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A B S T R A C T

Cancer cachexia is a progressive disorder characterized by body weight, fat, and muscle loss. Cachexia induces
metabolic disruptions that can be analogous and distinct from those observed in cancer, obscuring both diagnosis
and treatment options. Inflammation, hypogonadism, and physical inactivity are widely investigated as systemic
mediators of cancer-induced muscle wasting. At the cellular level, dysregulation of protein turnover and energy
metabolism can negatively impact muscle mass and function. Exercise is well known for its anti-inflammatory
effects and potent stimulation of anabolic signaling. Emerging evidence suggests the potential for exercise to
rescue muscle's sensitivity to anabolic stimuli, reduce wasting through protein synthesis modulation, myokine
release, and subsequent downregulation of proteolytic factors. To date, there is no recommendation for exercise in
the management of cachexia. Given its complex nature, a multimodal approach incorporating exercise offers
promising potential for cancer cachexia treatment. This review's primary objective is to summarize the growing
body of research examining exercise regulation of cancer cachexia. Furthermore, we will provide evidence for
exercise interactions with established systemic and cellular regulators of cancer-induced muscle wasting.
Introduction

Cancer-induced wasting, or cancer cachexia, is a progressive disorder
associated with a terminal disease characterized by severe body weight,
fat, and skeletal muscle loss.1 Cachexia is multifactorial and induces
nutritional and metabolic abnormalities that can be analogous and
distinct from the patient's underlying condition, thus obscuring both
diagnosis and treatment options.2 Cachectic patients may experience
poor disease prognosis, increased treatment-related toxicities, fatigue,
reduced physical well-being, and overall quality of life. Skeletal muscle
comprises 40%–50% of body mass and is maintained through an ongoing
balance of protein synthesis and degradation, which are tightly regulated
by systemic and local environmental stimuli. Inflammation, hypo-
gonadism, malnutrition, insulin resistance, and sedentary behavior can
disrupt muscle energy metabolism and protein turnover during cancer
cachexia3 (see Fig. 1). Suppressed muscle protein synthesis has been
reported in preclinical cancer models and cancer patients; however, in-
terventions directed toward increasing protein synthesis (i.e., amino
acids, protein administration) alone do not fully counteract
cancer-induced wasting. Therefore, a multimodal intervention approach
may be necessary.4–8 The inability to stimulate protein synthesis, termed
“anabolic resistance,” is observed in models of aging and wasting
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disorders.3,9–11 However, mechanisms governing this phenomenon are
complex and not yet fully understood.

Regular physical exercise has proven to benefit individuals with
chronic diseases by improving muscle metabolic homeostasis and sup-
pressing intrinsic signaling associated with wasting12–14 (see Fig. 1).
According to the 2020 ASCO guidelines,15 no recommendation can be
made for exercise-based interventions in the management and treatment
of cachexia due to the lack of clinical trial evidence. However, a prom-
ising intervention remains a combination of exercise with other thera-
pies.16 There has been a rapidly growing interest in understanding how
exercise can interact with cancer cachexia's development and progres-
sion, with over 450 publications consisting of both literature reviews and
original research articles being listed on PubMed related to cancer
cachexia and exercise. Amazingly, more than 290 of these have been
published since 2015. Preservation of muscle mass and improving
physical performance are essential goals of cachexia therapy. The
anti-inflammatory nature of exercise and its capacity to induce positive
metabolic alterations provide a strong premise for further mechanistic
investigations for related to improving the cachectic condition. While
cancer cachexia dramatically reduces muscle strength and endurance, the
mechanistic underpinnings of these functional changes are not fully un-
derstood.17 Skeletal muscle is highly adaptable and responsive to muscle
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Fig. 1. Exercise Regulation of Cancer-Induced
Cachexia. The systemic cancer environment induces
whole body alterations including chronic inflamma-
tion, metabolic dysfunction, sedentary behavior,
hypogonadism, endocrine disruption, insulin resis-
tance, and malnutrition. These systemic factors
contribute to the development and progression of the
cachectic phenotype. Cachexia can induce a meta-
bolic shift in which skeletal muscle develops resis-
tance to anabolic stimuli (e.g., nutrients, physical
activity, growth hormones), altered protein turnover,
decreased oxidative metabolism, and an overall loss
of muscle mass, strength and function. Regular
physical exercise (e.g., walking, running, cycling,
resistance training) can benefit patients by improving
skeletal muscle function, strength, and metabolic
homeostasis, reducing muscle mass loss, and sup-
pressing systemic and cellular signaling associated
with cancer-induced wasting.
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contraction and loading, which mediate increases in anabolic
signaling.18 Adaptations to physical activity are dependent on exercise
mode, intensity, duration, and frequency.19 Although increased activity
is beneficial for cancer patients, prescribing regimens that are well
adhered to is difficult. The current recommended dose to elicit health
benefits is 150–300min/week of moderate-intensity aerobic exercise
(i.e., walking, running, cycling, swimming) and strength training ~2
days a week. However, these “minimal dose” guidelines relate to disease
prevention rather than treatment.20

