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Abstract

Due to the complicated histopathological characteristics of clear-cell renal-cell carcinoma (ccRCC), non-invasive prognosis before
operative treatment is crucial in selecting the appropriate treatment. A total of 126 345 computerized tomography (CT) images from
four independent patient cohorts were included for analysis in this study. We propose a V Bottleneck multi-resolution and focus-organ
network (VB-MrFo-Net) using a cascade framework for deep learning analysis. The VB-MrFo-Net achieved better performance than
VB-Net in tumor segmentation, with a Dice score of 0.87. The nuclear-grade prediction model performed best in the logistic regression
classifier, with area under curve values from 0.782 to 0.746. Survival analysis revealed that our prediction model could significantly
distinguish patients with high survival risk, with a hazard ratio (HR) of 2.49 [95% confidence interval (CI): 1.13-5.45, P = 0.023] in
the General cohort. Excellent performance had also been verified in the Cancer Genome Atlas cohort, the Clinical Proteomic Tumor
Analysis Consortium cohort, and the Kidney Tumor Segmentation Challenge cohort, with HRs of 2.77 (95%CI: 1.58-4.84, P = 0.0019), 3.83
(95%CI: 1.22-11.96, P = 0.029), and 2.80 (95%CI: 1.05-7.47, P = 0.025), respectively. In conclusion, we propose a novel VB-MrFo-Net for the
renal tumor segmentation and automatic diagnosis of ccRCC. The risk stratification model could accurately distinguish patients with
high tumor grade and high survival risk based on non-invasive CT images before surgical treatments, which could provide practical
advice for deciding treatment options.
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Introduction machine learning algorithms that extract image features before

It is estimated that there were 76 080 new cases and 13 780 as- learning, DL uses convolutional neural networks (CNNs) to gen-

sociated deaths from renal cancer in the USA in 2021.! Clini-
cally, clear-cell renal-cell carcinoma (ccRCC) accounts for most
of the malignant lesions in the renal system,? which gener-
ally progresses more aggressively compared with other subtypes.
Contrast-enhanced abdominal computed tomography (CT) is rec-
ommended for diagnosis of ccRCC,> however, it is still challeng-
ing to accurately identify ccRCC through visual inspection of CT
images, especially distinguishing them from fat poor angiomy-
olipoma and oncocytoma.*> In addition, the clinical outcome
of ccRCC varies from different tumor stages, and patients with
tolerable neoplasm suffer from low cure rates even after radi-
cal nephrectomy,®’ which indicates the importance of accurate
tumor characterization and prognosis prediction for treatment
planning of ccRCC.

Deep learning (DL), also known as deep neural network, is an
artificial intelligence (Al) technique used to mimic the data pro-
cessing and decision making of the human brain. Unlike other

erate features for classification through back-propagation of loss
functions based on an optimization algorithm for network learn-
ing.® Currently, DL has exhibited excellent practicability in med-
ical image processing, especially for unsupervised learning from
unstructured image data.’ Some preliminary studies have con-
firmed the effectiveness of DL in kidney segmentation and tu-
mor classification based on image data from a single center.’%:!?
For example, a multi-scale graph was constructed with nodes
representing multi-scale topologies across an organ or tumor re-
gions for volumetric image segmentation.’? However, there are
very few studies focusing on the risk stratification and survival
prediction of ccRCC based on CNN from multi-source patient
cohorts.

Here, in this study, we developed a CNN-based V-Net algorithm
for lesion segmentation of ccRCC from noninvasive CT images.
Instead of constructing a complicated graph to learn multi-scale
topologies,'? a multi-resolution strategy is performed by using
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Table 1. Clinical characteristics of patients from three independent patient cohorts.

