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Fluorescence correlation spectroscopy (FCS), is a widely used tool routinely exploited for
in vivo and in vitro applications. While FCS provides estimates of dynamical quantities, such
as diffusion coefficients, it demands high signal to noise ratios and long time traces, typically
in the minute range. In principle, the same information can be extracted from microseconds
to seconds long time traces; however, an appropriate analysis method is missing. To over-
come these limitations, we adapt novel tools inspired by Bayesian non-parametrics, which
starts from the direct analysis of the observed photon counts. With this approach, we are
able to analyze time traces, which are too short to be analyzed by existing methods, including
FCS. Our new analysis extends the capability of single molecule fluorescence confocal
microscopy approaches to probe processes several orders of magnitude faster and permits a
reduction of photo-toxic effects on living samples induced by long periods of light exposure.
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wing to its flexibility and limited invasiveness for in vivo

applications, single-molecule fluorescence confocal

microscopy!~# is one of the most widely used experi-
mental techniques of modern biophysics. In this technique,
fluorescent molecules are allowed to freely diffuse into a volume
illuminated by a tightly focused laser beam of a conventional
single-focus confocal setup. Molecular motion inside the illumi-
nated volume generates fluctuations in the emitted fluorescence
that is recorded and subsequently temporally autocorrelated!
or, jointly spatiotemporally autocorrelated®7, to deduce physical
quantities of interest. For example, fluorescence correlation
spectroscopy (FCS)1:2 as well as complementary methods—such
as fluorescence cross-correlation spectroscopy (FCCS)8, scanning
FCS?10, spot variation fluorescence correlation spectroscopy!l,
fluorescence resonance energy transfer-fluorescence correlation
spectroscopy (FRET-FCS)!>13, etc—estimate diffusion coeffi-
cients, reaction kinetic, binding affinities, and concentrations of
labeled molecules!1>.

Although single-molecule fluorescence confocal microscopy
data are acquired on the nano- to millisecond timescales (ns-ms),
fluorescence correlation methods typically require the analysis of
long time traces, several seconds to tens of minutes long,
depending on the molecular concentrations and emission prop-
erties of the fluorophores employed!®17, These traces, capturing
multiple molecule traversals of the confocal volume, provide the
statistics needed for the post-processing steps used in traditional
FCS analysis!® (e.g. autocorrelation, and nonlinear fitting to
theoretical curves). However, processing steps like these down-
grade the quality of the available data and demand either rela-
tively high concentrations or excessively long time traces to yield
reliable estimates. The same downgrades are encountered even
with less-traditional FCS analyses, including Bayesian approa-
ches!8-22, which also rely on auto-correlations.

In principle, within milliseconds, for the fluorophore con-
centrations and confocal volumes used in most experiments!»223,
thousands of data points are already available. Accordingly, if one
could, somehow, estimate diffusion coefficients within tens of ms
with the same accuracy as FCS, one could hypothetically use tens
of minutes worth of data to discriminate between very small
differences in diffusion coefficients. Alternatively, one could opt
for shorter traces in the first place and, in doing so, reduce the
sample’s light exposure to only a few milliseconds, thereby
minimizing photo-toxic effects, which remain a severe limitation
of fluorescence microscopy?4-2°,

Exploiting data on millisecond timescales would require a
method that, simultaneously and self-consistently, estimates the
number of fluorescent molecules at any given time within the
(inhomogenously) illuminated volume and deduce their dyna-
mical properties based on their photon emissions, which, in turn,
depend on their evolving location within the confocal volume.
The mathematics to do so in a rigorous and efficient manner
have, so far, been unavailable as analyzing ms traces would
demand that we consider all possible populations of molecules
responsible for the observed traces, their diffusion coefficients,
and every possible location (and, thus, photon emission rate) of
those molecules at any given time.

Indeed, with current technology, this global optimization is
prohibitively computationally expensive. To wit, maximum like-
lihood approaches!>?7, popular in a variety of applications, are
excluded as they require that the, otherwise unknown, population
of molecules in the confocal volume at any given time be specified
in advance by other means. These considerations motivate an
entirely new framework for FCS.