Interestingly, epidemiological studies and clinical trials show that
improved prognosis in physically active cancer patients is more closely
associated with exercise performed after diagnosis as opposed to exercise
habits prior.21–23 Sedentary behavior and muscle disuse can exacerbate
disease and treatment-related disruptions. Therefore, even small doses of
physical activity or the use of exercise mimetics (i.e., neuromuscular
electrical stimulation, pharmacological agents24,25) may provide critical
physiological benefits to the patient.26–29 This review will summarize the
growing body of research examining how exercise can either prevent or
treat cancer cachexia. Furthermore, we will provide evidence and sup-
port for how exercise can interact with established systemic and cellular
regulators of cancer-induced muscle wasting.

Systemic mediators of cancer-induced muscle wasting

Inflammation

To recognize and treat cancer cachexia, an understanding of its path-
ophysiology is imperative. Systemic inflammation is a significant
contributor to cancer-induced cachexia through the increased production
of related pro-inflammatory cytokines, tumor factors, and hormones
resulting in metabolic alterations in patients.30,31 Inflammatory mediators
promote activation of wasting related pathways in both adipose tissue and
skeletal muscle. Chronic inflammation is prevalent in both clinical and
preclinical models of cachexia. For example, mouse models of cachexia
have demonstrated elevated interleukin 6 (IL-6), tumor necrosis factor-α
(TNF-α), TNF-like inducer of apoptosis (TWEAK), TNF receptor
(TNFR)-associated factor 6 (TRAF6), interferon-gamma (INF-γ), and leu-
kemia inhibitory factor (LIF).31–41 The activated cytokines can act on
multiple pathways, including the nuclear factor-κB (NF-κB) pathway, p38
mitogen-activated protein kinase (MAPK) pathway, and the Janus kin-
ase/signal transducer and activator of transcription (JAK/STAT) pathway.
These signaling cascades are associated with increased activity of the
ubiquitin-proteasome system (UPS), mitochondrial dysfunction, increased
oxidative stress, and dysfunctional hypothalamic-pituitary-adrenal (HPA)
axis signaling (e.g., cortisol response).42–46 Despite evidence for the
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involvement of several inflammatory mediators during cachexia devel-
opment in preclinical models, we have a limited understanding of how
these signaling pathways interact, form regulatory networks, or of their
involvement in redundant signaling cascades with different cancers. This
complexity appears to be a significant barrier for targeting a single
signaling cascade or regulatory process to preserve skeletal muscle mass in
the cancer patient.

Hypogonadism

Hypogonadism, a sex hormone deficiency, is often associated with the
cachectic condition.47 However, understanding its role in cancer
cachexia and potential interaction with other well studied drivers of
cachexia such as inflammation is currently underdeveloped. Estrogens
and androgens are established regulators of growth and maturation and
affect many adult tissues targeted by cachexia, including bone, skeletal
muscle, and adipose tissue.48 Sex hormones can also regulate processes
involving central nervous system function, immune function, and meta-
bolism, which impact cancer cachexia. Hypogonadism can result from
normal aging, gonad dysfunction, and many chronic disease states and
has been linked to declines in muscle mass and function.49–52 Cancer is
often diagnosed after 65 years of age, and the age-related decline in
circulating sex steroids could be a factor contributing to the cachectic
environment.53 Skeletal muscle exhibits sexual dimorphism in overall
mass, fiber size, metabolic enzymes, expression of different myosin iso-
forms, fatiguability, and gene expression.54–56 Both testosterone and es-
trogen target skeletal muscle gene expression, metabolism, and protein
turnover and can be released in response to muscle contraction.57,58

