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Genetic association and Mendelian randomization
for hypothyroidism highlight immune
molecular mechanisms

Samuel Mathieu,1,3 Mewen Briend,1,3 Erik Abner,2 Christian Couture,1,3 Zhonglin Li,3 Yohan Bossé,3,4

Sébastien Thériault,3,5 Tõnu Esko,2 Benoit J. Arsenault,1,3,6 and Patrick Mathieu1,3,7,8,*

SUMMARY

We carried out a genome-wide association analysis including 51,194 cases of hypo-
thyroidism and 443,383 controls. In total, 139 risk loci were associated to hypothy-
roidism with genes involved in lymphocyte function. Candidate genes associated
with hypothyroidism were identified by using molecular quantitative trait loci, co-
localization, and enhancer-promoter chromatin looping. Mendelian randomization
(MR) identified 42 blood expressed genes and circulating proteins as candidate
causal molecules in hypothyroidism. Drug-gene interaction analysis provided evi-
dence that immune checkpoint and tyrosine kinase inhibitors used in cancer therapy
increase the risk of hypothyroidism. Hence, integrative mapping and MR support
that expression of genes and proteins enriched in lymphocyte function are associ-
atedwith the riskof hypothyroidismandprovidegenetic evidence for drug-induced
hypothyroidism and identify actionable potential drug targets.

INTRODUCTION

Thyroid dysfunction including autoimmune thyroid disorder (AITD) is a frequent condition with a prevalence of

5% in the general population (Taylor et al., 2018). Amajority of patients with AITD disorder present hypothyroid-

ism, with Hashimoto disease being themost common cause (Ragusa et al., 2019). Hashimoto disease is an auto-

immune condition characterized by the production of antithyroid antibodies (e.g. antithyroid peroxidase).

Graves’ disease is another autoimmune disorder which activates the secretion of thyroid hormone (Davies

et al., 2020). However, some patients with Graves’ disorder may develop hypothyroidism spontaneously or if

treated with radioactive iodine or surgery (Umar et al., 2010). Other less frequent conditions leading to hypothy-

roidism include congenital causes, pregnancy, drugs, and iodine excess (Vanderpump, 2011). People affectedby

hypothyroidism need lifelong thyroid hormone replacement therapy (Biondi and Cooper, 2019).

Majority of patients are diagnosedwith establishedhypothyroidism,whereas a significant proportion of the pop-

ulation is affected by subclinical hypothyroidism (Garg and Vanderpump, 2013). The pathobiology and molec-

ular processes leading to hypothyroidism are still largely unknown. The identification of genes and molecules

involved in the development of hypothyroidism could help identify at-risk individuals anddevelop therapy, which

could be initiated before irreversible damage to the thyroid gland. Recent large-scale genome-wide association

study (GWAS) for AITD including 30,234 cases of hypothyroidism and hyperthyroidism from the UK Biobank and

Iceland reported 93 risk loci (Saevarsdottir et al., 2020). The latter study reported a raremutation inFLT3 affecting

the splicing and leading to a compensatory process with increased ligand (FLT3LG) activity. Herein, we conduct-

edameta-analysis for hypothyroidismby using abroaddefinitionbasedon the clinical and treatment status (clin-

ical diagnosis of hypothyroidism or treatment with levothyroxine) and including 51,194 cases from UK Biobank

and FinnGen. We identified 139 risk loci including 76 novel associations. Among the novel 76 risk loci, 44 were

replicated in the Estonian Biobank. Mapping and Mendelian randomization (MR) identified several blood ex-

pressed genes and plasma proteins causally associated with the risk of hypothyroidism and illustrate the com-

plex and polygenic nature of this common disorder.

RESULTS

Meta-analysis

In UKB, we conducted a GWAS for hypothyroidism (individuals with hypothyroidism or treatment with lev-

othyroxine) (STAR Methods) including 25,130 cases (Table S1) and 383,471 controls (Table S2) of white
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British ancestry, which was meta-analyzed (fixed effect meta-analysis) with 26,064 cases and 59,912 controls

from FinnGen (data freeze 5). In total, the meta-analysis included 494,577 individuals (51,194 cases and

443,383 controls) and 10,836,150 single-nucleotide polymorphisms (SNPs) were analyzed (MAF R0.001

and imputation info score >0.3). Figure S1 shows the QQ plot for the meta-analysis. The inflation score

(lambda GC) was 1.27 and the intercept of the linkage disequilibrium (LD) score was 1.09, indicating that

a majority of inflation was related to polygenicity. The heritability on the liability scale was estimated at

10.8%. In total, 22,454 variants were significantly (PGWAS < 5.0E-08) associated with hypothyroidism. Figure 1

shows the Manhattan plot of the meta-analysis in which we identified 139 risk loci (PGWAS < 5.0E-08),

including 76 new associations (Data S1). We implemented the Probabilistic Identification of Causal SNPs

(PICS) to obtain a 95% credible set of gene variants at each risk loci (Data S1). In 45 risk loci, the index

SNP was prioritized with a high confidence as the unique causal variant (Data S1). We found 63 genomic

regions previously identified in AITD (Data S1). Among the previously identified loci, the strongest signal

is rs2476601 (PGWAS = 3.17E-198), a missense variant in PTPN22 and associated with several autoimmune

disorders (Stanford and Bottini, 2014). We also identified the 13q12-FLT3 (rs76428106) association with