Here, we introduce a novel approach that exploits Bayesian
non-parametrics!>2829, a branch of statistics first suggested? in
1973 and only broadly popularized in physical applications over

the last few years!>28:29:31-37 This approach allows us to account
for an arbitrary number of molecules responsible for emitting
detected photons. With the proposed method, we are able to
estimate physical variables, otherwise determined from FCS, with:
(i) significantly shorter time traces; and (ii) nearly single-molecule
resolution. Furthermore, our overall framework is generalizable
and can estimate not only diffusion coefficients and molecular
populations but also track molecules through time as well as
determine their molecular brightness and the background photon
emission rate.

Results

Overview. The method we propose for the analysis of traces from
single-molecule fluorescence confocal microscopy follows the
Bayesian paradigm!>27-2%:38, Within this paradigm, our goal is to
estimate posterior probability distributions over unknown para-
meters such as diffusion coefficients as well as molecular popu-
lations over time.

In this section, we first demonstrate and validate our method
by computing posterior distributions using synthetic (simulated)
traces mimicking the properties of real single-molecule fluores-
cence confocal experiments. We subsequently benchmark our
estimates with traces from control in vitro experiments. A
comprehensive summary of the results can be found in
Supplementary Table 1.

Demonstration and validation with simulated data. To
demonstrate the robustness of our method, we simulate fluor-
escent time traces under a broad range of: (i) numbers of labeled
molecules in the effective volume, Fig. 1; (ii) diffusion coefficients,
Fig. 2a; (iii) trace lengths, Fig. 2b; and (iv) molecular brightness,
Fig. 3. As, the majority of our time traces are too short to be
meaningfully analyzed with traditional FCS, we compare our
posteriors directly to the ground truth that we used in the
simulations.

The posteriors we obtain, in all figures, are informed from the
analysis of a single trace. In those, the breadth of the posterior
(i.e., variance), which is a measure of the accuracy of our estimate,
indicates the uncertainty introduced by the finiteness of the data
and the inherent noise in this single time trace.

To begin, in Fig. 1 we simulate a 3D Gaussian confocal volume
of size w,, = 0.3 ym and w, = 1.5 um and one molecule inside the
effective volume (Fig. la) or five molecules inside the effective
volume (Fig. 1c) diffusing at 10 pum2s~! for a total period of
100 ms. The corresponding full joint posteriors are shown in
Supplementary Figs 1 and 2.

As can be seen in Fig. 1, a low intensity leads to a wide estimate
of the diffusion coefficient. However, the higher the intensity, the
sharper (i.e., more conclusive) the estimate of the diffusion
coefficient becomes (e.g., note a narrower posterior in Fig. 1d as
compared with Fig. 1b). Thus, diffusion coefficients are
determined more accurately when the number of labeled
molecules are higher. Accordingly, the most difficult data to
analyze are those where concentrations of molecules are so low
that, on average, only one molecule ventures, albeit rarely, into
the effective region of the confocal volume where it can be
appreciably excited. Put differently, for an equal length time trace,
the posterior estimate over the diffusion coefficient is broader
(i.e., less conclusive) for lower numbers of molecules inside the
effective volume, Fig. 1b, than it is for larger numbers of
molecules, Fig. 1d.

Following a similar reasoning, the slower a molecule diffuses,
the more photons are collected, leading to a sharper posterior
estimate of the corresponding diffusion coefficient, Fig. 2a.
Likewise, the longer the trace is, Fig. 2b, or the greater the
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Fig. 1 Effects of the number of molecules. a Synthetic fluorescent intensity trace produced by one molecule inside the confocal volume. For this simulation
we used a molecular brightness of 5x104 photons s~1 and a background photon emission rate of 103 photons s~ b Posterior probability distribution over
the diffusion coefficient estimated from the trace in a. ¢ Synthetic fluorescent intensity trace produced by five molecules inside the confocal volume

otherwise identical to a. d Posterior probability distribution over the diffusion coefficient estimated from c. Traces shown in a, c are acquired at 100 ps for a
total of 100 ms and the highlighted regions in b and d represent the 95% confidence intervals. For clarity, the horizontal axis is shown in logarithmic scale

molecular brightness is, Fig. 3, the sharper the diffusion
coefficient estimate becomes.