Notably, 70% of male patients with cancer cachexia have low testos-
terone levels.59,60 In males, low testosterone levels lead to decreased
muscle mass and strength, and testosterone replacement therapy effec-
tively attenuates these deficits.59,61–63 Testosterone increases muscle
insulin-like growth factor 1 (IGF-1) and protein synthesis through acti-
vation of Akt/mTORC1 signaling64 and can decrease systemic inflam-
matory cytokines such as IL-6 and TNF-α in humans.64–66 The
mechanistic role of sex hormones in cancer cachexia's progression and
treatment, particularly in females, is not well understood but has been
recently reviewed.67,68 Female sex hormones may contribute to an
attenuation of inflammation by inhibiting IL-6 transcription and associ-
ated signaling.32,69 17 β-Estradiol – the most concentrated form of
circulating estrogen – favorably affects skeletal muscle contractility in-
dependent of physical activity in preclinical models.70 Estrogen can also
induce IGF-1 signaling.71–73 Decreased circulating estrogen may alter the
cachectic phenotype through dysregulation of protein turnover driven by
increased inflammation and autophagy and altered anabolic signaling.74
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Taken together, hypogonadism during cancer negatively affects survival
and patient quality of life.59 Further research is needed to determine the
efficacy and mechanisms of sex hormones' role during cancer cachexia.

Inactivity and disuse

Many cancer patients suffer from chronic fatigue, malnutrition, and
limited ability to perform physical activity due to disease progression
along with anti-cancer treatment.17,75,76 Phenotypically, cachexia may
appear similar to starvation, however in mice and humans, cachexia
often precedes decreases in food intake, and cachexia can occur with or
without the presence of anorexia.77,78 While malnutrition does occur in
cancer patients, metabolic disruptions, and altered resting energy
expenditure may also be significant contributors to wasting.79–81 Pre-
clinical models have shown that mice with cachectic phenotypes display
low volitional physical activity levels before cachexia development.82–84

Muscle disuse, similar to disease-induced atrophy (i.e., cachexia), nega-
tively affects metabolism by decreasing protein synthesis, increasing
degradation, and promoting resistance to anabolic stimuli (i.e., IGF-1,
nutrients, physical activity).26,85,86 More specifically, skeletal muscle
atrophied by disuse exhibits decreased Akt/mTORC1 signaling and
suppressed muscle protein synthesis, which is similar to cachexia.86,87

Prolonged inactivity is also associated with increased reactive oxygen
species (ROS), promoting muscle protein breakdown, and has been
extensively reviewed.88 There is a strong rationale for further examina-
tion into the impact of disuse and sedentary behavior on cachectic muscle
responses to other anabolic therapies.

Cellular regulation of cancer-induced muscle wasting

Increased inflammatory signaling

Cellular mechanisms driving cancer-induced skeletal muscle wasting
concentrate on disrupted protein turnover regulation, mitochondrial
dysfunction,89,90 and an emerging area of impaired muscle regenera-
tion.91 Cellular inflammatory signaling, specifically IL-6 family members,
have been widely investigated as regulators of muscle protein turnover in
some cancer types.92 IL-6 is a pleiotropic cytokine involved in processes
spanning immune-inflammatory response to skeletal muscle's response to
exercise.40 Cachectic patients demonstrate increased plasma levels of
IL-6 compared to non-cachectic patients.93 IL-6 exerts effects on target
cells by forming a heterodimer at the cell surface with glycoprotein 130
(gp130) and the IL-6 receptor,37,92,94 which activates intracellular
signaling involving JAK/STAT and ERK1/2. The cancer environment can
promote skeletal muscle STAT3 phosphorylation, and STAT3 inhibition
prevents cachexia in some preclinical cancer models.37,38 Notably,
STAT3 also seems to play a part in the blockage of autophagy pathways
by altering the beclin-1 complex.95 In ApcMin/þ cachectic mice, activation
of these pathways via IL-6 is associated with decreased muscle protein
synthesis by mTORC1 signaling and induced muscle protein break-
down.35,49 Moreover, IL-6 overexpression in pre-cachectic ApcMin/þ mice
accelerates body weight loss and muscle wasting and can suppress basal
protein synthesis in tumor and non-tumor bearing mice.96 Furthermore,
in cultured myotubes, IL-6 suppression of mTORC1 activity is dependent
on AMPK activation and independent of STAT3 signaling.34 Circulating
tumor-derived factors can disrupt mitophagy and mitochondrial
remodeling.97 IL-6 has been studied extensively as a potential inflam-
matory driver for muscle wasting in cancer cachexia. However, the
interaction between physical activity and IL-6 signaling requires further
study to determine if this regulatory network is a viable therapeutic
target for reversing cachexia.

