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Abstract: Omics approaches in plant analysis find many different applications, from classification to
new bioactive compounds discovery. Metabolomics seems to be one of the most informative ways
of describing plants’ phenotypes, since commonly used methods such as liquid chromatography–
mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) could provide a
huge amount of information about samples. However, due to high efficiency, many disadvantages
arise with the complexity of the experimental design. In the present work, we demonstrate an
untargeted metabolomics pipeline with the example of a Humulus lupulus classification task. LC-MS
profiling of brewing cultivars samples was carried out as a starting point. Hierarchical cluster analysis
(HCA)-based classification in combination with nested feature selection was provided for sample
discrimination and marker compounds discovery. Obtained metabolome-based classification showed
an expected difference compared to genetic-based classification data. Nine compounds were found
to have the biggest classification power during nested feature selection. Using database search and
molecular network construction, five of them were identified as known hops bitter compounds.

Keywords: Humulus lupulus; metabolomics; untargeted profiling; machine learning

1. Introduction

Humulus lupulus is one of the species representing the genus Humulus in the family
Cannabaceae. It is a perennial, herbaceous, climbing liana that grows in a temperate climate.
This plant left a remarkable trace in different countries’ cultures, mainly as a medicinal plant.
As well as a multifunctional beer drinks component, it acts both as a preservative and one
of the main flavoring properties of the drink’s sources. Nowadays, the brewing industry
remains the main consumer of hops. Volume of annually harvested hops is estimated at
hundreds of thousands of tons [1]. For the needs of brewing, female flowers are required,
which have a cone-shaped form and glands on their surface. The last secrete the bulk
of the secondary metabolites that compose the plant flavor profile. Breeding techniques
development and wide distribution of hops around the world let us have more than a
hundred varieties cultivated nowadays [2], some of which were bred already in the 21st
century [3,4]. In addition, wild hops are also considered as a raw material for brewing [5,6].
The multiple techniques used in beer hopping as well as the wide range of hop varieties
cultivated today [7] make it possible to produce beverages with a rich palette of flavors
and aromas [8].

The lack of genealogical information about the individual species’ origin is formed
due to the absence of systematizing information. The protocols about the derived cultivars
and their initial stage of breeding development are unavailable due to commercial secrecy.
All this together makes it difficult to systematize used varieties. To solve this problem,
there are many approaches that can be divided into two groups: genetic and phenotypic.
The development of genetic techniques, including whole genome sequencing, has opened
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opportunities for the taxonomic classification of various organisms, both based on the
complete DNA sequence analysis [9] and selecting individual, most informative regions
(EST-SSR (expressed sequence tag-simple sequence repeat)), after obtaining information
about the reference sample genome [10]. Due to the peculiarities of the plant genome [11],
the last approach is more popular and applicable to this type of organism. Among the diver-
sity of ways to describe the phenotypic variation of plants, it can be distinguished: classical
morphological classification [5], transcriptome [12], proteome [13], and metabolome analy-
sis. Despite the fact that all the methods above solve different problems, the metabolomic
approach is especially suitable for plant analysis and is much more informative. The
competent use of modern instrumental analysis methods makes it possible to conduct
both qualitative and (semi)quantitative studies. In addition, since the plant metabolome is
responsible for biological activity and flavor profile, metabolomic analysis is the most valid
technique for studying plants such as hops.

Secondary metabolites of hops represent a wide range of compounds. If the taste
and the scent of a plant (or products based on it) are considered, as well as its biological
activity, several of the most significant chemical classes should be underlined: alpha and
beta acids, flavonoids, prenylflavonoids, as well as a vast group of volatile compounds. At
the moment, many “bitter” components [8,14,15] of hops have been described; the main
part of their composition is alpha acids (humulone and its derivatives), beta acids (lupulone
and its derivatives) and prenylargenins (xanthohumol, etc.). For the main compounds of
these classes different types of biological activity were shown: antimicrobial, antioxidant
and antitumor [16,17]. The most suitable and informative tool for separation and detection
of compounds mentioned above is LC-MS in reversed-phase mode, especially when untar-
geted metabolomics study is planned. Despite many studies devoted to establishing the
composition of hops, including isolation and subsequent structure identification of com-
pounds, only a limited number of compounds are presented in publicly available databases
such as KnapSack [18]. That makes it difficult to analyze untargeted metabolomics data,
because it is necessary to deal with unsystematized information from literary sources.

