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Abstract 

Due to the complicated histopathological c har acteristics of clear-cell renal-cell carcinoma ( ccRCC ) , non-inv asi v e pr ognosis befor e 
operati v e tr eatment is crucial in selecting the appr opriate tr eatment. A total of 126 345 computerized tomography ( CT ) ima ges fr om 

four independent patient cohorts were included for analysis in this study. We propose a V Bottleneck multi-resolution and focus-organ 

network ( VB-MrFo-Net ) using a cascade framework for deep learning analysis. The VB-MrFo-Net achieved better performance than 

VB-Net in tumor segmentation, with a Dice score of 0.87. The nuclear-grade prediction model performed best in the logistic r egr ession 

classifier, with area under curve values from 0.782 to 0.746. Survi v al anal ysis r ev ealed that our prediction model could significantly 
distinguish patients with high survi v al risk, with a hazard ratio ( HR ) of 2.49 [95% confidence interval ( CI ) : 1.13–5.45, P = 0.023] in 

the General cohort. Excellent performance had also been verified in the Cancer Genome Atlas cohort, the Clinical Proteomic Tumor 
Analysis Consortium cohort, and the Kidney Tumor Segmentation Challenge cohort, with HRs of 2.77 ( 95%CI: 1.58–4.84, P = 0.0019 ) , 3.83 
( 95%CI: 1.22–11.96, P = 0.029 ) , and 2.80 ( 95%CI: 1.05–7.47, P = 0.025 ) , r especti v el y. In conclusion, we pr opose a nov el VB-MrFo-Net for the 
renal tumor segmentation and automatic diagnosis of ccRCC. The risk stratification model could accurately distinguish patients with 

high tumor grade and high survi v al risk based on non-inv asi v e CT ima ges befor e surgical tr eatments, which could pr ovide practical 
advice for deciding treatment options. 

Ke yw ords: deep learning, diagnosis, non-invasive, prognosis, prediction, clear-cell renal-cell carcinoma 
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Introduction 

It is estimated that there were 76 080 new cases and 13 780 as- 
sociated deaths from renal cancer in the USA in 2021.1 Clini- 
call y, clear-cell r enal-cell carcinoma ( ccRCC ) accounts for most 
of the malignant lesions in the renal system,2 which gener- 
all y pr ogr esses mor e a ggr essiv el y compar ed with other subtypes.
Contrast-enhanced abdominal computed tomography ( CT ) is rec- 
ommended for diagnosis of ccRCC,3 ho w ever, it is still challeng- 
ing to accur atel y identify ccRCC through visual inspection of CT 

ima ges, especiall y distinguishing them from fat poor angiomy- 
olipoma and oncocytoma.4 , 5 In addition, the clinical outcome 
of ccRCC v aries fr om differ ent tumor sta ges, and patients with 

tolerable neoplasm suffer from low cure rates even after radi- 
cal ne phrectom y,6 , 7 which indicates the importance of accurate 
tumor c har acterization and pr ognosis pr ediction for tr eatment 
planning of ccRCC. 

Deep learning ( DL ) , also known as deep neural network, is an 

artificial intelligence ( AI ) technique used to mimic the data pro- 
cessing and decision making of the human brain. Unlike other 
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unctions based on an optimization algorithm for network learn- 
ng.8 Curr entl y, DL has exhibited excellent pr acticability in med-
cal ima ge pr ocessing, especiall y for unsupervised learning fr om
nstructur ed ima ge data.9 Some pr eliminary studies hav e con-
rmed the effectiveness of DL in kidney segmentation and tu-
or classification based on image data from a single center.10 , 11 

or example, a m ulti-scale gr a ph was constructed with nodes
 epr esenting m ulti-scale topologies acr oss an or gan or tumor re-
ions for volumetric image segmentation.12 Howe v er, ther e ar e
 ery fe w studies focusing on the risk stratification and survival
rediction of ccRCC based on CNN fr om m ulti-source patient
ohorts. 