Dysregulation of muscle protein turnover

Disruptions to the homeostatic regulation of muscle protein turn-
over can have detrimental consequences on cellular metabolism, muscle
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function, and growth. Muscle atrophy involves the breakdown and net
loss of intracellular proteins and organelles, resulting in smaller myo-
fibers. Studies have shown that cancer patients exhibit higher whole-
body protein turnover with reduced protein synthesis, and patients
with low muscle protein generally present poorer clinical out-
comes.6,98,99 Many factors can disrupt protein turnover and muscle
wasting in cancer (for reviews see Refs. 100,101); however, both
hypo-anabolism and hyper-catabolism still create a unique challenge to
discovering therapeutics. During cachexia, protein breakdown and
muscle catabolism can occur even with adequate nutrient intake.102

Reduced protein synthesis and an impaired response to anabolic stimuli
- anabolic resistance - must also be overcome to treat cancer-induced
wasting.3,103,104 The IGF-1/PI3K/Akt/mTORC1 signaling pathway in-
tegrates various stimuli to activate protein synthesis and growth-related
pathways. Reduced IGF-1 levels occur in preclinical cancer cachexia
models and could have a role in the pathophysiology of muscle
wasting.105 Several experimental cachexia models have reported
mTORC1 suppression.34,106,107 Muscle protein degradation in cancer
cachexia primarily involves activation of the UPS and autophagy lyso-
somal systems, which normally function to clean up damaged proteins
under physiological conditions, but cause excessive protein degradation
in diseased states.101 Glucocorticoids, cytokines (i.e., TNF-⍺, NF-κB),
activins, myostatin, proteolytic enzymes, ROS, and tumor released
factors108–111 can all regulate muscle protein degradation. Mitochon-
drial dysfunction can increase myonuclear apoptosis in skeletal muscle,
further contributing to cachexia.112,113 In fact, activation of apoptotic
factors such as B cell leukemia/lymphoma 2 (BCL2)-associated X pro-
tein (BAX) and presence of DNA fragmentation has been described in
wasting muscles from either cancer patients or tumor-bearing
mice.82,114–116 Under atrophic conditions, UPS is responsible for the
breakdown of larger myofibrillar proteins, while autophagy contributes
to the breakdown of long-lived proteins and organelles.117 UPS and
autophagy activation exacerbate muscle loss in tumor-bearing ani-
mals.101,118,119 A better understanding of cancer-induced mechanisms
regulating anabolic plasticity in patients may elucidate valuable treat-
ment options for muscle wasting and improve responsiveness to
anabolic therapies.