Despite all the advantages of metabolomics-based plant analysis, there are some ob-
stacles associated with both the approach itself and the study of specific objects of the plant
world: the impossibility of complete coverage using only one method/type of analysis,
the need to deal with high dimensional data, the complexity that arises when taking into
account all external factors influencing the formation of the natural sample, which can
complicate classification problems, as well as technical factors of used analytical methods.

However, most of these problems disappear when the object of study is a human
cultivated plant, where each sample will contain many input data and, more importantly,
to sample collection with biological replicates is notably easier. In this regard, it is worth
noting the possibility of using such objects to optimize approaches for data preprocessing
and statistical analysis with the opportunity of their further translation to more complex
subjects. Mentioned specifics of cultivated plants lead us to choose Humulus lupulus as an
object of our study.

Thus, we state that the objective of our study was to perform LC-MS-based untargeted
metabolomics study on Humulus lupulus brewing cultivars for group-markers compounds
search. Comparison of two types of classification (metabolome- and genome-based) was
also conducted and evaluated. As studied species is a convenient object for untargeted
research, so the developed experimental design and data processing scheme could be used
to address other related issues.

2. Results and Discussion
2.1. Study’s Background and Sample Collection

Despite the confidence level of plant classification based on phylogenetic methods,
specifics of connections between phenotype and genotype could lead to significant differ-
ences in results of different chemotaxonomy and classic morphological methods applied
to the same object. From the gene-based approaches side, this could be induced by the
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absence of a predictive marker in the chosen set (for methods such as EST-SSR) or the
big influence of a single gene expression on overall plant phenotype, and as a result, on
its metabolome [19,20]. For human cultivated species, both genetic and metabolomic
approaches are important: it is necessary to estimate connections between cultivars on
both genetic and small organic molecules’ composition levels. Considering all mentioned
details, Humulus lupulus was chosen as our study object, for proving the hypothesis that
there is no clear correlation between genome- and metabolome-based classification for
plants. Influence of the region of growth was also going to be estimated. The collection
was formed (see Section 3.2) based on the sample’s region of growth and genetic origin,
which was obtained from the study on hops EST-SSR-based classification [10]. A total of
18 cultivars were analyzed in the present study, each was represented by three biological
repeats (2019–2020 harvests). Samples were divided into three groups based on their geo-
graphic origin: Central Europe, North America and Oceania (six samples in each); in two
groups by genetic classification [10]: North American (6) and European germplasm (12);
and also in two groups according to plant usage in beer flavoring: aroma (10) and dual
use (8). Detailed information about selected cultivars is provided in Table S1.

2.2. Data Pre-Treatment

Usage of LC-MS instruments provides a huge, informative dataset for metabolomics
research, but the complexity of both LC and MS instruments together with specifics of
the large-scale analysis brings many issues, such as batch and matrix effects [21], which
could affect results of the following statistical analysis. Most of the negative effects could
be reduced by the development of experimental design, including experimental sample
randomization [22], usage of quality control (QC) and blank samples [23] and careful
data pre-processing steps before results interpretation. There are various workflows and
tools designed for LC-MS data pre-treatment [24–27], and most of them are based on R-
programming language and corresponding packages. The pipeline of the present study
was based on ”Omics Untargeted Key Script” [28] (computational details in Section 3.5,
experimental design and LC-MS instrumentation—3.3, 3.4). The missing value filling step
was done by Random Forest model-based imputation strategy described in [29], as this
approach works well on samples with large similarity, which positively affects model
construction time. Principal component coordinates were computed for QC and individual
samples for quality assurance purposes. As displayed in Figure 1, all QC samples are
placed in the center in case of both positive and negative ion signals, which indicates
properly prepared QC samples and well-constructed experimental sequences.

Before the signal correction step, signal reproducibility was checked by RSD [30]
calculation between QC samples—88% (3127) and 90% (3023) of signals had RSD less than
30% for negative and positive polarity, respectively. The XGBoost model was utilized for
signal correction as described in Section 3.5. After the correction step, RSD value among
QC samples was checked again as mentioned above and, as corrected peak areas had good
reproducibility between QC samples, no features have been filtered. All steps mentioned
above allowed us to reduce the influence of the unwanted technical variations and perform
further classification and feature selection tasks correctly.
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Figure 1. Quality assurance projections of study samples on principal components surface.
“A” corresponds to the positive ion’s signals table, “B”—negative.