Here, in this study, we developed a CNN-based V-Net algorithm 

or lesion segmentation of ccRCC from noninvasive CT images.
nstead of constructing a complicated gr a ph to learn multi-scale
opologies,12 a m ulti-r esolution str ategy is performed by using
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Table 1. Clinical c har acteristics of patients fr om thr ee independent patient cohorts. 

General cohort 
( 472 ) 

TCGA cohort 
( 184 ) 

CPTAC cohort 
( 41 ) KiST cohort ( 141 ) P value Total ( 838 ) 

Age ( years ) 0 .099 
≥65 157 ( 33 .3% ) 63 ( 34 .2% ) 20 ( 48 .8% ) 58 ( 41 .1% ) 298 ( 35 .6% ) 
< 65 315 ( 66 .7% ) 121 ( 65 .8% ) 21 ( 51 .2% ) 83 ( 58 .9% ) 540 ( 64 .4% ) 

Sex 0 .034 
Male 351 ( 74 .4% ) 120 ( 65 .2% ) 26 ( 63 .4% ) 92 ( 65 .2% ) 589 ( 70 .3% ) 
Female 121 ( 25 .6% ) 64 ( 34 .8% ) 15 ( 36 .6% ) 49 ( 34 .8% ) 249 ( 29 .7% ) 

Grade 0 .071 
G1 72 ( 15 .3% ) 1 ( 0 .6% ) 3 ( 7 .3% ) 17 ( 12 .1% ) 93 ( 11 .1% ) 
G2 317 ( 67 .2% ) 74 ( 40 .2% ) 24 ( 58 .5% ) 79 ( 56 .0% ) 494 ( 59 .0% ) 
G3 73 ( 15 .4% ) 83 ( 45 .1% ) 12 ( 29 .3% ) 35 ( 24 .8% ) 203 ( 24 .2% ) 
G4 10 ( 2 .1% ) 26 ( 14 .1% ) 2 ( 4 .9% ) 10 ( 7 .1% ) 48 ( 5 .7% ) 

Stage 0 .102 
i 433 ( 91 .7% ) 95 ( 51 .6% ) 19 ( 46 .3% ) 96 ( 68 .1% ) 643 ( 76 .7% ) 
ii 29 ( 6 .2% ) 17 ( 9 .3% ) 5 ( 12 .2% ) 5 ( 3 .6% ) 56 ( 6 .7% ) 
iii 10 ( 2 .1% ) 46 ( 25 .0% ) 13 ( 31 .7% ) 25 ( 17 .7% ) 94 ( 11 .2% ) 
iv 0 26 ( 14 .1% ) 4 ( 9 .8% ) 15 ( 10 .6% ) 45 ( 5 .4% ) 

T stage 
T1 434 ( 91 .9% ) 98 ( 53 .3% ) 21 ( 51 .2% ) 100 ( 70 .9% ) 0 .090 653 ( 77 .9% ) 
T2 29 ( 6 .2% ) 20 ( 10 .9% ) 6 ( 14 .6% ) 6 ( 4 .3% ) 61 ( 7 .3% ) 
T3 9 ( 1 .9% ) 63 ( 34 .2% ) 13 ( 31 .7% ) 34 ( 24 .1% ) 119 ( 14 .2% ) 
T4 0 3 ( 1 .6% ) 1 ( 2 .5% ) 1 ( 0 .7% ) 5 ( 0 .6% ) 

N stage 
N1 3 ( 0 .6% ) 4 ( 2 .2% ) 2 ( 4 .9% ) 5 ( 3 .5% ) 0 .298 14 ( 1 .7% ) 
N0 469 ( 99 .4% ) 81 ( 44 .0% ) 3 ( 7 .3% ) 54 ( 38 .3% ) 607 ( 72 .4% ) 
Unknown 0 99 ( 53 .8% ) 36 ( 87 .8% ) 82 ( 58 .2% ) 217 ( 25 .9% ) 

M stage 0 .056 
M1 0 24 ( 13 .0% ) 2 ( 4 .9% ) 14 ( 9 .9% ) 40 ( 4 .8% ) 
M0 472 ( 100% ) 154 ( 83 .7% ) 5 ( 12 .2% ) 58 ( 41 .1% ) 689 ( 82 .2% ) 
Unknown 0 6 ( 3 .3% ) 34 ( 82 .9% ) 69 ( 49 .0% ) 109 ( 13 .0% ) 