Muscle metabolic dysfunction

Mitochondrial dysfunction is an established regulator of cancer-
induced muscle wasting.97,120,121 Skeletal muscle plays a critical role in
regulating systemic metabolism and displays plasticity to adapt to de-
mands such as nutrient availability, activity, and the systemic environ-
ment.122 Interestingly, nutritional interventions, such as diets high in fat
and low in carbohydrates (i.e., ketogenic diet), may reduce tumor growth
and improve treatment efficacy by altering cancer cell and systemic
metabolism (for review see:123). Emphasis has been placed on ketone
bodies' anticatabolic effects during inflammation-related muscle
atrophy.124–126 In vitro, ketone bodies can attenuate tumor conditioned
media induced myotube E3 ligase expression.127 In C26-tumor-bearing
mice, a ketogenic diet partially attenuated muscle and body weight
loss.128 Furthermore, a ketogenic diet can impact the gut microbiome and
reduce inflammation129; ketone bodies' impact on metabolic dysfunction
in cachexia warrants further investigation. Cancer-induced alterations
involve increased oxidative stress, decreased mitochondrial biogenesis,
and elevated mitophagy. These changes can result in mitochondrial loss
and dysfunction,90 which is evident in tumor-bearing mice before muscle
wasting.130 Skeletal muscle mitochondrial dysfunction also induces
functional changes resulting in increased muscle fatigability and weak-
ness.97 Declines in mitochondrial health with severe wasting are
apparent in both oxidative and glycolytic muscle and is associated with
increased circulating IL-6.131 There is a strong premise for examining
how the hypogonadal state contributes to cancer-induced mitochondrial
dysfunction. Estrogen can regulate muscle mitochondria biogenesis and
mitophagy.70 It is interesting to consider whether an improvement in the
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hypogonadal condition could positively impact cachectic muscle mito-
chondrial dysfunction. Muscle disuse atrophy involves increased oxida-
tive stress and disrupted mitochondrial quality control.132 Moreover,
models of cancer cachexia display disrupted mitochondrial dynamics
(see review 97) and suppressed PGC-1α expression.107 Data is equivocal
regarding PGC-1α in disuse as some studies report increases,133 de-
creases,134 or no change.135 Interestingly, PGC-1α overexpression does
not protect against disuse-induced atrophy but does attenuate E3 ubiq-
uitin ligase expression.136 Increasing metabolic demand in muscle during
exercise exerts positive effects on mitochondrial function and activates
genes responsible for mitochondrial biogenesis, while sedentary
behavior is associated with decreased mitochondrial health.137–139 Cur-
rent data does not fully describe if improved mitochondrial health can
overcome anabolic resistance in skeletal muscle.

A role for exercise in the prevention and treatment of cachexia

A role for exercise

Increased physical activity can benefit cancer patients by positively
impacting muscle mass, function, and metabolism and decreasing
treatment-related toxicity. Physical activity elicits systemic anti-
inflammatory effects acting to reduce protein degradation and in-
crease protein synthesis; moreover, training can improve oxidative
metabolism and maximize substrate utilization to combat metabolic
dysfunction.140,141 Additionally, ketone bodies, organic compounds
derived from lipids, are oxidized during prolonged exercise and utilized
as fuel sources.142 Some types of ketone bodies may function to main-
tain redox homeostasis in response to metabolic stress, reduce inflam-
mation, and improve exercise performance.143,144 A single bout of
exercise in healthy individuals activates muscle signaling pathways
linked to energy metabolism and, when repeated over-time (i.e.,
training) can elicit beneficial metabolic adaptations.145,146 Hence, ex-
ercise's potential therapeutic role in preventing or treating cancer
cachexia should examine both the acute response and chronic adapta-
tions to exercise. However, tumor-derived factors and increased meta-
bolic stress can interfere with muscle mechanical signaling. For
example, in vitro models using tumor-derived culture media impair the
mechanical stretch activation of myotube protein synthesis.147 Addi-
tionally, in severely cachectic mice, the anabolic signaling response to
muscle contraction is disrupted.139 Muscle disuse atrophy and aging,
variables to consider with cancer patients, can impair the muscle's
response to anabolic stimuli (e.g., amino acids, insulin).148–150 Under-
standing physiological skeletal muscle signaling in response to exercise
and mechanical stimuli is critical when designing interventions to treat
cancer-induced wasting. Interestingly, mechanical stimuli can activate
muscle protein synthesis through mTORC1, independent of Akt
signaling.151 Acute bouts of muscle contraction increase mTORC1
signaling and phosphorylation of its downstream effector p70.152 In
fact, increased muscle mass after chronic mechanical stimulation is
strongly associated with p70 phosphorylation.153,154 Mitogen-activated
protein kinase (MAPK) signaling cascades, including ERK1/2 and p38,
are increased during exercise and myofiber mechanical stretch.155,156

ERK-dependent mTORC1 activation is involved in muscle mass regu-
lation,157 but mechanical stimulation can induce mTORC1 signaling
independent of ERK, which may involve phosphatidic acid
signaling.158,159 Mechanical activation of protein synthesis pathways
combined with other anabolic therapies may provide a means to
circumvent anabolic resistance to nutrients and growth factors. In fact,
exercise performed with nutritional interventions can improve muscle
mass and reduce tumor growth in animal models.160,161 However,
further studies examining muscle sensitivity to different exercise types
and nutrition status are needed to elucidate reliable interventions.