General cohort TCGA cohort CPTAC cohort
(472) (184) (41) KiST cohort (141) P value Total (838)
Age (years) 0.099
>65 157 (33.3%) 63 (34.2%) 20 (48.8%) 58 (41.1%) 298 (35.6%)
<65 315 (66.7%) 121 (65.8%) 21 (51.2%) 83 (58.9%) 540 (64.4%)
Sex 0.034
Male 351 (74.4%) 120 (65.2%) 26 (63.4%) 92 (65.2%) 589 (70.3%)
Female 121 (25.6%) 64 (34.8%) 15 (36.6%) 49 (34.8%) 249 (29.7%)
Grade 0.071
G1 72 (15.3%) 1(0.6%) 3(7.3%) 7 (12.1%) 93 (11.1%)
G2 317 (67.2%) 74 (40.2%) 24 (58.5%) 9 (56.0%) 494 (59.0%)
G3 73 (15.4%) 83 (45.1%) 12 (29.3%) 35 (24.8%) 203 (24.2%)
G4 10 (2.1%) 26 (14.1%) 2 (4.9%) 10 (7.1%) 48 (5.7%)
Stage 0.102
i 433 (91.7%) 95 (51.6%) 19 (46.3%) 96 (68.1%) 643 (76.7%)
i 29 (6.2%) 17 (9.3%) 5 (12.2%) 5 (3.6%) 56 (6.7%)
iii 10 (2.1%) 46 (25.0%) 13 (31.7%) 25 (17.7%) 94 (11.2%)
iv 0 26 (14.1%) (9.8%) 15 (10.6%) 45 (5.4%)
T stage
T1 434 (91.9%) 98 (53.3%) 21 (51.2%) 100 (70 9%) 0.090 653 (77.9%)
T2 29 (6.2%) 20 (10.9%) 6 (14.6%) 6 (4.3%) 61 (7.3%)
T3 9 (1.9%) 63 (34.2%) 13 (31.7%) 34 (24.1%) 119 (14.2%)
T4 0 3 (1.6%) (2.5%) 1(0.7%) 5 (0.6%)
N stage
N1 3(0.6%) 4 (2.2%) 2 (4.9%) 5(3.5%) 0.298 14 (1.7%)
NO 469 (99.4%) 81 (44.0%) 3 (7.3%) 54 (38.3%) 607 (72.4%)
Unknown 0 99 (53.8%) 36 (87.8%) 82 (58.2%) 217 (25.9%)
M stage 0.056
M1 0 24 (13.0%) 2 (4.9%) 14 (9.9%) 40 (4.8%)
MO 472 (100%) 154 (83.7%) 5 (12.2%) 58 (41.1%) 639 (82.2%)
Unknown 0 6 (3.3%) 34(82.9%) 69(49.0%) 109 (13.0%)
Status 0.064
Dead or with tumor 25 (5.3%) 135 (73.4%) 12 (29.3%) 16 (88.7%) 188 (22.4%)
Alive or without tumor 261 (55.3%) 49 (26.6%) 9 (70.7%) 125 (11.3%) 464 (55.4%)
Unknown 186 (39.4%) 0 0 0 186 (22.2%)

a V Bottleneck-Net (VB-Net) of coarse-resolution and a VB-Net
of fine-resolution for kidney and tumor segmentation. We fur-
ther constructed and verified DL-based models for preoperative
Furhman grade classification and prognosis prediction of patients
with ccRCC in multi-source patient cohorts. During experiments,
ablation study results show the effectiveness of DL segmentation
and classification models.