AITD recently described in 30,324 cases from UK biobank and Iceland. Among the new associations, in

the MHC, rs9271365 is an intergenic variant annotated to HLA-DRB1 and previously associated with auto-

immune disorders (rheumatoid arthritis, inflammatory bowel disease) (Liu et al., 2015; Okada et al., 2014) as

reported in PhenoScanner. Excluding the MHC, we identified novel associations for hypothyroidism of var-

iants previously associated with different autoimmune disorders. For instance, 10p15-IL2RA (rs7096384) (Ji

et al., 2017), 5q31-TCF7 (rs244686) (Okada et al., 2014), 11q13-CCDC88B (rs479777) (Fischer et al., 2012),

21q22-UBASH3A (rs12482947) (Okada et al., 2014), and 8q24-TNFRSF11B (rs12679857) (Bradfield et al.,

2011) are known autoimmune disease risk loci, which are new associations with hypothyroidism. We also

report novel associations for hypothyroidism including 1q41-TGFB2 (rs1797071), 1q23-NTRK1

(rs2148907), 1p13-WDR47 (rs17565949), 2q11-TMEM131 (rs5865), 3p13-FOXP1 (rs11712352), 6p21-FGD2

(rs1724087), 8q24-AGO2 (rs11783023), 12p13-CD69 (rs7488011), and 18q23-NFATC1 (rs8093850), which

have not been previously associated with other autoimmune disorders. In a replication phase including

17,002 cases and 178,141 controls from the Estonian Biobank, among the 76 new risk loci, we replicated

44 loci at a nominal p value (p < 0.05), whereas 18 were replicated after Bonferroni correction

(p < 6.58E-04, 0.05/76) (Data S2).

Annotation of coding and splice variants

We mapped variants by using Functional Mapping and Annotation of Genome-Wide Association

Studies (FUMA), which identifies lead and individual significant SNPs (PGWAS < 5E-8 and r2 < 0.6) at

risk loci (STAR Methods). By using FUMA, we identified 52 missense gene variants associated with hy-

pothyroidism (Data S3). Missense variants were located in 41 different risk loci (Data S3). Among the

missense variants, 27 had a Combined Annotation Dependent Depletion (CADD) score higher than

10, which represents the top 10% most deleterious variants in the human genome. The highest

CADD score is rs601338 (CADD score 52), which is the lead SNP and a stop-gain mutation in FUT2,

which encodes for a fucosyltransferase expressed in the digestive tract. Rs601338 has been previously

associated with infectious and autoimmune disorders such as inflammatory bowel disease and type 1

diabetes (Galeev et al., 2021).

Figure 1. Manhattan plot

Genetic association from the meta-analysis for hypothyroidism.
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Genes previously reported and in which potentially deleterious variants were prioritized in the PICS cred-

ible set include TYK2 (rs34536443, p.Pro1104Ala), ADCY7 (rs78534766, p.Asp439Glu), and PTPN22

(rs2476601, p.Trp620Arg). Among the novel associations in LD with the lead SNP (r2>0.7), SESN1

(rs2273668, p.Leu103Ile) and PSMB7 (rs4574, p.Val39Ala) are missense gene variants with a CADD score

higher than 20. At 5p13, alternative splicing variant rs6897932 in IL7R (r2 = 0.8 with lead variant) has

been previously associated with multiple sclerosis, primary biliary cirrhosis, and atopic disorders (Ferreira

et al., 2017; International Multiple Sclerosis Genetics Consortium et al., 2011; Ji et al., 2017). The risk allele

C-rs6897932 modifies the splicing process in excluding the exon 6 and results in a secreted form of IL7R

(sIL7R) (Lundtoft et al., 2020).

Cell and tissue enrichment

We have implemented GARFIELD to document the enrichment of hypothyroidism-associated gene vari-

ants in tissues and cells (Iotchkova et al., 2019). GARFIELD provides a LD-corrected tissue-cell enrichment

by using data from the ENCODE and Roadmap Epigenetics Project. Figure 2 shows a radar plot with a

strong functional enrichment in the blood. The most significant enrichments were observed in chromatin

accessibility of CD4, CD8, and CD19 primary lymphocytes. Data from GARFIELD analysis are summarized

in Data S4. To buttress these findings, we implemented the stratified LD score framework including 489 tis-

sue and cell annotations (STAR Methods) (Finucane et al., 2015). This analysis was consistent with

GARFIELD and identified as most significant signal H3K27ac and H3K4me1 histone marks in primary

T cells (Data S5). H3K27ac and H3K4me1 are histone marks of active chromatin and enhancer regions.

Gene-based test and pathway enrichment

GWAS data were analyzed with MAGMA, which provides gene-based test associations (de Leeuw et al.,

2015). In total, this analysis identified 430 genes that were associated with hypothyroidism (p < 2.60E-06,

Bonferroni threshold for the number of genes, 0.05/19,215) (Data S6). We identified several known

(CTLA4, PTPN22, TLR3, CIQTNF6, TG) and new associations including genes harboring deleterious

Figure 2. Functional enrichment according to GARFIELD

The radar plot shows the functional enrichment of variants associated with hypothyroidism. Radial axis shows the odds

ratio for each cell type annotation. Enrichments were calculated at GWAS threshold of 1.0E-05 (blue) and 1.0E-08 (black).

The dots at the edge of the plot are colored according to the tissue legend and represent significant enrichment (one dot

corresponds to p < 1.0E-05; two dots correspond to p < 1.0E-06).
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missense variants (MYH15, CEP128, SESN1, AP4B1, PSMB7, and DCLRE1B). A pathway analysis of genes

mapped by MAGMA using BioCarta showed the highest enrichment in functions pertaining to T cells

and antigen presentation such as costimulatory signal during T cell activation, antigen processing, inter-

leukin 2 (IL-2) signaling, and IL-7 signal transduction (Data S7).