We emphasize that our definition of molecular brightness is
based on the maximum number of detected photons emitted
from a single fluorophore when it is located at the center of the
confocal volume and we provide more details in the Supplemen-
tary Note 3.

In Fig. 3 we demonstrate the robustness of the diffusion
coefficient estimates when varying the molecular brightness.
Although we keep the background photon emission rate fixed, we
simulate gradually dimmer fluorophores such as those encoun-
tered in experiments under lower laser powers, until the
molecular signature is virtually lost. As can be seen, such traces
lead to broader posterior estimates over diffusion coefficients, as
one would expect, as these traces are associated with greater
uncertainty. Also, as such traces lead to a weaker (ie., less
constraining) likelihood, the posterior resembles more closely the
prior (similar to every Bayesian methods) and naturally starts to
deviate from the exact value.

Experimental data with elongated confocal volume shapes.
Here, we apply our method on experimental traces captured with
an elongated confocal volume that we approximate by a cylinder.
To do so, we apply our method on fluorescent beads (with average
diameter of 45 nm) diffusing in water. We benchmark our esti-
mated diffusion coefficients against the Stokes-Einstein prediction
and results from FCS. In particular, Fig. 4 illustrates our method’s
performance in the analysis of traces too short to be meaningfully
analyzed by FCS. The FCS formulation we used here can be found
in Supplementary Note 3 and additional results can be found in
Supplementary Fig. 10.

Experimental data with elliptical confocal volume shapes. Next,
we apply our method on experimental time traces derived from

single-molecule fluorescence confocal microscopy. In our setup,
we monitor Cy3 dyes, which diffuse freely in a mixture of water
and glycerol. We benchmark our estimated diffusion coefficients
against two values: those predicted by the Stokes-Einstein for-
mula®, which is parametrized by physical quantities such as
temperature and viscosity; and those estimated by FCS. To ana-
lyze the data using FCS reliably, we used the full (6 min) trace
available.

In benchmarking, we obtained and analyzed measurements
with different: (i) numbers of Cy3 dyes inside the effective volume
(tuned by varying Cy3 concentration); (ii) trace lengths; (ii)
diffusion coefficients (tuned by adjusting the viscosity of the
solution); and (iii) molecular brightness (tuned by adjusting the
laser power).

Just as before, the slower a molecule diffuses, the more time it
spends in the vicinity of the confocal volume, so the more
photons are collected, thereby leading to sharper posterior
estimates for the diffusion coefficient; as seen on Fig. 5a.

In Fig. 5b, we illustrate the effect of different time trace length.
In this case, we reach the same accuracy as FCS with 100 x times
less data. Consistent with the synthetic data shown earlier, we
obtain a broader posterior over diffusion coefficients when the
number of dyes inside the effective volume is low and sharper
posteriors for higher numbers of dyes.

For example, in Fig. 5¢—f, we illustrate the effect of different
dye concentrations where a trace with stronger signal,
anticipated when concentrations are higher, leads to better
diffusion coefficient estimates (and thus sharper posteriors) on
traces of equal length owing to the higher number of labeled
molecules inside the confocal volume. The corresponding
full joint posteriors of Fig. 5 are shown in Supplementary
Figs 6 and 7.

In general, a posterior’s sharpness depends strongly on the
number of molecules in a time trace, their respective locations,
and thus their photon emission rates. As the molecular
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Fig. 2 Effects of diffusion coefficient and trace length. a Posterior probability
distributions deduced from traces produced from molecules with diffusion
coefficients of 0.01, 0.1, 1, 10, and 100 pmZ2 s, For clarity, posteriors are
normalized to maximum 1 and the horizontal axis is shown in logarithmic
scale. Shaded regions illustrate the 95% confidence intervals. b Posterior
probability distributions deduced from traces acquired at 100 ps with total
trace lengths of 5% 102, 1x 103, 5x 103, 1x 104, 5 x 10% time steps. For the
sake of comparison, exact values and FCS estimates are also shown and, for
clarity, the vertical axis is shown in logarithmic scale. Error bars in the FCS
curve are produced by analyzing multiple windows in the initial trace. In
order to estimate the diffusion coefficient within less than a factor of 2 of
the true value, it is typical for FCS to require ~ 50 x more data than our
method. € The entire trace used to deduce diffusion coefficients in a, b.
Each segment, marked by dashed lines, represents the portion used in b.
The molecular brightness and background photon emission rates used to
generate the time traces are 5 x 104 and 103 photons s~