Materials and methods

Patient cohorts and data sources
Four independent patient cohorts were included for analysis from
different institutions, including Shanghai General Hospital, Clini-
cal Proteomic Tumor Analysis Consortium (CPTAC),**:** the Can-
cer Genome Atlas (TCGA)," and the 2019 Kidney and Kidney
Tumor Segmentation Challenge (KiTS).'**> The inclusion crite-
ria are: (i) pathologically confirmed ccRCC without other ma-
lignancies; (ii) complete clinicopathological data; and (iii) ac-
cess to the original data of corresponding contrast-enhanced CT
(corticomedullary phase) images covering the whole malignant
tumor. Ethical approval of our study has been obtained from the
Research Ethics Committee of Shanghai General Hospital.
Altogether, 472 patients, who underwent partial or radical
nephrectomy and were pathologically diagnosed as ccRCC from
January 2012 to May 2019 in Shanghai General Hospital, were
recruited as the General cohort. In addition, 184 patients from

TCGA, 141 patients from KiTS, and 41 patients from CPTAC, who
met the inclusion criteria mentioned above, were also included.
The clinical characteristics of all 838 patients in this study are
shown in Table 1.

CT acquisition

For the General cohort, patients underwent contrast-enhanced
abdomen CT scanning after injection of about 70 ml of contrast
medium into the antecubital vein at about 3.5 ml/s. Siemens So-
matom Force or GE Healthcare were used for CT acquisition, and
the slice thickness ranges from 0.6 to 0.625 mm. The helical acqui-
sition mode was adopted with rotation time of 500 ms and pitch of
1.5. Collimation widths were 256 x 0.625 mm or 64 x 0.625 mm for
the respective scanners. The voltage, current, and rotation time of
the tube were set as 120 kVp, ~150 mAa, and ~0.45 s, respectively.
For patients from CPTAC, TCGA, and KiTS§, their radiology images
were recovered from the Cancer Imaging Archive in DICOM for-
mat, which were collected from the standard of care imaging be-
fore the pathological diagnosis.

Data pre-processing

For all CT images collected in this study, renal tumors were
manually delineated as regions of interest (ROIs) by two senior
urologists (>20-years experience). All manual delineations were
performed using ITK-SNAP (version 3.8).° The images and ROIs
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Figure 1. Architecture of VB-MrFo-Net. Top: multi-resolution kidney segmentation, and bottom: focus-organ renal tumor segmentation.

were used to train and evaluate our Al segmentation model. A
flowchart of the experiment is shown in Fig. 1.

All CT images were first resampled using tri-linear interpola-
tion to the same spatial resolution: 0.7 x 0.7 x 2.5 (mm?). Then,
the intensities of each volume were truncated to the Hounsfield
unite (HU) range of [—200, 500] to remove the irrelevant details and
linearly normalized into the range of [—1,1]. Considering the GPU
memory, the input 3D patch size was set to 96 x 96 x 64 (voxel).
Due to the limited amount of training images, we applied image
augmentation on the training dataset including shifting, rotation,
and scaling.

Cascade multi-resolution and focus-organ
VB-nets

In our previous work," we used VB-Net to replace the conven-
tional convolutional layers in V-Net'® based on the bottleneck
structure. In this study, we further improve VB-Net and develop
a multi-resolution and focus-organ framework (VB-MrFo-Net) us-
ing a cascade framework (Fig. 1). The bottleneck structure con-
sists of three convolutional layers with a small model size, which
makes it easier to deploy to either cloud or mobile applications
than the V-Net structure. As 3D medical images are often large
in size, passing the whole 3D image volume into a network will
consume large GPU memory. Therefore, we use a multi-resolution
strategy, and the coarse-resolution is used to roughly localize the
boundary of the whole kidney at lower resolution 2.5 x 2.5 x 2.5
(mm?), while the kidney boundary is accurately delineated at high
resolution 0.7 x 0.7 x 0.7 (mm?). After renal segmentation, we uti-
lize a focus-organ strategy to segment the tumor within the kid-
ney region. Since a tumor may grow across the edge of the kidney,
the mask of kidney is enlarged by dilating using morphological
operation, and the filter size is 7 x 7 x 7 (mm?). For renal tumor
segmentation, we utilized a focus-organ strategy to segment the
tumor within the segmented kidney region. Since the tumor may
grow across the edge of the kidney, we further enlarged the bound-