Expression quantitative trait loci mapping

Figure 3 shows the post-GWAS analysis plan to assess gene mapping and to infer causality. Considering

the highest enrichment of the GWAS in blood cells in both GARFIELD and the stratified LD score analyses,

we mapped variants to blood expression quantitative trait loci (eQTL) in eQTLGen, a resource including

31,684 subjects (Võsa et al., 2021). Lead and individual significant SNPs (PGWAS < 5E-08 and r2 < 0.6) asso-

ciated with hypothyroidism were mapped to eQTLGen. In total, 326,334 significant SNP-eQTL gene pairs

(false discovery rate [FDR] <0.05) tagging 787 genes were identified (Data S8). Consistent with previous an-

alyses, blood eQTL mapped genes were enriched in pathway for antigen processing and the costimulatory

signal during T cell activation (Data S9). We next analyzed the shared genetic signal between the GWAS

and blood eQTL signal by using Bayesian colocalization analysis. Colocalization analysis identified 27

genes with strong evidence of shared signal (PP > 0.8) (UBE2B, CAMK4, EDARADD, ACAP1, BEND3,

PKN3, FYN, PSMD14, NTN5, FOXK1, TANK, AHI1, CD247, TMEM258, ZKSCAN8, ZFP36L2, JUND,

DDX59, FADS2, CA8, INPP5B, ACO2, CD226, ZSCAN16, PHF5A, TOB2, CTLA4) (Table S3). Figure 4 shows

a LocusCompare plot at 2q33 where rs3087243 is the prioritized SNP (PP = 0.81) between the GWAS and

the blood eQTL for the expression of CTLA4, a gene encoding an immune checkpoint molecule (Darvin

et al., 2018).

Protein QTL mapping

We next addressed whether the GWAS for hypothyroidism was associated with blood protein QTL (pQTL)

by using data from the INTERVAL study, which includes genetic association data for 2,965 different proteins

(Sun et al., 2018). We identified 1,240 significant SNP-pQTL protein pairs (FDR < 0.05), which tagged 642

blood proteins (Data S10). Among the significant blood pQTL proteins, 42 were also mapped as blood

eQTL (PCSK7, C4A, NCR3, TNXB, MICB, AGER, ICOS, TNFSF12, HAVCR2, STAT3, MAPK14, HSD17B14,

COMMD1, CCDC134, PAM, COL11A2, TAPBP, ACACB, IL15RA, ICAM5, IL7R, B3GNT2, SAT2, STAT1,

KREMEN1, RPSA, LY6G6C, DDX39B, GCA, NHP2L1, PTPN11, STAT6, EIF5A, CD226, PPP1R3B, LST1,

IL27, VAV3, RABEPK, M6PR, FLT3, GDF11).

Figure 3. Study plan

Illustration represents the analysis pipeline for gene mapping and causal inference.
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3D genome mapping

Our analyses showed a strong enrichment of gene variants in H3K27ac chromatin mark of primary T cells

(Data S5). As gene regulation involves chromatin folding between active distant regulatory elements

and gene promoters, we mapped GWAS data to H3K27ac-HiChIP carried out in primary T cells

(GSE101498). H3K27ac-HiChIP, which provides a high-resolution map of enhancer promoter interactions

(Mumbach et al., 2017), was analyzed by using FitHiChIP at a stringent FDR value (FDR < 1E-06) for the iden-

tification of significant loops (STAR Methods). In total, 118,597 enhancer-promoter interactions were iden-

tified in primary T cells. This analysis showed that 718 gene promoters were connected to 174 individual

significant SNPs located in distant-acting enhancers (Data S11). Among the genes mapped by enhancer-

promoter interactions, 133 genes were also identified by the blood eQTLmapping (Table S4). For instance,

genes such as VAV3, PTPN22, STAT4, STAT3, CD28, ICOS, FYN, IL2RA, CD69, BACH2, CEP128, TYK2, and

IRF3 were identified by blood eQTL and 3D genome mapping.

Mendelian randomization

To identify causal blood genes and proteins associated with hypothyroidism, we performed two-sample

MR. MR was performed by using at least 3 cis-instrumental variables (P < 1E-03) selected within a window

of G250 kb around the transcription start site of the candidate gene (STAR Methods). Genes identified by

eQTL and 3D genome mapping were analyzed by using inverse variance weighted (IVW) MR. In eQTLGen,

enough instrumental variables (R3) were available to perform 924 MR analyses. In total, 36 blood ex-

pressed genes were significant in IVW MR (PBonferroni < 5.41E-05, 0.05/924) and without heterogeneity on

the Cochran’s Q test (Pheterogeneity R 0.05) (Data S12). The most significant and with the largest effect

size blood gene is BACH2 (odds ratio [OR]: 0.57, 95% confidence interval [CI]: 0.53-0.61, PIVW = 3.55E-

55), a gene also mapped by enhancer-promoter looping and encoding for a transcription factor involved

in lymphocyte function. Among the causally associated genes identified in MR, 8 had shared genetic signal

between the GWAS and blood eQTL in colocalization analysis (INPP5B, AHI1, TMEM258, FOXK1, FYN,

TANK, CD226, ZFP36L2). As a sensitivity analysis, we performed a weighted median MR, which is less sen-

sitive to horizontal pleiotropy (Bowden et al., 2016). This analysis showed that the causal candidate genes

identified in IVW MR were also significant in weighted median MR (Data S12). Directional effects were

consistent between IVW and weighted median MR analyses.