population near the center of the confocal volume may exhibit
strong fluctuations, the width of the posterior may also fluctuate
from trace to trace, especially when the individual traces are
short. Thus, the individual posteriors become sharper only on
average as we move to higher numbers of molecules inside the
effective volume or molecular brightness.

To test our method beyond free beads and dyes, we used
labeled proteins, namely freely diffusing streptavidin labeled by
Cy3. Similar to the previous cases, we tested a range of
concentrations, diffusion coefficients, and laser powers. Figure 6
summarizes characteristic results and compares our analyses
against the results of FCS, which is applied on longer time
traces (6 min). As can be seen, even in this case our method
provides acceptable estimates of the diffusion coefficient with
100 x times fewer data points than FCS.

Additional results. In addition to cases involving a single diffu-
sion coefficient that we have considered thus far, our method can
be generalized to treat multiple diffusion coefficients as well. To
show this, we artificially mixed (summed) and analyzed experi-
mental traces where dyes diffuse in different amounts of glycerol
and so they exhibit different diffusion coefficients. On account of
the additivity of photon emissions and detections, artificial mix-
ing of traces allows us to obtain realistic traces of different dif-
fusive species that can be analyzed as if they were diffusing
simultaneously within the same confocal volume and separately
as well. In Fig. 7, we compare the analysis of intensities created by
mixing traces containing slow and fast diffusing Cy3 (94% and
75% glycerol/water, respectively). As can be seen, our estimates
obtained under simultaneous diffusion compare favorably to the
estimates under separate diffusion, indicating that our method
can also identify robustly multiple diffusion coefficients at once.
The full joint posterior distributions corresponding to Fig. 7 and
additional data are shown in Supplementary Figs 12 and 13.

For all cases described so far, using our method, we estimated
more than just diffusion coefficients. For example, we also
estimate the population of molecules contributing photons to the
traces, their instantaneous photon emission rates and locations
relative to the center of the confocal volume, as well as the
background photon emission rate. A more-detailed report of our
estimates, with presentations of full joint posterior distributions,
can be found in the Supplementary Figs 3, 4, 8, and 9.

Discussion

Single-molecule fluorescence confocal microscopy has the poten-
tial to reveal dynamical information at timescales that may be as
short as a hundred milliseconds. Here, we have exploited Bayesian
non-parametrics to overcome the limitations of specifically
fluorescent correlative methods in utilizing short, ~ 10 ms, and
noisy time traces to deduce molecular properties such as diffusion
coefficients. Exploiting new analysis, to obtain reliable results from
such short traces or excessively noisy traces as those obtained
under low laser power, is key to minimizing photo-damage
inherent to all methods relying on illumination and especially
critical to gaining insight on rapid or light-sensitive processes?+2°.
The analysis of similarly short traces is also required when
monitoring non-equilibrium processes that remain stationary or
approximately stationary over only short periods of time. Fur-
thermore, novel analysis with increased sensitivity may exploit the
entirety of longer traces to tease out subtle dynamical features
(such as deducing multiple diffusion coefficients at once).

The deep implication of our method is that it places single-
molecule fluorescence confocal microscopy at a competitive
advantage over wide-field techniques used in single particle
tracking. Indeed, wide-field techniques provide high, super-
resolved, spatial accuracy!”, but with diminished temporal reso-
lution, as molecule localization requires the collection of sufficient
photons obtained only after long frame exposures!®. Such a
requirement is especially problematic for photo-sensitive or
rapidly diffusing biomolecules!®.