ary by dilating the mask of kidney with a filter size of 7 x 7 x 7
(mm?). The model size of VB-Net is similar to VB-MrFo-Net, 8.8
MB. As the sampling region within the segmented kidney is much
smaller than the whole CT image, it is easier to train VB-MrFo-
Net than VB-Net in steps of optimization and convergence. The
parameters of VB-MrFo-Net were, step learning rate schedule was
initialized as le-4, and the Adam optimizer was set as momen-
tum = 0.9, decay = le-4, betas = (0.9, 0.999). Data augmentation
methods include rotating, scaling, flipping, shifting, and adding
noise. The raining procedure includes 2501 epochs; global sam-
pling was set for the coarse model, and mask sampling for the
fine model.

In experiments, we adopted a generalized Dice loss function to
only focus on the target (foreground voxels) in the whole image.
The loss function was defined based on the Dice coefficient (range
of [0, 1]) as follows,

231 pixgi
T+
where N is the number of voxels, p; is the prediction result of the
i-th voxel belonging to the target region, g; denotes whether the

i-th voxel belongs to the ground truth (delineated target) or not (1
means yes, 0 means no).

Dice =

Prediction model

After tumor segmentation, radiomics analysis was further per-
formed using the uAl Research Portal (United Imaging Intel-
ligence, China), which is a clinical research platform imple-
mented by Python programming language (version 3.7.3). The pre-
processing of feature extraction includes CT image resampling,
intensity normalization, and feature normalization. Specifically,
the CT images were resampled to the same spatial resolution,
0.7 x 0.7 x 2.5 (mm?), and the intensity values of each image
were linearly normalized into the range [—1,1]. The extracted fea-
tures from ROI were normalized by the Z-score method before
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Figure 2. Segmentation of ccRCC by Al models in CT images (60 year old male). (A) A representative segmentation from a 60-year male patient,
including original CT image (al); manual delineation (a2), segmented ROIs by VB-Net (red indicates kidney and green indicates tumor) (a3), segmented
ROIs by VB-MrFo-Net (a4), and 3D visualization for segmentation of VB-MrFo-Net (a5). (B) Comparison of Dice between VB-MrFo-Net and VB-Net in the

training and the testing datasets.

feature selection. The radiomics features were computed from
ROIs based on PyRadiomics.’®?! A total of 2600 features were
computed from the tumor ROI in each CT image, including
25 imaging filters and 104 original features grouped as: 18
first-order statistics, 14 shape, 21 texture including Gray-Level
Co-occurrence Matrix (glem), 16 Gray-Level Run-Length Matrix
(glrlm), 16 Gray-Level Size-Zone Matrix (glszm), 14 Gray-Level De-
pendence Matrix (gldm), and 5 Neighboring Gray-Tone Difference
Matrix (ngtdm). The least absolute shrinkage and selection oper-
ator regression (LASSO) was further applied to obtain an optimal
feature subset. The pre-processing includes normalization of Z-
score, and the alpha value for LASSO was set to 0.0152. Finally,
we built three machine-learning classifiers, i.e. logistic regression

(LR), random forest (RF), and support vector machine (SVM), based
on the radiomics features selected. Five-fold cross-validation was
applied for validation.

Statistical analysis

R 3.6.2 was used for data analyses and visualization in this study.
Continuous variants were analyzed by the Mann-Whitney U test.
Quantitative variants were compared through the Chi-square test
or the Fisher exact method. Survival analysis was performed using
a Kaplan-Meier (KM) curve with hazard ratio (HR) and 95% confi-
dence interval (CI) for comparing different overall survival (OS) or
disease-free survival (DFS) outcomes. We also carried out receiver
operating characteristic curve (ROC) analysis and calculated area
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Figure 3. Flowchart for tumor grade prediction model.

Table 2. The performance of tumor grade predicting models constructed by LR, SVM, and RF by a 5-fold cross-validation method.