Status 0 .064 
Dead or with tumor 25 ( 5 .3% ) 135 ( 73 .4% ) 12 ( 29 .3% ) 16 ( 88 .7% ) 188 ( 22 .4% ) 
Alive or without tumor 261 ( 55 .3% ) 49 ( 26 .6% ) 29 ( 70 .7% ) 125 ( 11 .3% ) 464 ( 55 .4% ) 
Unknown 186 ( 39 .4% ) 0 0 0 186 ( 22 .2% ) 
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 V Bottleneck-Net ( VB-Net ) of coarse-resolution and a VB-Net
f fine-resolution for kidney and tumor segmentation. We fur-
her constructed and verified DL-based models for preoperative
urhman grade classification and prognosis prediction of patients
ith ccRCC in multi-source patient cohorts. During experiments,
blation study results show the effectiveness of DL segmentation
nd classification models. 

aterials and methods 

atient cohorts and data sources 

our independent patient cohorts were included for analysis from
ifferent institutions, including Shanghai General Hospital, Clini-
al Proteomic Tumor Analysis Consortium ( CPTA C ) , 13 , 14 the Can-
er Genome Atlas ( TCGA ) ,13 and the 2019 Kidney and Kidney
umor Segmentation Challenge ( KiTS ) .13 , 15 The inclusion crite-
ia ar e: ( i ) pathologicall y confirmed ccRCC without other ma-
ignancies; ( ii ) complete clinicopathological data; and ( iii ) ac-
ess to the original data of corr esponding contr ast-enhanced CT
 corticomedullary phase ) images covering the whole malignant
umor. Ethical a ppr ov al of our study has been obtained from the
esearch Ethics Committee of Shanghai General Hospital. 

Altogether, 472 patients, who underwent partial or radical
e phrectom y and were pathologically diagnosed as ccRCC from

anuary 2012 to May 2019 in Shanghai General Hospital, were
ecruited as the General cohort. In addition, 184 patients from
CGA, 141 patients from KiTS, and 41 patients from CPTAC, who
et the inclusion criteria mentioned abo ve , were also included.

he clinical c har acteristics of all 838 patients in this study are
hown in Table 1 . 

T acquisition 

or the General cohort, patients underwent contrast-enhanced
bdomen CT scanning after injection of about 70 ml of contrast
edium into the antecubital vein at about 3.5 ml/s. Siemens So-
atom Force or GE Healthcar e wer e used for CT acquisition, and

he slice thickness ranges from 0.6 to 0.625 mm. The helical acqui-
ition mode was adopted with rotation time of 500 ms and pitch of
.5. Collimation widths were 256 × 0.625 mm or 64 × 0.625 mm for
he r espectiv e scanners . T he voltage , current, and rotation time of
he tube were set as 120 kVp, ∼150 mAa, and ∼0.45 s, r espectiv el y.
or patients from CPTAC, TCGA, and KiTS, their radiology images
er e r ecov er ed fr om the Cancer Ima ging Arc hiv e in DICOM for-
at, whic h wer e collected fr om the standard of car e ima ging be-

ore the pathological diagnosis. 

ata pre-processing 

or all CT images collected in this study, renal tumors were
anually delineated as regions of interest ( ROIs ) by two senior

rologists ( > 20-years experience ) . All manual delineations were
erformed using ITK-SNAP ( version 3.8 ) .16 The images and ROIs
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F igure 1. Ar c hitectur e of VB-MrFo-Net. Top: m ulti-r esolution kidney segmentation, and bottom: focus-organ renal tumor segmentation. 
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were used to train and evaluate our AI segmentation model. A 

flowchart of the experiment is shown in Fig. 1 . 
All CT images were first resampled using tri-linear interpola- 

tion to the same spatial resolution: 0.7 × 0.7 × 2.5 ( mm 

3 ) . Then,
the intensities of each volume were truncated to the Hounsfield 

unite ( HU ) range of [ −200, 500] to remove the irrelevant details and 

linearly normalized into the range of [ −1,1]. Considering the GPU 

memory, the input 3D patch size was set to 96 × 96 × 64 ( voxel ) .
Due to the limited amount of training images, we applied image 
augmentation on the training dataset including shifting, rotation, 
and scaling. 