We also implemented MR analysis for the blood proteins mapped in INTERVAL (significant pQTL proteins)

by using the same algorithm. In the INTERVAL cohort, there were enough instruments (R3) to perform 218

MR analyses. We identified 6 blood proteins significantly associated (PBonferroni < 2.29E-04, 0.05/218) with

hypothyroidism and without heterogeneity on the Cochran’s Q test (Pheterogeneity R 0.05) (IL7R, MXRA8,

PCSK7, DCBLD2, PAM, CREB3L4) (Data S13). Sensitivity analysis with the weighted median MR was signif-

icant for 5 of the proteins (IL7R, MXRA8, PCSK7, DCBLD2, CREB3L4) with consistent directional effects

Figure 4. LocusCompare plot

Left hand panel represents GWAS (x-axis) and blood eQTL for CTLA4 (y-axis) -log p values for the gene variants at the

CTLA4 locus. Right hand panels represent association data with the –log p values on the y-axis for the eQTL (CTLA4)

(upper panel) and GWAS (lower panel) according to genomic coordinates (x-axis) spanning 500 kb centered on CTLA4.
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(Data S13). The most significant blood protein is sIL7R (OR: 1.17, 95% CI: 1.13-1.21, PIVW = 1.52E-20)

(Figure 5).

Cross-trait analyses

To identify related traits and disorders with hypothyroidism, we performed a genetic correlation analysis by

using the LD score and traits included in LD Hub (Zheng et al., 2017). After multiple test correction, 16 traits-

disorders remained significantly correlated with hypothyroidism (Table S5). Hypothyroidism was positively

correlated with rheumatoid arthritis (rg = 0.41), celiac disease (rg = 0.37), systemic lupus erythematosus

(rg = 0.28), depressive symptoms (rg = 0.24), coronary artery disease (rg = 0.22), primary biliary cirrhosis

(rg = 0.22), and body mass index (rg = 0.19). It was negatively correlated with years of schooling (rg =

�0.19), high-density lipoprotein cholesterol (rg =�0.18), age at first birth (rg =�018), subjective well-being

(rg = �0.16), and age at menarche (rg = �0.12).

As another strategy to examine traits genetically related to hypothyroidism, we analyzed GWAS data by us-

ing the interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb), which provides cross-pheno-

type enrichment analyses froman exhaustive list of ancestry LD-specific precomputed association data from

the NHGRI-EBI GWAS catalog (Wang et al., 2021). After multiple test correction (Bonferroni), this analysis

identified 257 traits-disorders shared with hypothyroidism (Data S14). Traits and disorders with highest en-

richments included thyroid preparation use, autoimmune disease, asthma, rheumatoid arthritis, vitiligo,

type 1 diabetes, multiple sclerosis, and systemic lupus erythematosus. These data are consistent with the

genetic correlations and showed shared genetic signal with several immune-related disorders.

Drug target analysis

Genes and proteins that were associated in MR with hypothyroidism or with a shared genetic signal with the

bloodexpression (PP>0.8)were consideredas candidate causal genes. In total, 61 uniquebloodgenes andpro-

teinsweredeemedcausally associatedwithhypothyroidismandwereevaluated for their druggability in theDrug

Gene Interaction Database (DGIdb), which provides an exhaustive list of drug-gene interactions collated from

different resources (Cotto et al., 2018). InDGIdb, 82drug-genepairs targeting 11genes/proteinswere identified

(Data S15). Results showed that several compounds were tyrosine kinase inhibitors for different indications in

oncology. For instance, sunitinib inhibits PTPN12, which is negatively associated with the risk of hypothyroidism

inMR (OR: 0.93, 95%CI: 0.91-0.95, PIVW=7.24E-10). Thesedata are consistentwith report indicatingan increased

risk of hypothyroidism in patients treated with sunitinib (Clemons et al., 2012). CTLA4 is targeted by an FDA-

approvedmonoclonal antibody, zalifrelimab, which is used in cancer therapy. Colocalization analysis prioritized

rs3087243 at theCTLA4 locus (PP=0.81). In eQTLGen,A-rs3087243 is associatedwith an increasedexpressionof

CTLA4 (PeQTL = 2.67E-69), a gene encoding for a checkpoint molecule, and reduces the risk of hypothyroidism

(OR: 0.85, PGWAS = 5.97E-89). These data are in line with the association between the treatment with checkpoint

inhibitors and the development of thyroid disorder (Ferrari et al., 2018). On the other hand, novel monoclonal

antibody targeting IL7R (Ellis et al., 2019),which is under development for indication indifferent autoimmunedis-

eases, could reduce the risk of hypothyroidism. To this effect, in MR, we found a strong positive association

Figure 5. Mendelian randomization

Plot showing the IVW MR for blood protein sIL7R (exposure) and the GWAS for hypothyroidism (outcome).
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between blood sIL7R and the risk of hypothyroidism (OR: 1.17, 95% CI: 1.13-1.21, PIVW = 1.52E-20). In order to

further evaluate sIL7Ras apotential therapeutic target, we leveraged35differentdiseases-traitsGWASsummary

statistics data sets encompassing 7 categories of disorders (atopic, autoimmune, cancer, cardiovascular, infec-

tious, metabolic, and neurologic) and we performed a multitrait MR analysis using cis-instruments for blood

sIL7R. After multiple test correction (Bonferroni, p < 1.43E-3, 0.05/35), we found that in addition to hypothyroid-

ism, sIL7Rwas positively associatedwith the risk of asthmaandabdominal aortic aneurysm (Figure 6). Thesedata

suggest that inhibition of sIL7R would consistently lead to a reduction of the risk for these disorders.