Performance Manual labeled ROIs Al segmented ROIs
LR SVM RF LR SVM RF
Training Sensitivity 0.721 0.732 0.817 0.716 0.789 0.742
Specificity 0.699 0.737 0.757 0.606 0.495 0.629
Accuracy 0.705 0.736 0.775 0.639 0.583 0.662
AUC 0.782 0.799 0.866 0.730 0.727 0.756
(95% CI) (0.737-0.827) (0.756-0.841) (0.833-0.900) (0.680-0.781) (0.676-0.778) (0.710-0.803)
Testing Sensitivity 0.726 0.71 0.661 0.726 0.823 0.613
Specificity 0.659 0.63 0.754 0.616 0.464 0.616
Accuracy 0.68 0.655 0.725 0.65 0.575 0.615
AUC 0.746 0.717 0.729 0.721 0.719 0.703
(95% CI) (0.667-0.825) (0.632-0.801) (0.645-0.813) (0.643-0.799) (0.641-0.798) (0.621-0.786)

under curve (AUC) to evaluate the accuracy of the tumor grade
prediction. P value < 0.05 was set as the significance level.

Results
Patient cohorts

The clinical characteristics of all 838 patients recruited are shown
in Table 1. The subjects were randomly divided into a training set
(638 patients) and a testing set (200 patients) (Fig. S1, see online
supplementary material).

Tumor segmentation based on VB-MrFo-Net

Kidney was automatically segmented by VB-Net. Dice score was
used for evaluation of the segmentation accuracy. Based on the
KiTS19 dataset, the mean Dice score for the kidney segmentation
model was 0.974, ranging from 0.921 to 0.990." Based on the VB-
MrFo-Net, we trained a tumor segmentation model for ccRCC us-
ing the training set. A paradigm of tumor segmentation results is
shown in Fig. 2A, the segmented ROI by VB-MrFo-Net (Fig. 2A(a4))
was close to ground truth (Fig. 2A(a2)), while VB-Net was prone
to over-segmentation (Fig. 2A(a3)). Compared with manual anno-
tation (ground truth) of the tumor region, the proposed VB-MrFo-
Net achieved better performance than VB-Net (Fig. 2B), with Dice
score of 0.87 vs 0.82 (P < 0.001) and 0.79 vs 0.75 (P = 0.002) in the
training set and testing test, respectively. Similarly, the Dice score
of VB-MrFo-Net was higher than that of VB-Net based on the pub-
lic dataset and the General cohort, respectively (Fig. S2, see online
supplementary material).

Prediction of tumor grade based on manual
annotations and Al segmentation

The construction of the grade prediction model is shown in Fig. 3.
Firstly, we trained the prediction model based on manual anno-
tations. A total of 22 features were selected by LASSO and then
applied to build the prediction model. A prediction model based
on Al segmentations was also developed and verified in the same
way. The performance of the prediction model is shown in Table 2,
including accuracy, specificity, sensitivity, and AUC. It was found
that the best predicting model was the LR classifier. For manually
labeled ROIs, the AUC values were 0.782 and 0.746 in the training
and testing set, respectively. For Al segmented ROIs, LR achieved
AUC values of 0.730 and 0.721 in the training and testing set, re-
spectively.

Automatic survival stratification model for
patients with ccRCC

Since the tumor grade has been reported to be significantly as-
sociated with clinical prognosis of patients with ccRCC, we next
explored whether our Al-based prediction model could be used
for automatic survival stratification for patients with ccRCC be-
fore surgical treatment. The LR classifier model was used for risk
stratification due to its superior performance for tumor grading.
By performing KM curve survival analysis, our prediction model
could significantly distinguish patients with high survival risk,
with HR of 2.49 (95%CI: 1.13-5.45, P = 0.023) in the General co-
hort (Fig. 4B). Excellent survival risk stratification performance
had also been verified in the TCGA cohort, the CPTAC cohort, and
the KiTS cohort, with HRs of 2.77 (95%CI: 1.58-4.84, P = 0.0019,
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Figure 4. Automatic survival risk stratification model for patients with ccRCC. (A, D) Kaplan-Meier survival analysis of overall survival stratified by
automatic survival risk for ccRCC in the TCGA cohort and the KiTS cohort, respectively; (B, C) Kaplan-Meier survival analysis of disease-free survival
stratified by automatic survival risk for ccRCC in the General cohort and the CPTAC cohort, respectively.