By contrast to wide-field microscopy, single-molecule fluores-
cence confocal microscopy yields minimal spatial resolution.
However, as our analysis shows, although spatial resolution may
be diminished, reduced photo-damage and exceptionally high
temporal resolution can be achieved instead.

Since their inception, over half a century ago, correlative meth-
ods, such as FCS, have demanded very long traces in order to
extract dynamical features from single-molecule fluorescence con-
focal microscopy data®11:40-43_In this study, we have developed a
principled framework capable of taking advantage of all spatio-
temporal information nested within time traces of photon counts
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Fig. 3 Effects of molecular brightness. a-c Intensity traces produced by the same molecular trajectories under molecular brightness of 103, 5 x 104, and 1 x
104 photons s~ and background photon emission rate fixed at 103 photons s=1. All traces are acquired at 100 ps for a total length of 100 ms. d-f Posterior
probability distributions and exact values of diffusion coefficients obtained from the corresponding traces. Shaded regions illustrate the 95% confidence

intervals

and, together with novel mathematics, we have reformulated the
analysis of single-molecule fluorescence confocal microscopy data.

Existing methods, even those that apply Bayesian techniques
such as FCS-Bayes!8-22, still utilize autocorrelation functions.
Therefore, they demand equally long time traces as FCS and
implicitly assume that the molecular process probed (e.g., diffu-
sion) remains stationary over the portion of the trace analyzed. By
contrast, our method only requires short traces and therefore it
avoids stationarity or equilibrium requirements on timescales
longer than those of the segments analyzed. In addition, our
method also: (i) provides interpretable estimation of errors (i.e.,
posterior variance) determined exclusively from the information
content of the trace supplied (i.e., length and noise) as opposed to
ad hoc metrics residuals (i.e., chi square); (ii) tracks instantaneous
molecule photon emissions and locations; and (iii) estimates the
molecular brightness and background photon emission rates
which, if left undetermined, can introduce biases.

As our method is formulated exclusively in the time-domain, it
offers a versatile framework for further modifications. For

example, it is possible to adapt the present formulation to
incorporate scanning FCS%1044 which involves moving the con-
focal volume or incorporate demanding illumination profiles,
such as those arising in two photon excitation?’4>, TIRF
microscopy*! or even Airy patterns*® with or without aberra-
tions*’ by changing the specified point spread function (see
Methods section). In addition, it is possible to extend our fra-
mework to treat multiple diffusion coefficients (see Supplemen-
tary Note 5), confining forces or photon emission kinetics as
would be relevant for FCS-FRET#84° and FLIM>0-! applications.
Also, our method could be extended to handle more complex
photophysics?3°2-54, and, as we explicitly track individual
molecules over time, extensions appropriate for fast bimolecular
reaction kinetics are also conceivable.

Methods

Model overview. Here we describe the formulation and mathematical foundation
of our model. Our overarching goal is to start from an experimental time series of
photon counts, w = (w;, w,, ..., wx) where w; denotes the photon intensity
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Traces shown in a and ¢ are acquired at 100 ps for a total period of 5 ps and 0.1 ps, respectively. The laser power used to generate the trace a is 100 pW

(measured before the beam enters the objective). The estimate of diffusion coefficient resulting by autocorrelation fitting in a matches with the
Stokes-Einstein prediction (i.e., 10.5 umz s—1); whereas, in d is almost 10-fold higher (~10 um2 s

assessed at time #; (which includes both background photons as well as photons
derived from the labeled molecules of interest), and derive estimates of kinetic
quantities such as molecular locations with respect to the center of the confocal
volume as well as diffusion coefficients.

To derive estimates for the desired quantities, we need to compute intermediate
quantities which include: (i) molecular brightness; (ii) background photon
emission rate; and, most importantly, (iii) the unknown population of moving
molecules and their relative locations with respect to the center of the confocal
volume. Below we explain each one of these in detail. Computational details and a
working implementation of the entire method are available in the Supplementary
Notes 3 and 4. For convenience, we summarize our notation, abbreviations and
mathematical definitions in Supplementary Tables 2-4.