Tissue specificity score

We evaluated causally associated genes and proteins identified in MR or colocalization analyses for their

tissue specificity score. Drugs that target tissue-specific genes are less likely associated with adverse

side effects and are more likely to be licensed (Duffy et al., 2020). Tissue specificity score was evaluated

by using the Jensen-Shannon specificity metric (Cabili et al., 2011). Tissue specificity score for each gene

has been assessed for 61 tissues based on the expression from GTEx, The Human Protein Atlas and

FANTOM5 (Uhlén et al., 2015). Hierarchical clustering of the tissue specificity score showed that several

causally associated genes to hypothyroidism were specific to lymphoid organs and T cells (Figure S2). Pair-

wise correlation for the specificity score in 61 tissues based on the expression of causally associated genes

showed clustering of immune cells and lymphoid organs (Figure S3). The expression of CAMK4 and CD247

was highly specific to the thymus. Others such as TMEM156, SKAP1, ACAP1, CTLA4, and IL7R were specific

to B cell, T cell, and different lymphoid organs (lymph node, tonsil, appendix, spleen) (Figure S2).

DISCUSSION

In this work, a GWAS performed on 51,194 cases with hypothyroidism identified 139 risk loci including 28

potentially deleterious missense variants. TheGWASwas enriched in functional annotation in lymphocytes.

Genes mapped by molecular QTL and promoter-enhancer interactions were enriched in causal genes in

MR. A comprehensive analysis for the druggable genes provided genetic evidence for drug-induced hypo-

thyroidism and identified potentially druggable therapeutic targets.

This large-scale analysis identified 76 novel associations with hypothyroidism. Some of these novel associ-

ations are predicted deleterious missense variants of protein coding genes including for instance SESN1

Figure 6. Multitrait Mendelian randomization

Bar graph showing the -log p value on the y-axis for the MR analyses (inverse variance weighted MR) between blood

protein sIL7R (exposure) and different traits and disorders (outcomes) on the x-axis. Color in bar graph represents the

direction and effect size of MR as illustrated in the right-hand legend panel. *Disease significant after Bonferroni

correction. NA indicates that MR was not performed owing to the absence of at least three instruments shared between

the exposure and the outcome. The upper panel represents disease categories: atopic, autoimmune, CVD

(cardiovascular diseases), infectious, metabolic, and neuro (neurologic). SLE: systemic lupus erythematosus; IBD:

inflammatory bowel disease; T1D: type 1 diabetes; CAD: coronary artery disease; PVD: peripheral vascular disease; AAA:

abdominal aortic aneurysm, AF: atrial fibrillation; SBP: systolic blood pressure; DBP: diastolic blood pressure; T2D: type 2

diabetes; LDL: low-density lipoprotein; HDL: high-density lipoprotein; TG: triglyceride; ALS: amyotrophic lateral

sclerosis.
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(rs2273668, p.Leu103Ile) (r2 with lead variant = 0.95) and PSMB7 (rs4574, p.Val39Ala) (r2 with lead variant =

0.74). SESN1 encodes for a protein of the sestrins family, which are involved in the protection against reac-

tive oxygen species and genotoxic stress (Wang et al., 2019). PSMB7 encodes for a component of the pro-

teasome, which is involved in the processing of the MHC class I (Sijts and Kloetzel, 2011).

By using two different approaches, GARFIELD and the stratified LD score, this study highlighted a strong

enrichment of the GWAS for hypothyroidism in functional annotations of lymphocytes. These data are sup-

ported by the identification ofmissense variants located in genes encoding critical regulators of lymphocyte

function (e.g. rs2476601-PTPN22, rs34536443-TYK2) (Oyamada et al., 2009). Also, MR identified several

blood expressed genes involved in lymphocyte function including BACH2 (OR: 0.57, 95% CI:0.53-0.61,

PIVW = 3.55E-55), a transcription factor with a role in B cell survival and proliferation (Miura et al., 2018).

Also, blood expressed genes such as TANK (OR: 0.89, 95% CI: 0.86-0.92, PIVW = 1.17E-11) and CD226

(OR: 0.91, 95% CI: 0.88-0.94, PIVW = 1.98E-10) were identified by both MR and colocalization analyses.

TANK encodes for a negative regulator of the nuclear factor of kappa B pathway, whereasCD226 is involved

in the adhesion of cytotoxic T cell (Tahara-Hanaoka et al., 2004; Wang et al., 2015). In the blood plasma,

several pQTLs were associated with hypothyroidism. MR identified 6 blood proteins (IL7R, MXRA8,

PCSK7, DCBLD2, PAM, CREB3L4) significantly associated with the risk of hypothyroidism. In the blood,

MRanalysis showed that the level of sIL7Rwas positively and causally associatedwith the risk of hypothyroid-

ism (OR: 1.17, 95% CI: 1.13-1.21, PIVW = 1.52E-20). In line with the latter finding, C-rs6897932 (r2 with lead

variant = 0.8), an alternative splicing variant increasing sIL7R (Lundtoft et al., 2020), was associated with

the risk hypothyroidism (OR: 1.05, 95%CI: 1.03-1.07, PGWAS = 1.62E-09). Taken together, these findingsmili-

tate for a role of sIL7R in hypothyroidism. A functional study has previously underlined that sIL7R potentiates

the bioactivity of IL7, a cytokine known to alter self-tolerance mediated by T cells (Lundström et al., 2013).