In pre-clinical models, exercise performed before severe cachexia
development can reduce indices of cachexia and mitigate treatment-
related toxicities. Voluntary aerobic exercise in colon-26 (C26) mice
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can prevent muscle mass loss and improve function by modulating
autophagy flux.21 Moderate treadmill exercise (1 h/d, 6 d/week, 5%
grade) attenuates IL-6-dependent cachexia in ApcMin/þ mice.162 More-
over, myokines released during aerobic exercise have shown the poten-
tial for cachexia therapy through the downregulation of proteolytic
factors.163 In a mouse model of prostate cancer, long-term voluntary
wheel running (20wks) was sufficient to preserve muscle mass and
function.164 In mice, exercise performed before cachectic tumor inocu-
lation can prevent muscle loss and Akt/mTOR suppression.165 In vitro
electrical stimulation or mechanical stretch can prevent
chemotherapy-induced myotube atrophy.166 Increased muscle metabolic
demand can increase mitochondrial biogenesis. For example, cachectic
tumor-bearing mice subjected to an acute bout of low-frequency stimu-
lation display increased activity of genes responsible for biogenesis:
PGC1-α, NRF-1, and Tfam.139 High-frequency electrical stimulation can
attenuate cachexia induced muscle loss, improve oxidative capacity, and
activate mTOR signaling.167,168 Cancer cachexia induces muscle ERK1/2
and p38 MAPKs,169 and ERK signaling inhibition can promote anabo-
lism.170 For example, inhibition of either ERK1/2 or p38 signaling res-
cues the mechanical stretch induction of myotube protein synthesis in the
presence of LLC media.147 Resistance exercise increases muscle protein
synthesis through mTORC1 and can improve mitochondrial function and
muscle mass in tumor-bearing mice (see review11). Repeated bouts of
eccentric contractions can increase muscle mass and oxidative meta-
bolism in cachectic mice, and these changes coincide with reduced AMPK
activity.3,168 Mechanically stimulated pathways and their regulation in
cachexia induced muscle wasting in response to mechanical stimuli
require further investigation as they could play a role in mTORC1
mediated protein synthesis and autophagy regulation. Combined exer-
cise and nutritional interventions have shown improvements in patient
physical function and quality of life. These multimodal approaches
deserve further investigation for the promotion of anabolism and atten-
uated wasting in cancer patients.

Exercise modulation of oxidative stress during cancer cachexia

Increased pro-inflammatory cytokines and dysfunctional mitochon-
dria contribute to muscle oxidative stress during cachexia.97 Under-
standing exercise's role in redox homeostasis modulation is essential, as
excessive mitochondrial ROS production can promote tumorigenesis,
disrupt cellular processes, and exacerbate declines in skeletal muscle
mass and function (see reviews171,172). Muscle oxidative stress and
mitochondrial dysfunction are observed early in cachexia progression,
preceding muscle wasting.130 Many cachectic cancer patients and
cachectic mice cannot perform standard exercise training paradigms.173

However, preventative therapeutics, such as exercise performed before
muscle wasting and fatigue, may offset adverse outcomes by improving
oxidative metabolism. Acute exercise promotes ROS production, which
may serve as a necessary adaptive response, and chronic exercise training
upregulates antioxidant defenses and can reduce inflammation and
oxidative stress.174–177 In C26-tumor-bearing mice, moderate aerobic
exercise improved muscle mass and function and was associated with an
improved redox balance.178 Aerobic interval training in tumor-bearing
rats did not restore muscle mass but improved muscle function, overall
survival, and reduced oxidative stress.179 Furthermore, in cancer pa-
tients, exercise reduced cancer-related fatigue, increased circulating an-
tioxidants, and decreased blood markers of oxidative stress.180 Recently,
the emphasis on oxidative stress during cancer progression has been
directed towards understanding and preventing chemotherapeutics' toxic
effects.181 However, we still lack knowledge of whether chemotherapy
exacerbates oxidative stress during cancer cachexia progression and if
exercise is sufficient to offset this response. Cancer patients may likely
benefit from therapies that improve redox homeostasis (e.g., antioxidant
supplementation, exercise, exercise mimetics). Whether these combined
interventions serve to reinforce muscle antioxidant defenses and reduce
oxidative stress remains an open question.