Cascade multi-resolution and focus-organ 

VB-nets 

In our pr e vious w ork,17 w e used VB-Net to replace the conven- 
tional convolutional layers in V-Net 18 based on the bottleneck 
structure. In this study, we further improve VB-Net and develop 

a m ulti-r esolution and focus-or gan fr ame work ( VB-MrFo-Net ) us- 
ing a cascade fr ame work ( Fig. 1 ) . The bottlenec k structur e con- 
sists of three convolutional layers with a small model size, which 

makes it easier to deploy to either cloud or mobile applications 
than the V-Net structure. As 3D medical images are often large 
in size, passing the whole 3D image volume into a network will 
consume lar ge GPU memory. Ther efor e, we use a m ulti-r esolution 

strategy, and the coarse-resolution is used to roughly localize the 
boundary of the whole kidney at lo w er resolution 2.5 × 2.5 × 2.5 
( mm 

3 ) , while the kidney boundary is accur atel y delineated at high 

resolution 0.7 × 0.7 × 0.7 ( mm 

3 ) . After renal segmentation, we uti- 
lize a focus-organ strategy to segment the tumor within the kid- 
ney region. Since a tumor may grow across the edge of the kidney,
the mask of kidney is enlarged by dilating using morphological 
operation, and the filter size is 7 × 7 × 7 ( mm 

3 ) . For renal tumor 
segmentation, we utilized a focus-organ strategy to segment the 
tumor within the segmented kidney region. Since the tumor may 
gr ow acr oss the edge of the kidney, we further enlarged the bound- 
ry by dilating the mask of kidney with a filter size of 7 × 7 × 7
 mm 

3 ) . The model size of VB-Net is similar to VB-MrFo-Net, 8.8
B. As the sampling region within the segmented kidney is much

maller than the whole CT image, it is easier to train VB-MrFo-
et than VB-Net in steps of optimization and conv er gence. The
arameters of VB-MrFo-Net were, step learning rate schedule was 

nitialized as 1e-4, and the Adam optimizer was set as momen-
um = 0.9, decay = 1e-4, betas = ( 0.9, 0.999 ) . Data augmentation

ethods include rotating, scaling, flipping, shifting, and adding 
oise . T he raining procedure includes 2501 epochs; global sam-
ling was set for the coarse model, and mask sampling for the
ne model. 

In experiments, we adopted a generalized Dice loss function to
nly focus on the target ( foreground voxels ) in the whole image.
he loss function was defined based on the Dice coefficient ( range
f [0, 1] ) as follows, 

Dice = 

2 
∑ N 

i p i ∗g i 
∑ N 

i p 2 i + 

∑ N 
i g 2 i 

, 

here N is the number of voxels, p i is the prediction result of the
 -th voxel belonging to the target region, g i denotes whether the
 -th voxel belongs to the ground truth ( delineated target ) or not ( 1

eans yes, 0 means no ) . 

rediction model 
fter tumor segmentation, radiomics analysis was further per- 

ormed using the uAI Research Portal ( United Imaging Intel- 
igence, China ) , which is a clinical r esearc h platform imple-

ented by Python pr ogr amming langua ge ( v ersion 3.7.3 ) . The pre-
r ocessing of featur e extr action includes CT ima ge r esampling,

ntensity normalization, and featur e normalization. Specificall y,
he CT images were resampled to the same spatial resolution,
.7 × 0.7 × 2.5 ( mm 