In the present work, genetic correlation using the LD score and cross-phenotype enrichment analyses

consistently revealed shared genetic architecture between hypothyroidism and several immune-related

disorders such as rheumatoid disorder, celiac disease, systemic lupus erythematosus, and asthma. Also,

hypothyroidism was genetically correlated with other conditions such as coronary artery disease, depres-

sive symptoms, and the body mass index. These data highlight the pleiotropy of genes involved in the

development of hypothyroidism and are in line with some clinical observations. For instance, several re-

ports underlined an association between subclinical hypothyroidism, which may affect up to 10% of the

population, and coronary artery disease (Razvi et al., 2010; Rodondi et al., 2010).

Our assessment of genes causally associated with hypothyroidism and their druggability by using data from

DGIdb identified 82 drug-gene pairs targeting 11 genes/proteins. We identified that checkpoint and protein

kinase inhibitors targeting CTLA4 and PTPN12, respectively, increased the risk of hypothyroidism. These

data provide genetic evidence and support clinical observations of drug-induced hypothyroidism for check-

point and protein kinase inhibitors. Among the potential therapeutics, anti-IL7R antibodies, which are under

development (Ellis et al., 2019), could be evaluated as a therapy. A MR scan for 35 different disorders (atopic,

autoimmune, cancer, cardiovascular, infectious, metabolic, and neurologic) showed positive associations for

blood plasma sIL7R with the risk of hypothyroidism, asthma, and abdominal aortic aneurysm. The directional

effects were the same for the three disorders (hypothyroidism, asthma, and abdominal aortic aneurysm). These

data suggest that anti-IL7R-based therapy could prevent hypothyroidism, asthma, and abdominal aortic aneu-

rysm. However, follow-up studies are needed to explore the role of sIL7R in different disorders.

In conclusion, GWAS and comprehensive mapping provided evidence that hypothyroidism is highly poly-

genic and illustrate the complex and pleiotropic effect of genes involved in immune regulation. Mapping

andMR identified genes and proteins in the blood affecting the risk of hypothyroidism. By identifying novel

mutations, expressed genes, and blood proteins, this work provides a framework for experimental follow-

up studies and drug target validation.

Limitations of study

This work has some limitations. We identified several novel risk loci including a replication stage. However,

these data were obtained from a large series of individuals from European ancestry. Future studies should

aim to include different populations in a transancestry association analysis. Also, though several new risk

loci and causal candidate genes were identified, follow-up studies are needed to underline molecular pro-

cesses involved in hypothyroidism.
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Data and code availability

d Summary statistics for the GWAS meta-analysis have been deposited at the NHGRI-EBI GWAS catalog.

Accession number is listed in the Key resources table.
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FitHiChIP Bhattacharyya et al. (2019) https://ay-lab.github.io/FitHiChIP/

LD score Finucane et al. (2015) https://github.com/bulik/ldsc

LD Hub NA LD Hub (broadinstitute.org)

HyPrColoc Foley et al., (2021) https://github.com/jrs95/hyprcoloc

LocusCompare Liu et al. (2019) http://locuscompare.com/

Mendelian Randomization R package Yavorska and Burgess, 2017 https://cran.r-project.org/web/packages/

MendelianRandomization/index.html

DGIdb Cotto et al. (2018) https://www.dgidb.org/

GARFIELD Iotchkova et al. (2019) https://www.ebi.ac.uk/birney-srv/GARFIELD/

eQTLGen Võsa et al. (2021) https://www.eqtlgen.org/index.html

INTERVAL Sun et al. (2018) https://app.box.com/s/u3flbp13zjydegrxjb2uepagp1vb6bj2

Enrichr Kuleshov et al. (2016) https://amp.pharm.mssm.edu/Enrichr/

Bioplex 3.0 NA https://bioplex.hms.harvard.edu/explorer/

LiftOver NA https://genome-store.ucsc.edu/

ggplot2 NA https://ggplot2.tidyverse.org/
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d Any additional information required to reanalyze the data reported in this paper are available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study participants

UK Biobank, a large open access resource including subjects aged 40–69 and prospectively enrolled, was

leveraged to perform a GWAS on hypothyroidism. Cases were identified from hospital diagnosis code

(ICD-9 or ICD-10) E03 for hypothyroidism or by using treatment/medication code to identify individuals tak-

ing levothyroxine. The analysis was executed under the UK Biobank application number 25205 and

approval from the ethics committee of the Centre de Recherche de l’Institut Universitaire de Cardiologie

et de Peumologie de Québec. This dataset was used to conduct a meta-analysis with data from FinnGen, a

large open access study prospectively enrolling subjects to study the genetics of more than 2,800 disease

end-points. Replication stage was performed in EstBB, a population-based biobank with over 200,000 par-

ticipants. Replication stage was approved by the Estonian Committee on Bioethics and Human Research

(approval number 1.1-12/624). Individuals with hypothyroidism were identified using the ICD-10 codes

from E03 category and ATC prescription H03AA01 codes (n = 17,002). Biobank participants who did not

have these diagnoses or prescriptions were considered as controls (n = 178,141). Information on ICD codes

is obtained via regular linking with the national Health Insurance Fund and other relevant databases (Leit-

salu et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

GWAS for hypothyroidism

In UK Biobank, genotyping was performed by using 25,130 cases and 383,471 controls of white British

ancestry and phasing-imputation were executed by using the Haplotype Reference Consortium and

merged UK10K and 1000 Genomes phase 3 reference panels.

Gender of the participants included 47.7% and 18.1% of male individuals in controls and cases respectively.

