et al. Tools for multiple granularity 
analysis of brain MRI data for individualized image analysis. 
NeuroImage. 2014;101:168–176.

14. Liang Z, He X, Ceritoglu C, et al. Evaluation of cross-protocol sta-
bility of a fully automated brain multi-atlas parcellation tool. 
Research support, N.I.H., extramural research support, non-U.S. 
Gov’t. PLoS One. 2015;10(7):e0133533.

Prevalence of brain atrophy in middle age                                                                     BRAIN COMMUNICATIONS 2022: Page 13 of 15 | 13



15. Tang X, Crocetti D, Kutten K, et al. Segmentation of brain magnetic 
resonance images based on multi-atlas likelihood fusion: Testing 
using data with a broad range of anatomical and photometric pro-
files. Front Neurosci. 2015;9:61.

16. Sakamoto R, Marano C, Miller MI, et al. Cloud-Based brain mag-
netic resonance image segmentation and parcellation system for in-
dividualized prediction of cognitive worsening. J Healthc Eng. 
2019;2019:9507193.

17. Wu D, Ma T, Ceritoglu C, et al. Resource atlases for multi-atlas 
brain segmentations with multiple ontology levels based on 
T1-weighted MRI. Research support, N.I.H., extramural research 
support, non-U.S. Gov’t. Neuroimage. 2016;125:120–130.

18. Mori S, Wu D, Ceritoglu C, et al. MRICloud: Delivering high- 
throughput MRI neuroinformatics as cloud-based software as a ser-
vice. Comput Sci Eng. 2016;18(5):21–35.

19. Djamanakova A, Tang X, Li X, et al. Tools for multiple granularity 
analysis of brain MRI data for individualized image analysis. 
Research support, N.I.H., extramural research support, non-U.S. 
Gov’t. Neuroimage. 2014;101:168–176.

20. de Jong LW, Vidal JS, Forsberg LE, et al. Allometric scaling of brain 
regions to intra-cranial volume: An epidemiological MRI study. 
Hum Brain Mapp. 2017;38(1):151–164.

21. Pintzka CW, Hansen TI, Evensmoen HR, Haberg AK. Marked ef-
fects of intracranial volume correction methods on sex differences 
in neuroanatomical structures: A HUNT MRI study. Front 
Neurosci. 2015;9:238.

22. Mueller SG, Weiner MW, Thal LJ, et al. Ways toward an early diag-
nosis in Alzheimer’s disease: The Alzheimer’s disease neuroimaging 
initiative (ADNI). Alzheimers Dement. 2005;1(1):55–66.

23. Bjork JM, Straub LK, Provost RG, Neale MC. The ABCD study of 
neurodevelopment: Identifying neurocircuit targets for prevention 
and treatment of adolescent substance abuse. Curr Treat Options 
Psychiatry. 2017;4(2):196–209.

24. Miller KL, Alfaro-Almagro F, Bangerter NK, et al. Multimodal 
population brain imaging in the UK biobank prospective epidemio-
logical study. Nat Neurosci. 2016;19(11):1523–1536.

25. Alfaro-Almagro F, Jenkinson M, Bangerter NK, et al. Image pro-
cessing and quality control for the first 10,000 brain imaging data-
sets from UK biobank. NeuroImage. 2018;166:400–424.

26. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. 
NeuroImage. 2000;11(6 Pt 1):805–821.

27. Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky 
RB, Lim KO. A quantitative magnetic resonance imaging study of 
changes in brain morphology from infancy to late adulthood. 
Arch Neurol. 1994;51(9):874–887.

28. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, 
Frackowiak RS. A voxel-based morphometric study of ageing in 
465 normal adult human brains. NeuroImage. 2001;14(1 Pt 1): 
21–36.

29. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius 
AL, Toga AW. Mapping cortical change across the human life 
span. Nat Neurosci. 2003;6(3):309–315.

30. Sluimer JD, van der Flier WM, Karas GB, et al. Accelerating regional 
atrophy rates in the progression from normal aging to Alzheimer’s 
disease. Eur Radiol. 2009;19(12):2826–2833.

31. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C. 
Longitudinal magnetic resonance imaging studies of older adults: A 
shrinking brain. J Neurosci. 2003;23(8):3295–3301.

32. Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, 
Acker JD. Aging, sexual dimorphism, and hemispheric asymmetry 
of the cerebral cortex: Replicability of regional differences in vol-
ume. Neurobiol Aging. 2004;25(3):377–396.

33. Salat DH, Buckner RL, Snyder AZ, et al. Thinning of the cerebral 
cortex in aging. Cereb Cortex. 2004;14(7):721–730.

34. Lundervold AJ, Vik A, Lundervold A. Lateral ventricle volume tra-
jectories predict response inhibition in older age—A longitudinal 
brain imaging and machine learning approach. PLoS One. 2019; 
14(4):e0207967.

35. Bashyam VM, Erus G, Doshi J, et al. MRI Signatures of brain age 
and disease over the lifespan based on a deep brain network and 
14 468 individuals worldwide. Brain. 2020;143(7):2312–2324.

36. Davatzikos C, Xu F, An Y, Fan Y, Resnick SM. Longitudinal pro-
gression of Alzheimer’s-like patterns of atrophy in normal older 
adults: The SPARE-AD index. Brain. 2009;132(Pt 8):2026–2035.

37. Faria AV, Liang Z, Miller MI, Mori S. Brain MRI pattern recogni-
tion translated to clinical scenarios. Front Neurosci. 2017;11:578.

38. Cole JH, Franke K. Predicting age using neuroimaging: Innovative 
brain ageing biomarkers. Trends Neurosci. 2017;40(12):681–690.

39. Franke K, Ziegler G, Kloppel S, Gaser C. Alzheimer’s disease neu-
roimaging I. Estimating the age of healthy subjects from 
T1-weighted MRI scans using kernel methods: Exploring the influ-
ence of various parameters. NeuroImage. 2010;50(3):883–892.

40. Wu D, Ceritoglu C, Miller MI, Mori S. Direct estimation of patient 
attributes from anatomical MRI based on multi-atlas voting. 
NeuroImage Clin. 2016;12:570–581.

41. Paul CA, Au R, Fredman L, et al. Association of alcohol consump-
tion with brain volume in the Framingham study. Arch Neurol. 
2008;65(10):1363–1367.

42. Gazdzinski S, Durazzo TC, Studholme C, Song E, Banys P, 
Meyerhoff DJ. Quantitative brain MRI in alcohol dependence: 
Preliminary evidence for effects of concurrent chronic cigarette 
smoking on regional brain volumes. Alcohol Clin Exp Res. 2005; 
29(8):1484–1495.

43. Anstey KJ, Jorm AF, Reglade-Meslin C, et al. Weekly alcohol con-
sumption, brain atrophy, and white matter hyperintensities in a 
community-based sample aged 60 to 64 years. Psychosom Med. 
2006;68(5):778–785.

44. Kril JJ, Halliday GM. Brain shrinkage in alcoholics: A decade on 
and what have we learned? Prog Neurobiol. 1999;58(4):381–387.

45. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, 
intervention, and care: 2020 report of the lancet commission. 
Lancet. 2020;396(10248):413–446.

46. Ward MA, Carlsson CM, Trivedi MA, Sager MA, Johnson SC. The 
effect of body mass index on global brain volume in middle-aged 
adults: A cross sectional study. BMC Neurol. 2005;5(1):23.

47. Driscoll I, Beydoun MA, An Y, et al. Midlife obesity and trajectories 
of brain volume changes in older adults. Hum Brain Mapp. 2012; 
33(9):2204–2210.

48. Ho AJ, Raji CA, Becker JT, et al. Obesity is linked with lower brain 
volume in 700 AD and MCI patients. Neurobiol Aging. 2010;31(8): 
1326–1339.

49. Dekkers IA, Jansen PR, Lamb HJ. Obesity, brain volume, and white 
matter microstructure at MRI: A cross-sectional UK biobank study. 
Radiology. 2019;292(1):270.

50. Enzinger C, Fazekas F, Matthews PM, et al. Risk factors for progres-
sion of brain atrophy in aging: Six-year follow-up of normal sub-
jects. Neurology. 2005;64(10):1704–1711.