3 ) , and the intensity values of each image
er e linearl y normalized into the r ange [ −1,1]. The extr acted fea-

ur es fr om R OI w ere normalized b y the Z-scor e method befor e
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Figure 2. Segmentation of ccRCC by AI models in CT images ( 60 year old male ) . ( A ) A r epr esentativ e segmentation from a 60-year male patient, 
including original CT image ( a1 ) ; manual delineation ( a2 ) , segmented R OIs b y VB-Net ( r ed indicates kidney and gr een indicates tumor ) ( a3 ) , segmented 
R OIs b y VB-MrFo-Net ( a4 ) , and 3D visualization for segmentation of VB-MrFo-Net ( a5 ) . ( B ) Comparison of Dice between VB-MrFo-Net and VB-Net in the 
training and the testing datasets. 
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eature selection. The radiomics features were computed from
OIs based on PyRadiomics.19–21 A total of 2600 features were
omputed from the tumor ROI in each CT image, including
5 imaging filters and 104 original features grouped as: 18
rst-order statistics, 14 shape, 21 texture including Gray-Level
o-occurrence Matrix ( glcm ) , 16 Gray-Level Run-Length Matrix
 glrlm ) , 16 Gr ay-Le v el Size-Zone Matrix ( glszm ) , 14 Gr ay-Le v el De-
endence Matrix ( gldm ) , and 5 Neighboring Gray-Tone Difference
atrix ( ngtdm ) . The least absolute shrinkage and selection oper-

tor r egr ession ( LASSO ) was further applied to obtain an optimal
eature subset. The pre-processing includes normalization of Z-
core, and the alpha value for LASSO was set to 0.0152. Finally,
e built three machine-learning classifiers , i.e . logistic regression
 LR ) , r andom for est ( RF ) , and support v ector mac hine ( SVM ) , based
n the radiomics features selected. Five-fold cross-validation was
pplied for validation. 

ta tistical anal ysis 

 3.6.2 was used for data analyses and visualization in this study.
ontinuous variants were analyzed by the Mann–Whitney U test.
uantitativ e v ariants wer e compar ed thr ough the Chi-squar e test
r the Fisher exact method. Survival analysis was performed using
 Kaplan–Meier ( KM ) curve with hazard ratio ( HR ) and 95% confi-
ence interval ( CI ) for comparing different overall survival ( OS ) or
isease-fr ee surviv al ( DFS ) outcomes. We also carried out r eceiv er
per ating c har acteristic curv e ( ROC ) anal ysis and calculated ar ea
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F igure 3. Flo wchart for tumor grade prediction model. 

Table 2. The performance of tumor grade predicting models constructed by LR, SVM, and RF by a 5-fold cr oss-v alidation method. 

Performance Manual labeled ROIs AI segmented ROIs 

LR SVM RF LR SVM RF 

Training Sensitivity 0.721 0.732 0.817 0.716 0.789 0.742 
Specificity 0.699 0.737 0.757 0.606 0.495 0.629 
Accuracy 0.705 0.736 0.775 0.639 0.583 0.662 

AUC 

( 95% CI ) 
0.782 

( 0.737–0.827 ) 
0.799 

( 0.756–0.841 ) 
0.866 

( 0.833–0.900 ) 
0.730 

( 0.680–0.781 ) 
0.727 

( 0.676–0.778 ) 
0.756 

( 0.710–0.803 ) 

Testing Sensitivity 0.726 0.71 0.661 0.726 0.823 0.613 
Specificity 0.659 0.63 0.754 0.616 0.464 0.616 
Accuracy 0.68 0.655 0.725 0.65 0.575 0.615 

AUC 

( 95% CI ) 
0.746 

( 0.667–0.825 ) 
0.717 

( 0.632–0.801 ) 
0.729 

( 0.645–0.813 ) 
0.721 

( 0.643–0.799 ) 
0.719 

( 0.641–0.798 ) 
0.703 

( 0.621–0.786 ) 
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under curve ( AUC ) to evaluate the accuracy of the tumor grade 
pr ediction. P v alue < 0.05 was set as the significance le v el. 

Results 

Patient cohorts 

The clinical c har acteristics of all 838 patients recruited are shown 

in Table 1 . The subjects wer e r andoml y divided into a training set 
( 638 patients ) and a testing set ( 200 patients ) ( Fig. S1, see online 
supplementary material ) . 