Model description. The starting point of our analysis is the raw data, namely the
photon counts. As our current focus is on deducing dynamical information on
timescales exceeding = 1 ps, we ignore triplet state and photon anti-bunching
effects that occur on vastly different timescales!6->%%6,

At the timescale of interest, individual photon detections, assuming saturation is
not reached, happen stochastically and independently from each other.
Accordingly, the total number of photon counts wj between successive assessments
follows Poisson!>27 (shot noise) statistics

e~ poison( (1, ) (s + i ) 1)

where pip,ci is a background photon emission rate and )y}t gathers the photon

n
emission rates y} from individual fluorescent molecules that we index with n = 1,
2, .... The number of molecules involved in the summation above is to be
determined. This is the key reason we invoke Bayesian non-parametrics in the
model inference section (see below). As we only collect a small fraction of the total
photons emitted by the fluorescent molecules, as we describe above, in our
framework y}! coincides with the emission rate of detected photons, as opposed to
the true photon emission rate, which might be larger.

Each rate y| depends on the position (x{, yj, z}) of the corresponding molecule
relative to the center of the confocal volume as well as other features such as laser
intensity, laser wavelength, quantum yield, and camera pinhole size>’. Similar to
other studies?®58:5%, we combine all these effects into a characteristic point spread

function (PSF) that combines excitation and emission PSFs

Hi = b PSEGEE Y 2)- )
The parameter i, represents the molecular brightness and, as we discuss in
the Supplementary Note 3, it is related to the maximum photon emission rate of a
single molecule that is located at the center of the confocal volume. Specific choices
of PSF models, such as Gaussian or Gaussian-Lorentzian, are also detailed in the
Supplementary Note 3 and a comparison of the different PSF models is shown in
Supplementary Fig. 5.
Finally, we associate individual molecular locations across time by adopting a
motion model. Here we assume that molecules are purely diffusive and arrive at

xf ~ Normal (x}_,,2(t, — t,_,)D)
¥ ~ Normal (y{_,,2(t, — t,_,)D) (3)
2 ~ Normal(2}_,2(t — t,_)D)

where D denotes the diffusion coefficient, which we assume is the same for all
molecules. As we explain in the Supplementary Note 4, these probabilities result
directly from the diffusion equation. A graphical summary of the entire
formulation is shown on Fig. 8.

In addition, in the Supplementary Note 5 and Supplementary Fig. 16, we
illustrate how this motion model can be generalized to capture more than one
diffusion coefficients.

Model inference. The quantities that we want to estimate, for example the dif-
fusion coefficient D, molecular locations through time (x}, y}, 2} ), molecular
brightness pi,01 and background photon emission rate p,c, or the molecular
population, are introduced as model variables in the preceding formulation. To
estimate values for these variables, we follow the Bayesian paradigm!%28:38:59,

Variables such as D, pmol, and ppack are parameters of the model and, as such,
require priors. Choices for these priors are straightforward and, for interpretational
and computational convenience, we adopt the distributions described in the
Supplementary Note 4.

In addition, we must place priors on the initial molecular locations, (x}, y{, z}),
i.e., the locations of the molecules at the onset of the measurement period.
Specifying a prior on initial molecular locations also entails specifying a prior on
the molecular population.

In particular, to allow the dimensionality or, alternatively, the complexity of our
model to fluctuate based on the number of molecules that contribute to the
fluorescent trace, we abandon traditional Bayesian parametric priors and turn to
the non-parametric formulation described below.
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Fig. 5 Estimating diffusion coefficients of free Cy3. a Posterior probability
distributions of diffusion coefficients of free Cy3 in different concentrations
of glycerol/water mixture. The legend labels the posteriors according to
FCS estimates of long time traces. For clarity, posteriors are normalized to
maximum 1 and the horizontal axis is shown in logarithmic scale. Also, the
95% confidence intervals are shown by highlighted regions. Posteriors are
obtained from the analyses of time traces acquired at 100 ps for total
periods of 100 ms. Different diffusion coefficients are obtained by varying
the amount of glycerol from 99 to 50% in the glycerol/water mixture.