J.L. Halle et al. Sports Medicine and Health Science 2 (2020) 186–194
Exercise and muscle anabolic resistance

Unlike healthy muscle, wasting conditions can cause muscle respon-
siveness to anabolic stimuli to be reduced.10,85,182 The inability to
stimulate protein synthesis in response to anabolic factors (e.g., anabolic
resistance) has been observed in aging and cancer. It may play a central
role in muscle function decrements during cachexia.9,11,103,183 Evidence
for anabolic resistance has been observed in cancer patients with mod-
erate weight loss and apparent systemic inflammation via impaired
glucose uptake in response to insulin104. Unfortunately, our current
mechanistic understanding of muscle protein turnover does not account
for an inherent hour to hour physiological regulation of anabolic stimuli,
such as feeding, fasting, and daily physical activity.84 A recent study
reported that the administration of an HDAC inhibitor suppressed muscle
IL6/STAT signaling and could improve anabolic sensitivity to androgen
based therapy.184 Combining pharmacological agents and anabolic
treatment has the potential to restore muscle responsiveness to these
stimuli (i.e., androgens, exercise, nutrients) in cancer patients. In severe
cachexia, IL-6/STAT signaling seems to have a role in the initial devel-
opment of anabolic resistance. Determining mechanisms of anabolic
plasticity in cancer patients may elucidate valuable treatment options
and improve responsiveness to anabolic therapies. Since nutritional
support cannot fully reverse cachexia, the suppressed responsiveness to
nutrient supplementation may be related to dysfunctional protein turn-
over regulation. Cachectic cancer patients exhibit exacerbated
whole-body protein turnover rates in response to feeding.185,186 Inter-
estingly, cachectic pancreatic cancer patients did not increase
whole-body protein synthesis after eating like healthy individuals,
pointing to impaired anabolic plasticity in cancer.187 Williams et al.
further showed that cachectic colorectal cancer patients did not increase
muscle protein synthesis in response to feeding.188

Summary

The complex interplay of systemic and cellular disruptions in cancer
cachexia has delayed the development of reliable treatment interventions
to improve skeletal muscle mass, function, and metabolism. Skeletal
muscle is crucial for movement, posture, breathing, and whole-body
metabolism; consequently, altered muscle homeostasis intensifies
cancer-induced systemic disruptions, worsening disease prognosis.
Although exercise is not typically the first line of clinical therapy, its
ability to reduce systemic inflammation and promote anabolic processes
warrant continued study to treat cancer-induced wasting. Therefore, we
reviewed the published research examining exercise and cancer
cachexia. Overall, there is evidence that increased physical activity can
help attenuate cancer cachexia progression in tumor-bearing mice. To
date, there is not a recommended dose of exercise for cachectic cancer
patients due to a lack of clinical trials. Results from clinical studies
examining exercise are inconclusive (see review189), potentially due to
poor cachexia diagnostic criteria and heterogeneity in patient cohorts
(i.e., cancer type, sex, degree of cachexia, patient age) and variable
muscle sample collection sites (i.e., rectus abdominis, quadriceps, dia-
phragm). Overall, human studies primarily focus on gastrointestinal
cancer patients and suggest altered skeletal muscle morphology,
increased proteolysis, systemic inflammation, and mitochondrial
dysfunction.31,189 A multimodal treatment approach to cachexia man-
agement in cancer patients involving some type of physical activity can
positively affect the rate of cachexia progression and functional decline.
However, the achievable threshold of physical activity or exercise needed
for these positive effects is not well understood. Published studies have
demonstrated the ability of exercise to reduce systemic inflammation,
reduce muscle mass loss, and improve muscle mitochondrial function.
Exercise can stimulate muscle protein synthesis and, in combination with
anti-catabolic agents, may have promise for ameliorating cancer-induced
anabolic resistance in muscle. Research in clinical settings will provide
evidence for the effectiveness of these strategies for improving mortality
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and quality of life. Well-controlled and characterized exercise studies in
cancer patients and complementary mechanistic preclinical cachexia
studies should provide further insight into the molecular signaling
mechanisms and potential exercise benefits. This knowledge will help
delineate the exercise dose that can attenuate cancer cachexia
progression.
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