2.3. Metabolome-Based Classification

A large amount of data obtained during metabolomic profiling (more than 3000 peaks
in the present study) leads to confusion in further results. Dimensionality reduction tech-
niques can be performed in two ways: feature selection by statistical tests or machine
learning methods to eliminate statistically non-informative variables and feature extraction
by principal component analysis (PCA) or other algorithms in order to transform the whole
feature space into new variables. PCA and other similar data representation techniques [31]
are also often used in the first steps of LC-MS experimental data treatment for exploratory
purposes, such as quality assurance [23]. In some cases, it is even possible to cluster sample
dots for group labels on a score plot by visual analysis of the first two or three principal
components spaces [32,33]. In the present study, a combination of two unsupervised meth-
ods was utilized (see Section 3.6 for more details). PCA was employed for multivariate
projection and HCA was performed both for distance calculation between sample dots
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on the score plot and assignment of the cluster group. The procedure of receiving a new
sample group label should be considered as one of the primary aims of the present study,
due to the lack of solid confidence in cultivars labels based on genetic data, despite its
relevance compared to information about the geographic origin or cultivar’s aroma charac-
terization [34]. In a similar way, a combination of different algorithms (both univariate and
multivariate) was applied for feature selection and dimensionality reduction.

Thus, class labels were received from the combination of both information sources:
HCA results (Section 3.6, Figure 2, Table 1) and the geographic origin of the samples, and
PCA was used to describe the distribution of experimental samples in the high-dimensional
feature space (Figure 3).
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Figure 2. The results of PC-based HCA. The genetic origin of the samples is presented as the color of
leaves and sample labels. Newly obtained groups are represented as a background color. Definitions
of sample labels are provided in the Table S1.
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Table 1. List of cultivars analyzed in the present study. The last column is dedicated to groups, to
which cultivars were assigned by the results of the study.

Cultivar Region of Growth Genetic Origin [10] Type New
Labels

Saaz

Central
Europe

European Aroma 2

Tettnanger European Aroma 2

Hallertau
Mittelfruh North American Aroma 2

Perle European Dual use 2

Nugget North American Dual use 1

Styrian
Cardinal North American Dual use 1

Amarillo

North America

North American Aroma 2

Fuggle European Aroma 2

Willamette European Aroma 2

Cashmere North American Dual use 1

Mosaic North American Dual use 1

Cascade North American Aroma 2

Kohatu

Oceania

North American Aroma 2

Wai-iti European Aroma 2

Nelson Sauvin North American Dual use 1

Galaxy North American Dual use 1

Waimea North American Dual use 1

Ella North American Aroma 1

As shown, HCA assigned cluster membership similar to their visually observable
location. Furthermore, for each sample, biological repeats are grouped together, so it can
be concluded that there is no significant difference between harvests. Compared to genetic
classification results from [10], all “European germplasm” origin samples were assigned to
the same cluster with four more cultivars from the “North American germplasm” group:
Hallertau Mittelfruh, Amarillo, Cascade and Kohatu, which are reported to contain rela-
tively low (3–7%) alpha-acids in their composition. Such results prove the hypothesis that
there is no clear correlation between plants’ genome and metabolome. Genomic research,
unfortunately, could not tell us about expression level of genes related to enzymes respon-
sible for synthesis of the small organic molecules in the plant. Additionally, it is typical for
plants to contain wide non-coding or some kind of regulatory regions, which do not have a
direct influence on the resulting phenotype. Additionally, obtained sample labels, in most
cases, match accepted cultivars classification [34] by aroma and flavor, even in conditions
when volatile compounds, which primarily affect Humulus lupulus taste and odor character-
istics, have not been the aim of our work. Another interesting task is a comparison between
cultivar genetic and geographic origins. As an example, studies [35,36] were focused on
untargeted metabolomics analysis for cultivar and geographic origin discriminations of
olive oil and hazelnut (Corylus avellana L.) and significant overlapping between marker
compounds for those two levels of classification was not reported. As the plot above shows,
only some cultivars from the Oceania region seem to be distancing from the studied dataset
(see Figure S6 for plot with marked sample names). Internationally standardized harvest
conditions of studied species, as well as the major influence of genotype, could explain such
a situation. As the region of growth does not have a significant influence on our sample, in
the next step, most discriminative marker compounds for our metabolome-based classifi-
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cation, which is based on HCA results, were derived using a rational cut-off approach in
further statistical analysis.