Tumor segmentation based on VB-MrFo-Net 
Kidney was automatically segmented by VB-Net. Dice score was 
used for e v aluation of the segmentation accuracy. Based on the 
KiTS19 dataset, the mean Dice score for the kidney segmentation 

model was 0.974, r anging fr om 0.921 to 0.990.17 Based on the VB- 
MrFo-Net, we trained a tumor segmentation model for ccRCC us- 
ing the training set. A paradigm of tumor segmentation results is 
shown in Fig. 2 A, the segmented ROI by VB-MrFo-Net ( Fig. 2A ( a4 ) ) 
was close to ground truth ( Fig. 2A ( a2 ) ) , while VB-Net was prone 
to over-segmentation ( Fig. 2A ( a3 ) ) . Compared with manual anno- 
tation ( ground truth ) of the tumor r egion, the pr oposed VB-MrFo- 
Net ac hie v ed better performance than VB-Net ( Fig. 2 B ) , with Dice 
score of 0.87 vs 0.82 ( P < 0.001 ) and 0.79 vs 0.75 ( P = 0.002 ) in the 
training set and testing test, respectively . Similarly , the Dice score 
of VB-MrFo-Net was higher than that of VB-Net based on the pub- 
lic dataset and the General cohort, respectively ( Fig. S2, see online 
supplementary material ) . 
rediction of tumor grade based on manual 
nnotations and AI segmentation 

he construction of the grade prediction model is shown in Fig. 3 .
irstl y, we tr ained the pr ediction model based on manual anno-
ations. A total of 22 features were selected by LASSO and then
pplied to build the prediction model. A prediction model based
n AI segmentations was also de v eloped and v erified in the same
a y. T he performance of the prediction model is shown in Table 2 ,

ncluding accuracy , specificity , sensitivity , and AUC. It was found
hat the best predicting model was the LR classifier. For manually
abeled ROIs, the AUC values were 0.782 and 0.746 in the training
nd testing set, r espectiv el y. For AI segmented ROIs, LR ac hie v ed
UC values of 0.730 and 0.721 in the training and testing set, re-
pectiv el y. 

utoma tic surviv al str a tifica tion model for 
atients with ccRCC 

ince the tumor grade has been reported to be significantly as-
ociated with clinical prognosis of patients with ccRCC, we next
xplored whether our AI-based prediction model could be used 

or automatic survival stratification for patients with ccRCC be- 
or e sur gical tr eatment. The LR classifier model was used for risk
tratification due to its superior performance for tumor grading.
y performing KM curve survival analysis, our prediction model 
ould significantly distinguish patients with high survival risk,
ith HR of 2.49 ( 95%CI: 1.13–5.45, P = 0.023 ) in the General co-
ort ( Fig. 4 B ) . Excellent survival risk stratification performance 
ad also been verified in the TCGA cohort, the CPTAC cohort, and
he KiTS cohort, with HRs of 2.77 ( 95%CI: 1.58–4.84, P = 0.0019,
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Figure 4. Automatic survival risk stratification model for patients with ccRCC. ( A , D ) Kaplan–Meier survival analysis of overall survival stratified by 
automatic survival risk for ccRCC in the TCGA cohort and the KiTS cohort, respectively; ( B , C ) Kaplan–Meier survival analysis of disease-free survival 
stratified by automatic survival risk for ccRCC in the General cohort and the CPTAC cohort, respectively. 
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ig. 4 A ) , 3.83 ( 95%CI: 1.22–11.96, P = 0.029, Fig. 4 C ) , 2.80 ( 95%CI:
.05–7.47, P = 0.062, Fig. 4 D ) , r espectiv el y. 

Cox r egr ession anal ysis confirmed that our automatic survival
isk stratification ( AI-SRS ) could act as an independent prognostic
actor for patients with ccRCC ( Table 3 ) . Further decision analysis
 e v ealed that our noninv asiv e AI-SRS bor e comparison with the
urr ent tumor gr ading system in OS ( Fig. 5 A ) and DFS ( Fig. 5 B )
 f  
rediction, while the latter required pathological images and pro-
essional pathologists. 

iological associations for the AI-SRS model 
e also explored the potential biological associations behind

he models. As shown in Fig. 6 A, corr elation anal yses wer e per-
ormed between 20 selected radiologic features and OS status or
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Table 3. Cox: r egr ession anal yses of AI-SRS in four independent cohorts. 