Excluded samples were those with call rate <95%, outlier heterozygosity rate, sex mismatch, non-white

British ancestry and excess third-degree relatives (>10). Variants with imputation score (INFO) % 0.3 or

with minor allele frequency <0.001 were excluded leaving 16,445,106 variants for the analysis (assembly

GRCh37/hg37). Analysis including 25,130 cases and 383,471 controls of white British ancestry was per-

formed by using SAIGE (Scalable and Accurate Implementation of GEneralized mixed model, version

0.36.3.1), a two-stage method implementing generalized mixed model, which is robust to unbalanced

case-control ratio (Zhou et al., 2018). Analysis was performed by using age, sex, and the first 20 ancestry-

based principal components and without the leave-one-chromosome-out (LOCO) scheme (LOCO =

FALSE). In FinnGen, individuals have been genotyped by using Affymetrix chip arrays (Illumina Inc., San

Diego, and Thermo Fisher Scientific, Santa Clara, CA, USA). Data were imputed with a population specific

panel (SISu reference panel) generating datasets of 16,962,023 gene variants using the reference assembly

GRCh38/hg38. Analyses were performed by using SAIGE version 0.36.3.2. Age, sex, 10 principal compo-

nents and genotyping batch were added as covariates. SAIGE was run without the leave-one-chromo-

some-out (LOCO) scheme (LOCO = FALSE) and results were filtered to include variants with an imputation

score (INFO) > 0.6. FinnGen dataset freeze 5 (as of May 2021) under the heading ‘‘Hypothyroidism, levo-

thyroxin purchases’’, which included 26,064 cases and 59,912 controls, was downloaded. Data were con-

verted to GRCh37/hg19 by using the LiftOver executable tool from UCSC. We conducted a fixed-effect

meta-analyses by using data from UK Biobank and FinnGen including 51,194 cases and 443,383 controls.

The analysis was performed with METAL (Willer et al., 2010) and included 10,836,151 SNPs with INFO score

R0.3.

All EstBB participants have been genotyped at the Core Genotyping Lab of the Institute of Genomics, Uni-

versity of Tartu, using Illumina Global Screening Array v3.0. Samples were genotyped and PLINK format

files were created using Illumina GenomeStudio v2.0.4. Individuals were excluded from the analysis if their

call-rate was <95% or if sex defined based on heterozygosity of X chromosome did not match sex in pheno-

type data. Before imputation, variants were filtered by call-rate <95%, HWE p value < 1e-4 (autosomal var-

iants only), and minor allele frequency <1%. Prephasing was done using Eagle v2.3 software(Loh et al.,

2016) (number of conditioning haplotypes Eagle2 uses when phasing each sample was set to:–Kpbwt =

20000) and imputation was done using Beagle v.28Sep18.793 with effective population size ne = 20,000
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(Browning and Browning, 2007). Population specific imputation reference of 2297 WGS samples was used

(Mitt et al., 2017). Association analysis was carried out using SAIGE (v0.43.1) software implementing mixed

logistic regression model with LOCO = TRUE, using sex, age, age_sq and ten PCs as covariates in step I.

LD score and heritability

The LD score was used to assess the intercept and the heritability (Finucane et al., 2015). The meta-analysis

summary statistics were munged (–munge_sumstats.py) for processing and calculate the intercept of LD

score. The heritability on the liability scale was calculated by using a population prevalence of 0.05

(–pop-prev) and sample prevalence (–samp-prev) of 0.103.

Annotation of the GWAS

Association data were processed with Functional Mapping and Annotation of GWAS (FUMA) (Watanabe

et al., 2017). Genomic risk loci were determined by using a pre-calculated LD structure of the 1000G

EUR reference population. Variants in genomic loci with LD r2 < 0.6, p-value<5E-08 were identified as in-

dependent significant SNPs (IndSigSNPs). The IndSigSNPs independent from each other (LD r2 < 0.1)

were identified as lead SNPs at risk loci. Genomic loci closely located (<250 kb based on the most right

and left SNPs of each locus) were merged into one genomic risk locus. Variants were annotated with

ANNOVAR as intergenic, intronic or exonic. The annotation of genes was based Ensembl (build 85) and

entrez ID yielding identification of 19,436 protein coding genes. Exonic variants were annotated by using

exonic lead and IndSigSNPs identified from FUMA and were processed with VarMap (Stephenson et al.,

2019). SNPs annotated as missense or splicing SNPs by VarMap were analyzed by computing the CADD

score derived from the output of FUMA.

Probabilistic Identification of Causal SNPs

PICS (Probalistic Identification of Causal SNPs) algorithm was implemented to fine-map risk loci.(Farh et al.,

2015) PICS estimates the Bayesian probability that a variant is causal after considering the haplotype struc-

ture and the level of associations at risk loci. PICS data were used to create a 95% credible set at risk loci.

Cell and tissue enrichment

GARFIELD uses tissue/cell-specific functional annotations (1005 features including genomic annotations,

chromatin states, histone modifications, DNaseI hypersensitive sites and transcription factor binding sites),

derived from ENCODE and Roadmap epigenomics data to calculate a LD corrected enrichments from

GWAS data (Iotchkova et al., 2019). Default settings from GARFIELD, which implements a generalized

linear model, were used to calculate the functional enrichment of the GWAS. The output peaks file was

used for downstream processing. As another strategy to assess the enrichment of the GWAS in functional

annotations, we implemented the stratified LD score framework including 489 cell-tissues (Finucane et al.,

2015). The summary statistic data of the meta-analysis was transformed by using –munge_sumstats.py and

coefficients were obtained from multi-tissue chromatin (cts_name = Multi_tissue_chromatin).