Rational cut-off is one of the most frequently used techniques in chemometrics for
feature selection. It is usually based on the simultaneous application of statistical tests
combination to a studied dataset with different rigors and natures, which leads to the
selection of only variables that satisfy a list of statistical conditions (cut-off). In the present
work for feature selection, two classical mean comparison tests with different rigor levels
were utilized: moderated t-test (as one of the most rigorous test for comparing means due
to shrink deviation of variables) and fold change calculation, and also partial least squares
(PLS) classification model computation as an “orthogonal” supervised multivariate method.
A moderated t-test was implemented by Limma package [37] with Benjamini−Hochberg p-
value adjustment method for multiple comparisons. Those calculations were implemented
in a nested-like feature selection scheme (Section 3.6) [38,39] to avoid negative effects
associated with small dataset size. Cross-validation based on 10-fold splitting (outer loop,
Section 3.6) was performed in order to avoid selection bias effect [40] and to provide
multiple estimations of classification ability. Classification accuracy was tested with a
generalized linear model (GLM) on each outer-fold, which showed maximum classification
accuracy for each of 10 dataset splits. Bootstrapping on each inner fold was performed to
reduce the influence of the small dataset size. Obtained bootstrapped datasets were further
proceeded through a rational cut-off step.

Sixty-two signals met the criteria established for maximum prediction power. Finally,
the descriptive ability of selected metabolites was checked by providing HCA as well
as the distribution of sample dots on the space of the first two principal components
(Supplementary material, Figures S4 and S5). Misclassifications were not observed in the
case of cluster analysis and the visual separation of groups on the PCA plot was increased.

It should be noted before structure elucidation that signal annotation was not per-
formed at the preprocessing stages. As a result, among 62 derived signals (33 for positively
charged ions and 29 for negative), 19 groups of signals were clustered by retention time.
Each group contained expected a de- or protonated molecular ion signal, isotope and adduct
signals, as well as smaller m/z values, which could be assigned to individual compounds or
to ions formed during in-source fragmentation. The signal’s type was investigated during
subsequent analysis of the fragmentation spectra.

2.4. Identification of Marker Compounds

The correct way of unknown identification in complex mixtures such as plant extracts is to
isolate compounds in their individual state and to provide multi-methods analysis for structure
verification, as it was previously performed for studied plants in works [41–44]. However,
as target compounds could occur in analyzed samples at extremely low concentrations,
their isolation becomes very time-consuming. In that case, information obtained from LC-
MS experiments: relative retention time, accurate mass, isotope distribution pattern and
fragmentation spectra can help to identify a putative structure of a target compound with
variable levels of confidence [45]. Furthermore, as not every plant species is studied enough
and literature data is not systematized, not much information could be found in public mass-
spectra databases compared to a situation with mammalian metabolites. So, the only way to
identify minor plant components is to use such databases and resources as KNaPSAcK [18] or
GNPS [46] in combination with tools for fragmentation spectra prediction [47,48] or molecular
networking [49]. Such a pipeline allows us to find connections with similar compounds if
the target one is not presented in a database. After filtration inside each peak group, only 11
pairs of signals were left (for positive and negative ions), apparently related to protonated and
deprotonated molecules. The molecular formula was predicted using the Shimadzu Formula
Predictor tool for each signal. Molecular formulas, prediction errors in ppm, as well as VIP
(variable importance in projection) from the PLS model and fold change values are provided
in Table 2.
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Table 2. List of marker compounds. m/z are provided as parent ion values for fragmentation. VIP
and fold change values were calculated on the full dataset.

Compound Name Retention Time, Min m/z Ion Type Predicted Molecular
Formula (Error, ppm) VIP from PLS Fold Change