51. Mortby ME, Janke AL, Anstey KJ, Sachdev PS, Cherbuin N. High 
“normal” blood glucose is associated with decreased brain volume 
and cognitive performance in the 60s: The PATH through life study. 
PLoS One. 2013;8(9):e73697.

52. Djelti F, Dhenain M, Terrien J, et al. Impaired fasting blood glucose is 
associated to cognitive impairment and cerebral atrophy in middle-aged 
non-human primates. Aging (Albany NY). 2016;9(1):173–186.

53. Wiseman RM, Saxby BK, Burton EJ, Barber R, Ford GA, O’Brien JT. 
Hippocampal atrophy, whole brain volume, and white matter lesions 
in older hypertensive subjects. Neurology. 2004;63(10):1892–1897.

54. Salerno JA, Murphy DG, Horwitz B, et al. Brain atrophy in hyperten-
sion. A volumetric magnetic resonance imaging study. Hypertension. 
1992;20(3):340–348.

55. Topiwala A, Allan CL, Valkanova V, et al. Moderate alcohol con-
sumption as risk factor for adverse brain outcomes and cognitive de-
cline: Longitudinal cohort study. BMJ. 2017;357:j2353.

56. Pfefferbaum A, Sullivan EV, Mathalon DH, Lim KO. Frontal 
lobe volume loss observed with magnetic resonance imaging in 
older chronic alcoholics. Alcohol Clin Exp Res. 1997;21(3):521–529.

14 | BRAIN COMMUNICATIONS 2022: Page 14 of 15                                                                                                              S. Mori et al.



57. Sullivan EV, Marsh L, Mathalon DH, Lim KO, Pfefferbaum A. 
Anterior hippocampal volume deficits in nonamnesic, aging chronic 
alcoholics. Alcohol Clin Exp Res. 1995;19(1):110–122.

58. Garavan H, Brennan KL, Hester R, Whelan R. The neurobiology 
of successful abstinence. Curr Opin Neurobiol. 2013;23(4): 
668–674.

59. Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker 
changes in dominantly inherited Alzheimer’s disease. N Engl J 
Med. 2012;367(9):795–804.

60. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the pre-
clinical stages of Alzheimer’s disease: Recommendations from the 
national institute on aging-Alzheimer’s association workgroups on 

diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 
2011;7(3):280–292.

61. Ritchie K, Carriere I, Berr C, et al. The clinical picture of 
Alzheimer’s disease in the decade before diagnosis: Clinical and bio-
marker trajectories. J Clin Psychiatry. 2016;77(3):e305–e311.

62. Ritchie K, Ritchie CW, Yaffe K, Skoog I, Scarmeas N. Is late-onset 
Alzheimer’s disease really a disease of midlife? Alzheimers Dement 
(N Y). 2015;1(2):122–130.

63. O’Donnell CA, Browne S, Pierce M, et al. Reducing dementia risk by tar-
geting modifiable risk factors in mid-life: Study protocol for the 
innovative midlife intervention for dementia deterrence (in-MINDD) 
randomised controlled feasibility trial. Pilot Feasibility Stud. 2015;1:40.

Prevalence of brain atrophy in middle age                                                                     BRAIN COMMUNICATIONS 2022: Page 15 of 15 | 15


	Brain atrophy in middle age using magnetic resonance imaging scans from Japan’s health screening programme
	Introduction
	Materials and methods
	Site information
	Subject population
	Automated brain segmentation for volume measurements
	Data processing and statistical analysis
	Correlation analysis of volume as a function of the subject’s age
	Evaluation of the impacts of different protocols
	Calibration of ventricular volumes across different image resolutions
	Characterization of population distribution of brain atrophy
	Regression analysis for correlating ventricular volumes with clinical data

	Data availability

	Results
	Effects of age
	Characterization of volume distributions of the normal population
	Effects of protocols on the segmentation results
	Ventricle volumes
	Cortical volumes
	Investigation of brain atrophy using ventricles
	Correlation with clinical and lifestyle data


	Discussion
	Potential of large-scale brain MRI study
	Using ventricles as a marker of the brain atrophy
	Prevalence of brain atrophy in middle-age populations
	Correlation with four types of clinical and lifestyle data
	Brain MRI for studying dementia

	Conclusion
	Competing interest
	References