Fig. 4A), 3.83 (95%CI: 1.22-11.96, P = 0.029, Fig. 4C), 2.80 (95%CI:
1.05-7.47, P = 0.062, Fig. 4D), respectively.

Cox regression analysis confirmed that our automatic survival
risk stratification (AI-SRS) could act as an independent prognostic
factor for patients with ccRCC (Table 3). Further decision analysis
revealed that our noninvasive AI-SRS bore comparison with the
current tumor grading system in OS (Fig. 5A) and DFS (Fig. 5B)

prediction, while the latter required pathological images and pro-
fessional pathologists.

Biological associations for the AI-SRS model

We also explored the potential biological associations behind
the models. As shown in Fig. 6A, correlation analyses were per-
formed between 20 selected radiologic features and OS status or
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Table 3. Cox: regression analyses of AI-SRS in four independent cohorts.

General cohort HR (95% CI) P CPTAC cohort HR (95% CI) P
Age 1.05 (1.01-1.09) 0.014 0.99 (0.94-1.05) 0.846
Sex 3.99 (0.94-16.97) 0.061 1.08 (0.32-3.58) 0.904
Stage 2.76 (1.70-4.48) <0.0001 5.48 (1.89-15.88) 0.0017
Grade 6.31 (3.6-11.05) <0.0001 1.34 (0.59-3.01) 0.484
AI-SRS 127.4 (19.7-824.0) <0.0001 35.69 (2.13-598.4) 0.0129
TCGA cohort HR (95% CI) P KiTS cohort HR (95% CI) P
Age 1.04 (1.01-1.06) 0.0028 1.02 (0.98-1.07) 0.276
Sex 0.71 (0.40-1.25) 0.234 1.40 (0.48-4.08) 0.54
Stage 1.93 (1.51-2.48) <0.0001 2.36 (1.54-3.61) <0.0001
Grade 2.24 (1.49-3.36) <0.0001 3.55 (1.88-6.68) <0.0001
AI-SRS 7.65 (2.48-23.63) <0.0001 13.76 (2.11-89.64) 0.0061
A B . :
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Figure 5. Decision curve analyses for the automatic survival risk stratification model. (A) Decision curve analyses for overall survival; (B) decision

curve analyses for disease-free survival.

DFS status, respectively. When the threshold value of correlation
coefficients was set to 0.25, feature 4, the 3D Max-diameter (3DMD,
Fig. 6B) of lesion in CT imaging, was found to be the most im-
portant parameter for the AI-SRS model. Further visual assess-
ment revealed that 3DMD was associated with higher tumor
grade (Fig. 6C). More interestingly, 3DMD was up-regulated in pa-
tients with tumor lymphatic metastasis (Fig. 6D) or tumor distant
metastasis (Fig. 6E), which could act as a noninvasive and excel-
lent marker for predicting the status of tumor lymphatic metas-
tasis and tumor distant metastasis before operative treatments,
with AUCs of 82.4 and 87.3% (Fig. 6F), respectively.