1 Isoxanthohumol 10.46 353.1384 [M-H]− C21H22O5 (0.26) 1.73 1.45

2 Unknown 11.4 399.1443 [M-H]− C22H24O7 (3.67) 1.24 1.06

3 Cohumulone 19.37 347.1886 [M-H]− C20H28O5 (0.53) 1.42 2.15

4 Posthumulone 17.43 333.1694 [M-H]− C19H26O5 (0.8) 1.56 2.23

5 Humulone 21.59 361.202 [M-H]− C21H30O5 (1.95) 1.46 0.31

6 Prehumulone 23.2 375.2172 [M-H]− C22H32O5 (0.57) 1.35 2.33

7 Unknown 20.33 385.2371 [M + H]+ — 1.31 1.11

8 Unknown 10.01 410.196 [M + H]+ — 1.71 0.93

9 Unknown 16.1 371.1811 [M + H]+ C23H32O4 (0.67) 1.42 1.03

Concentration of all of the derived markers are greater in group 1 (Table 1) as the
fold change value is greater than 0. As will be discussed below, most of the identified
compounds belong to the alpha-acids class. Differences in the abundance between classes
correlate with the results of the classification discussed above in Section 2.3: all cultivars
in group 1 are reported to have a high concentration of alpha-acids. Obtained formu-
las were searched within the KNaPSAcK metabolite library and articles associated with
Humulus profiling. After that, fragmentation spectra were obtained and processed via
the GNPS library search tool (see Section 3.7). To add one more verification level, some
major compounds (Xanthohumol, 8-prenylnargenin, lupulone, etc.) were identified on
obtained chromatograms to compare relative retention and fragment ions of the marker
compounds with data from [50]. Compounds with the same fragmentation spectra as
xanthohumol were found in GNPS, but low retention time (10.46 min) and abundance
of the peak with the same m/z at the later part of the chromatogram allows us to suspect
this as isoxanthohumol. Cohumulone and humulone were also identified by the GNPS
library and its relative retention matches information from the source mentioned above.
Other markers’ relative retention times and fragments were matched to posthumulone and
prehumolone from the same article [50]. To add one more verification step, a molecular
network between target and major compounds of Humulus lupulus has been constructed.
To obtain the major plant’s compounds fragmentation spectra, data acquisition in DDA
(data-dependent acquisition) mode was provided. Obtained spectra, total ion current (TIC)
and extracted ion (XIC) chromatograms and informative parts of the molecular network are
presented in Supplementary Materials (Figures S1–S7). There are two informative clusters
describing connections between humulone derivatives and between xanthohumol and
an unknown compound related to the deprotonated ion with m/z 399.1443. Analysis of
neutral losses in humulone derivatives spectra confirms all suspected structures. The con-
nection between xanthohumol and the unknown compound is explained by the presence
of ions with m/z 119.048, 93.034 and 65.003, which are supposedly corresponding to the
4-ethylphenol fragment. Other fragments and their neutral losses are not matched, so it
is the only information that can be obtained about the structure. To sum up, five marker
signals were identified as known hops’ bitter components and our findings are consistent
with previous reports. Three other signals with fold change values close to 1 have not
been annotated properly. Thus, the list of marker substances was proposed along with
classification performance statistics (Table 2). Suggested markers may be used for Humulus
lupulus material quality control as well as intragenus discrimination studies.

3. Materials and Methods
3.1. Chemicals and Reagents

For sample preparation purposes, HPLC-grade methanol (Panreac, Barcelona, Castel-
lar del Vallès, Spain), syringe PET-membrane filters (0.45 µm, Chromafil, Düren, Germany),
ultrasonic bath (Saphir, Moscow, Russia) and household coffee-mill (Bosch, Gerlingen,
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Germany) were used. The mobile phase was prepared using HPLC-UV-grade acetonitrile
(Panreac, Barcelona; Castellar del Vallès, Spain), MS-grade formic acid (Fluka, Seattle, DA,
USA) and water, which was prepared by Milli-Q deionization system (Millipore, Burlington,
MA, USA).

3.2. Sample Collection and Preparation

Hop pellets of different cultivars imported by Beervingem (Russia) were purchased at
a local brewing store. All samples were stored in hermetic packages at low temperatures
(3–5 ◦C) before and after the homogenization step. As the study object was presented in
pellets, for which production out of hope cones technology is unified, there should be no
significant loss of its content [51] in this step.

In the sample preparation step, typical workflows for Humulus lupulus [14,15,52] were
used and performed before each experimental batch, with the exception of homogenization
and weighing. A 15 mL tube with 300 mg of homogenized pellets was filled with 10 mL
of methanol and then placed in the ultrasonic bath for 1 h (at 25 ◦C) for extraction. The
obtained extract was syringed through a PET-membrane filter and then diluted 10 times
with methanol before injection into the LC-MS system. Signal correction procedure and
quality control samples were used to eliminate the impact of the batch effect. For QC
samples preparation, an equal mixture of all study samples was treated in all steps provided
above. The obtained stock solution was stored at low temperature and was diluted the
same as the samples.