b Posterior probability distributions deduced from traces acquired at 100 ps
with total trace lengths of 5x 102, 1x103, 5% 103, 1x 104, and 5 x 104 time
steps. For the sake of comparison, exact values and FCS estimates are also
shown and, for clarity, the vertical axis is shown in logarithmic scale. Error
bars in the FCS curve are produced by analyzing multiple windows in the
initial trace. To estimate the diffusion coefficient within less than a factor of
2 of the true value, it is typical for FCS to require ~ 50 x more data than our
method. c-f Posterior probability distributions over the diffusion
coefficients of traces generated by different laser powers (25 and 100 pW,
respectively) with different concentrations of Cy3 (100 pm and 1nm,
respectively) in a glycerol/water mixture of 94% glycerol. For the sake of
comparison, FCS estimates, shown with dashed lines, are obtained from
traces each 6 min long

Before we proceed any further, we recast Eq. (2) as

i = b"p, g PSF(x, v, 7i0).- (4)

The newly introduced variables 4", one for each model molecule, may take only
values 1 or 0. In particular, the possibility that b” = 0, coinciding with the case
where molecules do not contribute to the observation, allows us to introduce an
arbitrarily large number of molecules, technically an infinite number. With the
introduction of b", we can estimate the number of molecules that contribute
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Fig. 6 Estimating diffusion coefficients of free streptavidin. a Posterior
probability distributions of diffusion coefficients of free streptavidin labeled
by Cy3 in different concentrations of glycerol/water mixture. The legend
labels the posteriors according to FCS estimates of long time traces. For
clarity, posteriors are normalized to maximum 1 and the horizontal axis is
shown in logarithmic scale. Also, the 95% confidence intervals are shown
by highlighted regions. Posteriors are obtained from the analyses of time
traces acquired at 100 ps for total periods of 100 ms. Different diffusion
coefficients are obtained by varying the amount of glycerol from 94 to 0%
in the glycerol/water mixture. b-e Posterior probability distributions over
the diffusion coefficients of traces generated by different laser powers (25
and 100 pW, respectively) with different concentrations of Cy3 (100 pm
and 1nm, respectively) in a glycerol/water mixture of 94% glycerol. For the
sake of comparison, FCS estimates, shown by dashed lines, are obtained by
traces each 6 min long

photons (termed “active” to distinguish them from those that do not contribute
termed “inactive”) simultaneously with the rest of the parameters simply by
treating each b" as a separate parameter and estimating its value (of 1 for active
molecules and 0 for inactive ones).

To estimate b", we place a prior b" ~ Bernoulli(q") and subsequently a
hyperprior on g" in order to learn precisely how many model molecules are active.
For the latter, we choose g" ~ Beta(4,, B;) with hyperparameters A, and B,. Both
steps can be combined by invoking the newly developed Beta-Bernoulli process3¢-:%°
which is described in more detail in the Supplementary Note 4.

Once the choices for the priors above are made, we form a joint posterior
probability distribution p(D, py,ops fpackr 1255 Vi 245 b, q" }|w) encompassing all
unknown variables which we may wish to determine.

The nonlinearities in the PSF with respect to variables {x}, y?, 2 }; and the
non-parametric prior on {b", g"}"* exclude analytic forms for our posterior. For this
reason, we develop a computational scheme exploiting Markov chain Monte
Carlo380! that can be used to generate pseudo-random samples from this posterior.

The main bottleneck of a naive implementation of our method, as compared
with correlative methods, is its higher computational cost. As we explain in the
Supplementary Note 4, to have computations run on an average desktop computer,
we adopt mathematical approximations (e.g., photon binning, Anscombe
transform®2 and filter updates®364) that are tested on the synthetic data presented.
Specifically, the time trace preparation is described in the Supplementary Note 3
and Supplementary Fig. 14.
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Fig. 7 Estimating multiple diffusion coefficients in Cy3 traces. a, b Experimental traces of free Cy3 in glycerol/water mixtures with 94% and 75% glycerol,
respectively. € Trace resulting by mixing the traces in a and b. d, e Posterior probability distributions resulting from the analysis of the traces in a and b.
f Posterior probability distribution resulting from the analysis of the trace in ¢. For comparison, FCS estimates, shown by dashed lines, are produced from
five different traces, each of 6 min, i.e., % 100 x longer than the segments shown and analyzed in our method. Posteriors are obtained from the analyses of

time traces acquired at 100 ps for a total period of 1us

A working implementation of the framework described in this study is provided
in the source code and the graphical user interface (GUI) is shown on
Supplementary Fig. 15.