General cohort HR ( 95% CI ) P CPTAC cohort HR ( 95% CI ) P 

Age 1 .05 ( 1.01–1.09 ) 0 .014 0 .99 ( 0.94–1.05 ) 0 .846 
Sex 3 .99 ( 0.94–16.97 ) 0 .061 1 .08 ( 0.32–3.58 ) 0 .904 
Stage 2 .76 ( 1.70–4.48 ) < 0 .0001 5 .48 ( 1.89–15.88 ) 0 .0017 
Grade 6 .31 ( 3.6–11.05 ) < 0 .0001 1 .34 ( 0.59–3.01 ) 0 .484 
AI-SRS 127 .4 ( 19.7–824.0 ) < 0 .0001 35 .69 ( 2.13–598.4 ) 0 .0129 

TCGA cohort HR ( 95% CI ) P KiTS cohort HR ( 95% CI ) P 
Age 1 .04 ( 1.01–1.06 ) 0 .0028 1 .02 ( 0.98–1.07 ) 0 .276 
Sex 0 .71 ( 0.40–1.25 ) 0 .234 1 .40 ( 0.48–4.08 ) 0 .54 
Stage 1 .93 ( 1.51–2.48 ) < 0 .0001 2 .36 ( 1.54–3.61 ) < 0 .0001 
Grade 2 .24 ( 1.49–3.36 ) < 0 .0001 3 .55 ( 1.88–6.68 ) < 0 .0001 
AI-SRS 7 .65 ( 2.48–23.63 ) < 0 .0001 13 .76 ( 2.11–89.64 ) 0 .0061 

Figure 5. Decision curve analyses for the automatic survival risk stratification model. ( A ) Decision curve analyses for overall survival; ( B ) decision 
curv e anal yses for disease-fr ee surviv al. 
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DFS status, r espectiv el y. When the threshold value of correlation 

coefficients was set to 0.25, feature 4, the 3D Max-diameter ( 3DMD,
Fig. 6 B ) of lesion in CT imaging, was found to be the most im- 
portant parameter for the AI-SRS model. Further visual assess- 
ment r e v ealed that 3DMD was associated with higher tumor 
gr ade ( Fig. 6 C ) . Mor e inter estingl y, 3DMD was up-r egulated in pa- 
tients with tumor lymphatic metastasis ( Fig. 6 D ) or tumor distant 
metastasis ( Fig. 6 E ) , which could act as a noninvasive and excel- 
lent marker for predicting the status of tumor lymphatic metas- 
tasis and tumor distant metastasis befor e oper ativ e tr eatments,
with AUCs of 82.4 and 87.3% ( Fig. 6 F ) , r espectiv el y. 

Discussion 

Tr aditionall y, ima ge r eading is done by visual inspections of the 
shape , size , edge c har acteristics, and gr ay-scale v alues of ob- 
ject of interest in CT ima ges. For r enal carcinoma with high 

heter ogeneity, lar ge amounts of important information are miss- 
ing from manual observations of CT images. Currently, radiomics 
based on machine learning in CT images has been gr aduall y used 

in prediction of prognosis and treatment response.22 , 23 Ho w ever,
these manuall y form ulated c har acters fr om CT ima ges might be 
nonredundant due to the incomplete information unscrambled 

from original image data.24 

The application of AI technology in image processing has 
lar gel y affected traditional medical imaging diagnosis and tumor 
isk stratification.25 , 26 Benefiting fr om the incr easing av ailability 
f large datasets of digital ima ges, r adiologists ar e now cooper at-
ng more with biomedical engineering scientists and exploring the 
otential of a new branch in the field of radiology. Using CNN and
 ecurr ent neur al network, noninv asiv e tr ac king of the tumor phe-
otype for predicting pathologic response may contribute to the 
r ogr ess of personalized ther a py.27 The Google TensorFlow had
lso been used to distinguish ccRCC from oncocytoma on mul-
iphasic CT images.28 