3.3. Data Acquisition

An LCMS-IT-TOF (Shimadzu, Kyoto, Japan) system, equipped with two Nexera
LC-20 AD XR pumps and SIL-20 AC XR autosampler was used for untargeted profiling.
Chromatographic separation was performed on reversed-phase column Acclaim C18 3 µm
(2.1 × 150 mm, Dionex, Sunnyvale, CA, USA) in gradient elution mode with acetonitrile (A)
and 0.1% aqueous formic acid (B) as a mobile phase at 0.35 mL/min. Gradient parameters,
modified from the work [53] were as follows: 0–5 min, 30% A; 5–15 min, 30–70% A;
15–32 min, 70–95% A; 32–47 min, 95% A; 47–50 min, 95–30% A; 50–55 min, 30% A. Injection
volume was 5 µL, column oven temperature—25 ◦C and autosampler temperature—4 ◦C.

Hybrid mass-spectrometer consisting of the ion trap and time-of-flight instruments
equipped with an electrospray ionization source was used as a detection system. Data were
acquired in both positive and negative polarities on scan (MS1) detection mode in conditions
listed below: interface voltage—4.5 kV for positive and −3.5 kV for negative charged ions
transition; CDL and heat block temperature—200 ◦C; nebulizing gas flow—1.5 mL/min;
cooling gas pressure—100 kPa. Mass-spectrometer was operated at 120–850 Da range,
repeated three times during the 300 ms period with ion trap accumulation time set to 30 ms.

Orbitrap Exploris 120 mass-spectrometer combined with Vanquish UHPLC system
(Thermo Fisher, Waltham, MA, USA) with the same column and gradient elution program as
mentioned above were used for fragmentation spectra acquisition in DDA mode for identifi-
cation purposes, which includes molecular networks construction. Heated ESI source param-
eters were as follows: Positive (or Negative) ionization, Ion transfer voltage—3500 (2500) V,
Sheath/Aux/Sweep Gas—50/10/1 Arb, Ion transfer temperature—325 ◦C, Vaporizer
temperature—350 ◦C. Scan Parameters: Resolution—30,000 (for both MS1 and MS2 spec-
tra), scan range—120–800 m/z, RF lens—70%, number of microscans—3, data type—centroid.
HCD fragmentation parameters: isolation window—1 m/z, isolation offset—0.25 m/z, colli-
sion energy—15, 30, 45, 60 V, data acquisition mode—ddMS2 for major compounds spectra
accumulation and target list-based fragmentation for markers.
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3.4. LC-MS Profiling

In order to avoid sample selection bias, randomization of the experimental sequence
was performed before LC-MS profiling. The resulting batches were filled with blank- and
QC-sampls injections (three and five per batch, respectively) for system stability check, and
six chosen samples were analyzed twice per batch (total nine batches were acquired), as
shown in Figure 4. Each hop species was analyzed in two technical replicates.
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Figure 4. Example of batch sequence used in the experiment. Blank samples are marked as “Bl”.

System was cleaned to reduce influence of contamination before and after each batch
(chromatographic column with acetonitrile and mass-spectrometer’s ion source, sample
cones and skimmer with a mixture of water and isopropyl alcohol).

3.5. Computation and Software

The total of 154 raw files (samples and QC data), that were obtained after the exper-
imental step, were then converted to mzXML format using msConvert [54] tool. Peak
peaking and subsequent alignment of chromatograms were performed by the xcms [55] R
package with parameters that were optimized by IPO [56] in order to obtain a peak table
(samples by row, features—columns). Results of the optimization and peak tables for each
step are available at the Github repository. Obtained peak tables for each polarity were
subjected to the missing value imputation procedure using the missForest [29] package. A
QC-based signal correction was performed by the XGBoost model as described in [28], and
corrected peak area was calculated by the following equation:

Scorrected = Sobserved/Spredicted × 1000

After the correction step, features were filtered by their reproducibility in QC samples,
and as a result, signals with relative standard deviation (RSD) among QC samples more
than 30% were removed. In the next step, technical repeats were averaged and then all data
tables were centered and scaled. The final peak table was generated by binding negative
and positive polarity corresponding tables by columns.

All dendrograms were generated using Ward.D2 linkage algorithm based on the
Manhattan distance between samples. Data matrix was scaled and centered prior PCA in
all cases.