Data acquisition. Synthetic data: We obtain the synthetic data presented in the
Results section by standard pseudo-random computer simulations®>~¢7 that mimic
the common single-molecule fluorescence confocal setup. We provide details and
complete parameter choices in the Supplementary Note 3, Supplementary Tables 5
and 6.

Experimental data: For the experimental data acquired with elongated confocal
volumes, a stock solution of Cy3B (mono-reactive NHS ester, GE Healthcare) was
prepared by dissolving a small amount of solid in 1 mL of doubly-distilled water,
and its concentration was determined from the absorbance of the solution using
the extinction coefficient provided by the vendors. A 10 nm solution was then
prepared by appropriate dilution of the stock and measured on a silicone perfusion
chamber mounted on a glass coverslip. Fluorescent beads were purchased from
ThermoFisher (Catalog number: F8792. Lot number: 1604237). The average
diameter was 0.046 um as indicated in the certificate of analysis provided by the
vendors. Suspensions for FCS measurements were prepared by adding 3 pL of stock
solution (9.4 x 1014 particles/mL) to 1 mL of water and sonicating the mixture for
20 min. Measurements were carried out using a home-built instrument. A 532 nm
continuous-wave laser (Compass 215M-10, Coherent, Santa Clara, CA) was
attenuated to 100 uW and focused onto an PlanApo 100 x, 1.4 NA, oil-immersion,
objective (Olympus, Center Valley, PA). Emitted fluorescence was collected using

the same objective and then passed through a 50 pm pinhole to reject the out-of-
focus light. The signal was detected using a silicon avalanche photodiode (SPCM-
AQR-14; Perkin-Elmer, Fremont, CA). A bandpass filter (Omega 3RD560-620) in
front of the detector was employed to further reduce the background signal and an
ALV correlator card (ALV 5000/EPP, ALV-GmbH, Langen, Germany) was used to
correlate the detected fluorescence signal. Data for our analysis were acquired with
100 ps resolution using a PCI-6602 acquisition card (National Instruments, Austin,
TX). Measurements have been tested for saturation separately and shown on
Supplementary Fig. 11.

For the experimental data acquired with elliptical confocal volumes, Cy3 dye
and Cy3-labeled streptavidin solutions were prepared by suspending Cy3 or
streptavidin in glycerol/buffer (pH 7.5, 10 mm Tris-HCI,100 mm NaCl and 10 mm
KCl, 2.5 mm CaCl,) at different v/v, to a final concentration of either 100 pm or
1 nm. The solutions were added onto a glass-bottomed fluid-cell, mounted on a
custom designed single-molecule fluorescence confocal microscope®®%® and a
532 nm laser beam was focused to a diffraction-limited spot on the glass coverslip
of the fluid-cell using a x 60, 1.42 NA, oil-immersion objective (Olympus). The
laser power was measured before the objective and the beam was reflected by a
dichroic and focused by the objective on to the sample. The dichroic reflected 95%
of the intensity on to the objective. Emitted fluorescence was collected by the same
objective and focused onto the detection face of a Single Photon Avalanche Diode
(SPAD, Micro Photon Devices) that has a maximum count rate of 11.8 Mc/s. A
bandpass filter was placed in front of the detector to transmit only the fluorescence
from Cy3 and to block the back-scattered excitation light. TTL pulses, triggered by
the arrival of individual photons on the SPAD, were timestamped and recorded at
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80 MHz by a field programmable gated array (FPGA, NI Instruments) using
custom LabVIEW software®® and initially binned at 100 ps.

Data availability
The data generated and analyzed in this study are freely available from the corresponding
author upon request.

Code availability

Source code and GUI versions of the methods developed herewith are freely available to
download at [https://cbp.asu.edu/content/steve-presse-lab] or [https://github.com/
sinajazani/F-CS].
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