The manual segmentation of kidney and renal tumor is time-
onsuming and inconsistent between different doctors . T here- 
ore, a VB-Net 17 was proposed to segment kidney and tumor
n contr ast-enhanced CT, whic h was modified fr om V-Net 18 and
as initially used to segment the prostate by training an end-

o-end fully convolutional network on magnetic resonance imag- 
ng. Her e, we cr eated a nov el VB-MrFo-Net, whic h consists of a
 ulti-r esolution part and a focus-organ part. The Dice value of

he VB-MrFo-Net model ac hie v ed 0.787 in automatic segmenta-
ion ccRCC in test contrast-enhanced CT ima ging, whic h is higher
han traditional VB-Net ( 0.745 ) . In several cases the regions of tu-

ors did not segment well compared to the ground truth in this
tudy. Ther e wer e four segmentation failur e cases wher e the tu-
ors, whic h wer e lar ge and se v er e, gr e w outside the kidney. Thr ee

egmentation failure cases occurred because the tumor size was 
mall and the boundary was not very well-defined. In addition,
ne failure case was because only one kidney ( surgical excision )
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Figure 6. Biological associations for the AI-SRS model. ( A ) Correlation analyses of selected radiologic features and OS status or DFS status; ( B ) 3D 

visualization for segmentation of 3D Max-diameter; ( C ) comparison of 3D Max-diameter among patients with different tumor grades; ( D , E ) 
comparison of 3D Max-diameter among patients with tumor lymphatic metastasis and tumor distant metastasis, respectively. ( F ) Receiver operating 
c har acteristic curv es for the pr ediction of l ymphatic metastasis status and tumor distant metastasis status. 
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xisted in the CT image, the other image failed to segment due to
oise. 

Semantic segmentation of kidney and renal tumor is crucial
or quantitativ el y c har acterizing lesions. Based on a DL algo-
ithm, a 3D U-Net was trained for automated detection of renal
yst and exhibited excellent practicability in tumor detection.29 

 CNN fr ame w ork w as also proposed to classify solid, lipid-poor,
nd contrast-enhancing renal masses in multi-phase contrast-
nhanced CT images .30 T he o v er all accur acy of the CNN-based
lassifier is 0.78, and the r esults illustr ated what could be trained
or the accurate classification of malignant renal lesions. How-
 v er, most of these studies are based on small sample sizes from
 single center, without effective external validation. 

In this study, by a ppl ying m ulti-institutional patient cohorts,
e de v eloped and v erified an automatic risk stratification model
ased on CNN. Our radiomics model could accurately distinguish
atients with high tumor grade, who might suffer from poor
linical outcomes . T his is of great significance since there is still a
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r equir ement for effective methods of decision making for radical 
or partial ne phrectom y for patients with ccRCC. Our study could 

pro vide importance nonin vasive and practical advice before oper- 
ativ e tr eatment of ccRCC. 

We also note some limitations of this study. First, part of the im- 
a ges r ecruited for anal ysis wer e acquir ed fr om public databases,
which might be associated with potential bias due to the in- 
e vitabl y unequal information a vailable . Furthermore , this is a ret- 
r ospectiv e study, whic h might need further pr ospectiv e v alidation 

in r andomized contr olled trials. Additionall y, considering differ- 
ent CT scanning protocols among different patient cohorts, the 
homogeneity of CT images might be debased due to potential het- 
er ogeneity, whic h might affect the analysis. 

Conclusions 

In conclusion, we proposed a novel VB-MrFo-Net for renal tumor 
segmentation and analysis, and applied radiomics and machine 
learning algorithms for automatic diagnosis of ccRCC. The risk 
stratification model could accurately distinguish patients with 

high tumor grade and high survival risk based on noninv asiv e CT 

ima ges befor e sur gical tr eatments, whic h could pr ovide pr actical 
advice for deciding treatment options. Ho w ever, prospective vali- 
dation in r andomized contr olled trials is still necessary for further 
application of our AI-based models in clinical practice. 
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