Basic operations and tables processing were performed by dplyr, data.table and stringr
packages. Data visualization and projection (PCA, HCA) were implemented by FactoMineR
and factoextra packages. Figures were created using ggplot2 library.

3.6. Semi-Supervised Classification and Feature Selection

In the first step, the number of data dimensions was reduced by computing principal
components. Then, in the space of the first 10 principal components, our samples’ coordi-
nates (scores matrix) were extracted, and HCA was computed for clustering samples in
two groups (metabolome-based classification). Obtained cluster membership was used
to perform subsequent statistical analysis. Nested feature selection was implemented to
determine a subset of significant variables, the algorithm is shown in Figure 5.
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Then, 10-fold cross validation splitting was performed on a full experimental dataset
(54 samples) as an outer loop. Then, each of all remaining nine inner folds were boot-
strapped five times. So, we can validate feature subsets on 10 independent datasets. Feature
significance was evaluated and selected by three statistical criteria: adjusted p-value from
moderated t-test < 0.05, fold change value > 1, and VIP value from PLS model is greater
than 1. Then we intersected the results of rational cut-off between resampled data within
each bootstrapped inner fold, and, finally, between the overall outer loop. Before final
intersection, each signal’s list was validated using a GLM with outer fold for test purposes.
The Limma [37] R package was used for adjusted p-value and fold change calculations with
following parameters: least squares model as fitting method and Benjamini and Hochberg
method for p-value adjustment. The PLS model was constructed using ropls package [57]
with 10-fold cross validation and 100 random permutations for tuning hyperparameters
and model evaluation, respectively. GLM for final validation in the outer loop was con-
structed using the caret [40] package. More detailed information about computations is
provided on Github repository.

Before the identification step, isotopic and adduct peaks were removed from the
obtained list by manual examination of mass-spectra. For identification of the in-source
fragmentation signals, MS2 spectra were obtained for each signal as described in the next
part (Section 3.7). If peaks were presented in both scan and fragmentation spectra from the
ion with greater m/z value with the same retention time, this was considered as a molecular
ion, but the signal with smaller m/z is assumed as an in-source fragmentation product.

3.7. Signal Annotation and Molecular Networks Construction

Molecular network construction tool from GNPS [45] ecosystem was used with the fol-
lowing parameters: precursor mass tolerance—0.005 Da, Fragment mass tolerance—0.05 Da,
Min Pairs Cos—0.7 Da, Network TopK—10, Minimum matched fragment ions—3, Minimum
cluster size—2. Library search parameters: min matched peaks—6, score threshold—0.7.
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4. Conclusions

Untargeted LC-MS-based studies, especially those dedicated to plants, are always
related to various disadvantages due to specifics of the used apparatus and complexity
of the object. In the present work, we demonstrated the ways to discard them using the
example of a highly important species for the food industry—Humulus lupulus. Critical
steps in LC-MS data preprocessing were fully described. The approach of combining
HCA-based classification and nested feature selection was used for metabolome-based
differentiation of brewing cultivars and group-markers compounds search. Obtained
labels showed a low correlation with the cultivars’ region of growth but partially agreed
with genetic and “usage type” classifications. With the implementation of nested feature
selection, the selection bias effect was minimized and an informative feature list was
obtained, without annotation-based pre-filtration procedure. Nine compounds that were
found to have maximum discriminative power, and multi-step identification including
database search and molecular networks construction was performed. Four of them were
identified as humulone and its derivatives. Furthermore, isoxanthohumol and structurally
similar compounds were found. The markers discovered could be potentially helpful
in the development of quality control approaches and further studies oriented to hops
metabolome. The experimental design presented in this work could be easily transferred to
other types of tasks and objects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12100945/s1, Figure S1: TIC chromatograms of QC sample, Figure S2: XIC chro-
matograms of marker compounds m/z in QC sample, Figure S3: Part of obtained molecular network
describing connectivity between fragmentation spectra of marker compounds, Figure S4: Dendro-
gram obtained after HCA of samples using only selected features, Figure S5: Plot obtained after
PCA of samples using only selected features, Figure S6: Projection of study samples on principal
components surface. Newly assigned groups are demonstrated by colour. Sample names description
could be found in table S1, Figure S7: Fragmentation spectra of marker compounds. Number corre-
sponds to Table 1 in the main text, Table S1: List of cultivars, analyzed in present study. Last column
is dedicated to groups, to which cultivars were assigned by results of the study.
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