Gene-based and pathway analyses

Multi-marker Analysis of GenoMic Annotation (MAGMA) implements a multiple regression model and

incorporate LD between markers to perform gene-based test (de Leeuw et al., 2015). MAGMA was run

from the FUMA platform using the default settings including a window of 0kb (i.e. SNPs only assigned

to the gene). In MAGMA, 19,215 genes were assessed and data were deemed significant at a Bonferroni

threshold (p < 2.60E-06, 0.05/19,215). Genes significant in MAGMA were processed to document pathway

enrichment by using the BioCarta dataset and the analysis was performed through Enrichr (Kuleshov et al.,

2016).

Molecular QTL mapping

Genesmapped to eQTLGen (Võsa et al., 2021) were identified by using lead and IndSigSNPs obtained from

FUMA. SNPs were assigned to cis-eQTLs by using a window ofG500 kb around the transcription start site.

SNP-gene pairs were filtered at false discovery rate of 5% (FDR<0.05). For the INTERVAL cohort (Sun et al.,

2018), a large scale dataset of pQTL including data for 2,965 different blood proteins assessed with the ap-

tamer-based multiplex protein assay from SOMAscan, lead and IndSigSNPs output from FUMA output

were used to map pQTL using the same window (G500 kb). SNP-protein pairs with FDR<0.05 were kept

for downstream analyses.
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Colocalization

Bayesian colocalization was performed to assess shared genetic signal between the GWAS and molecular

QTLs by implementing HyprColoc (Foley et al., 2021). Genomic regions were defined as G250 kb from the

transcription start site of molecular trait. Colocalization of the genetic signal was considered significant if

the posterior probability was superior to 0.8 (PP > 0.8). LocusCompare has been used to illustrate the

shared signal (Liu et al., 2019).

3D genome mapping

Public data of enhancer-promoter interactions using H3K27ac-HiChIP and carried out in primary T cells

(GSE101498) were downloaded for analyses. FASTQ files were processed with HiC-Pro using the default

settings (Servant et al., 2015). Loop call was performed by using FitHiChIP using a FDR < 1E-06 and a res-

olution of 5 kb (Bhattacharyya et al., 2019). We identified the promoters of protein coding genes as a region

ofG 2 kb from the transcription start site by using data from GENCODE version 35 in build 37. The assign-

ment of lead and IndSigSNPs to 3D mapped genes was performed by using bedtools with the intersect

function.

Mendelian randomization

We performed two-sample MR on genes mapped by eQTL, pQTL and enhancer-promoter conformation.

Independent (r2 < 0.1) instrumental variables (SNPs) identified with PLINK1.9 based on genotypes from Eu-

ropean populations from the 1000 Genome project, located in cis (G250 kb from the transcription start site)

and with a p value < 0.001 (corresponds to� F statistics>10) were selected. For eQTLGen, which reports the

Z score, data were transformed to effect size (beta) and SE by using the following equation as previously

described (Zhu et al., 2016):

bb = Z � cSE ; where cSE = 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

�
1 � p

��
n+ Z2

�q
where Z-score (Z), allele frequency (p) and sample size (n).

Horizontal pleiotropy was assessed by using the Cochran’s Q test and was deemed significant if

Pheterogeneity<0.05. Inverse variance weighted MR was performed. Sensitivity analyses were executed by us-

ing the weighted median MR, which allows the use of up to 50% of invalid instruments. Analyses were per-

formed by using the Mendelian Randomization package (Yavorska and Burgess, 2017).

Multi-trait mendelian randomization analysis

Multi-trait Inverse variance weighted MR were performed by using data of pQTL from INTERVAL (exposi-

tion) and 35 traits-disorders (outcome) pertaining to 7 categories (Data S16). Association from the MR an-

alyses were deemed significant after applying the Bonferroni correction (p < 1.43E-03, 0.05/35). MR ana-

lyses were performed as described in the methods section: Mendelian randomization. Results were

illustrated as bar graph generated with ggplot2 in R.

Cross-trait analyses

The LD score was leveraged to assess genetic correlations as implemented in LD Hub (Zheng et al., 2017).

Data were generated using the traits-diseases included in LD Hub and filtered at a Bonferroni threshold.

GWAS data were also evaluated with the Cross-Phenotype Analysis of GWAS database (iCPAGdb)

(Wang et al., 2021). iCPAGdb uses ancestry LD-specific association data across 3,793 traits-disorders

from the NHGRI-EBI GWAS catalog to compute cross-phenotype enrichment analyses. iCPAGdb reports

pairwise trait combination along with shared signal reported as Fisher exact test with adjustment

(Benjamini-Hochsberg and Bonferroni) and the Chao-Sorenson similarity index.

Drug target analyses

Causal genes identified from colocalization or MR were evaluated in The Drug Gene Interaction Database

(DGIdb) (Cotto et al., 2018). DGIdb is a large repository of drug-gene pairs retrieved from an exhaustive list

of resources. We reported drug-gene pairs by using approved and non-approved drugs collated in DGIdb.
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Tissue specificity score

Normalized tissue gene expression for 61 tissues collated from GTEx, The Human Protein Atlas and

FANTOM5 was downloaded from The Human Protein Atlas (Uhlén et al., 2015). Tissue specificity score

has been calculated by using the Jensen-Shannon specificity metric. Jensen-Shannon specificity score eval-

uate distance between the distribution of data (Cabili et al., 2011). Jensen-Shannon specificity score was

calculated by using the tspex package. Hierarchical clustering based on Euclidian distance and pairwise

Pearson correlation were performed by using Morpheus from the Broad Institute.
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