Discussion

Traditionally, image reading is done by visual inspections of the
shape, size, edge characteristics, and gray-scale values of ob-
ject of interest in CT images. For renal carcinoma with high
heterogeneity, large amounts of important information are miss-
ing from manual observations of CT images. Currently, radiomics
based on machine learning in CT images has been gradually used
in prediction of prognosis and treatment response.??:?* However,
these manually formulated characters from CT images might be
nonredundant due to the incomplete information unscrambled
from original image data.?*

The application of Al technology in image processing has
largely affected traditional medical imaging diagnosis and tumor

risk stratification.”?® Benefiting from the increasing availability
of large datasets of digital images, radiologists are now cooperat-
ing more with biomedical engineering scientists and exploring the
potential of a new branch in the field of radiology. Using CNN and
recurrent neural network, noninvasive tracking of the tumor phe-
notype for predicting pathologic response may contribute to the
progress of personalized therapy? The Google TensorFlow had
also been used to distinguish ccRCC from oncocytoma on mul-
tiphasic CT images.?®

The manual segmentation of kidney and renal tumor is time-
consuming and inconsistent between different doctors. There-
fore, a VB-Net? was proposed to segment kidney and tumor
in contrast-enhanced CT, which was modified from V-Net'® and
was initially used to segment the prostate by training an end-
to-end fully convolutional network on magnetic resonance imag-
ing. Here, we created a novel VB-MrFo-Net, which consists of a
multi-resolution part and a focus-organ part. The Dice value of
the VB-MrFo-Net model achieved 0.787 in automatic segmenta-
tion ccRCC in test contrast-enhanced CT imaging, which is higher
than traditional VB-Net (0.745). In several cases the regions of tu-
mors did not segment well compared to the ground truth in this
study. There were four segmentation failure cases where the tu-
mors, which were large and severe, grew outside the kidney. Three
segmentation failure cases occurred because the tumor size was
small and the boundary was not very well-defined. In addition,
one failure case was because only one kidney (surgical excision)
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Figure 6. Biological associations for the AI-SRS model. (A) Correlation analyses of selected radiologic features and OS status or DFS status; (B) 3D
visualization for segmentation of 3D Max-diameter; (C) comparison of 3D Max-diameter among patients with different tumor grades; (D, E)
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existed in the CT image, the other image failed to segment due to
noise.

Semantic segmentation of kidney and renal tumor is crucial
for quantitatively characterizing lesions. Based on a DL algo-
rithm, a 3D U-Net was trained for automated detection of renal
cyst and exhibited excellent practicability in tumor detection.?
A CNN framework was also proposed to classify solid, lipid-poor,
and contrast-enhancing renal masses in multi-phase contrast-
enhanced CT images.’® The overall accuracy of the CNN-based

classifier is 0.78, and the results illustrated what could be trained
for the accurate classification of malignant renal lesions. How-
ever, most of these studies are based on small sample sizes from
a single center, without effective external validation.

In this study, by applying multi-institutional patient cohorts,
we developed and verified an automatic risk stratification model
based on CNN. Our radiomics model could accurately distinguish
patients with high tumor grade, who might suffer from poor
clinical outcomes. This is of great significance since thereis still a



requirement for effective methods of decision making for radical
or partial nephrectomy for patients with ccRCC. Our study could
provide importance noninvasive and practical advice before oper-
ative treatment of ccRCC.

We also note some limitations of this study. First, part of the im-
ages recruited for analysis were acquired from public databases,
which might be associated with potential bias due to the in-
evitably unequal information available. Furthermore, this is a ret-
rospective study, which might need further prospective validation
in randomized controlled trials. Additionally, considering differ-
ent CT scanning protocols among different patient cohorts, the
homogeneity of CT images might be debased due to potential het-
erogeneity, which might affect the analysis.

Conclusions

In conclusion, we proposed a novel VB-MrFo-Net for renal tumor
segmentation and analysis, and applied radiomics and machine
learning algorithms for automatic diagnosis of ccRCC. The risk
stratification model could accurately distinguish patients with
high tumor grade and high survival risk based on noninvasive CT
images before surgical treatments, which could provide practical
advice for deciding treatment options. However, prospective vali-
dation in randomized controlled trials is still necessary for further
application of our Al-based models in clinical practice.

Supplementary data
Supplementary data is available at PCMEDI online.
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