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Abstract: Every year, approximately 700,000 people die from complications associated with
etiologic disease agents transmitted by mosquitoes. While insecticide-based vector control strategies
are important for the management of mosquito-borne diseases, insecticide-resistance and other
logistical hurdles may lower the efficacy of this approach, especially in developing countries.
Repellent technologies represent another fundamental aspect of preventing mosquito-borne disease
transmission. Among these technologies, spatial repellents are promising alternatives to the currently
utilized contact repellents and may significantly aid in the prevention of mosquito-borne disease if
properly incorporated into integrated pest management approaches. As their deployment would
not rely on prohibitively expensive or impractical novel accessory technologies and resources, they
have potential utility in developing countries where the burden of mosquito-borne disease is most
prevalent. This review aims to describe the history of various repellent technologies, highlight the
potential of repellent technologies in preventing the spread of mosquito-borne disease, and discuss
currently known mechanisms that confer resistance to current contact and spatial repellents, which
may lead to the failures of these repellents. In the subsequent section, current and future research
projects aimed at exploring long-lasting non-pyrethroid spatial repellent molecules along with new
paradigms and rationale for their development will be discussed.
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1. Introduction

Mosquitoes represent one of the most significant threats to human and veterinary health
throughout the world. With over 3500 unique species of mosquito currently described that inhabit
diverse ecosystems and feed on a variety of host species, their ubiquity and capacity to transmit
disease agents are unparalleled in the animal kingdom [1]. Moreover, their coevolution with disease
agents, reservoir hosts, and human communities has endowed them with an exquisite ability to vector
particularly successful and debilitating human and veterinary pathogens. The parasites and viruses
that are vectored by mosquitoes are responsible for the death of several hundred thousand people each
year, with hundreds of millions more infected with debilitating consequences. Moreover, this disease
burden is most substantial in developing countries, which lack the infrastructure and economic and
educational resources necessary to properly control the spread of mosquito-borne disease [2].

In general, there are two primary methods used to control the spread of mosquito-borne disease.
Targeting the disease agent is an often-utilized and readily exploitable means of preventing its
transmission to a subsequent human host. These strategies include prophylactic measures, mass
drug administration campaigns, vaccinations, and antibiotic drugs and antivirals that selectively target
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the parasite or inhibit the replication of the arbovirus in the host [3]. While extremely successful in the
control of certain etiologic disease agents, such as filarial parasites and some strains of Plasmodium,
resistance of parasites to various drugs and the lack of antivirals and vaccines for many disease agents
limit the success of this control technique for many mosquito-borne disease agents [4–7]. The second
method of control involves the prevention of transmission of the disease agent by the vector. This is
accomplished by a variety of means including the abatement of vector populations and the use of
biting deterrents. While vector control has been an extremely successful method in limiting the spread
of mosquito-borne disease throughout the world, the advent of insecticide-resistance in many wild
mosquito populations threatens the effectiveness of this approach in the future [8]. As more of the
limited insecticidal classes approved for use against public health pests fail in controlling mosquito
populations, the need for new chemistries and control strategies becomes ever more paramount.

A number of new mosquito control strategies have become more widely discussed, tested and
exploited in recent years; however, the likelihood of these strategies succeeding in field scenarios has
yet to be determined. These strategies primarily focus on limiting the numbers of actively host-seeking
female mosquitoes in the wild. Among these novel control strategies are the use of attractive toxic
sugar baits, mass-trapping techniques, auto-dissemination of hormone mimetics, push-pull strategies,
and the release of Wolbachia-infected or irradiated sterile males/genetically modified individuals into
the field [9–15]. While these strategies certainly represent important novel methods with potential for
limiting the spread of vector-borne disease, numerous hurdles still prevent their deployment in large
enough regimens to allow for adequate control of wild mosquito populations. Toxicity to non-target
organisms, logistical deployment obstacles, the cost of these novel strategies, and public distrust of
mass release protocols involving genetically modified mosquitoes are all poignant issues that will need
to be addressed before these methods may be readily and efficiently utilized.

Novel repellent tactics represent promising alternatives in preventing the spread of mosquito-
borne disease without the logistical hurdles of the aforementioned novel mosquito control approaches.
Among these, spatial repellents represent an exciting means by which host-seeking female mosquitoes
may be deterred from entering residences and feeding on susceptible individuals. Moreover, their
deployment would not rely on the use of currently non-existent or widely unavailable technologies as
some of the more ambitious novel control methods (e.g., mass-rearing facilities for the production of
genetically modified insects, deployment of large numbers of traps, etc.). Instead, spatial repellents
can readily be deployed with current technologies and with relatively little cost [16]. As such, this
strategy may be ideal in developing nations where vector control resources or funds are limited.

In the following sections, we will briefly describe the history of repellent technologies, the
role of repellent technologies in the prevention of mosquito-borne disease transmission, the unique
characteristics of spatial repellents compared to contact repellents, resistance to current contact and
spatial repellent technologies, and currently utilized spatial repellent technologies and the future
of this approach. This review will provide background on this strategy and discuss the prospect
of this approach in future integrated pest management practices aimed at reducing the spread of
debilitating mosquito-borne illnesses. Finally, research projects aimed at the development of novel
spatial repellent chemistries and the rationale employed and the physicochemical paradigms exploited
in their development will be discussed.

2. A Brief History of Repellents

The act of repelling biting arthropods is not a modern approach. Documented attempts of
deterring hematophagous insects date back to antiquity. Among the earliest reports of repellent use
are from Herodotus, a Greek historian [17]. His account of communities burning plants to prevent
the aggregation of biting flies demonstrates the success of this strategy. Before synthetic chemistry
approaches, botanical extracts and mechanical barriers constituted the primary means by which
individuals prevented bites from arthropods. Among the most successful plant extracts initially used
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for the prevention of mosquito bites were citronella, cassia, cedar, lavender, eucalyptus and neem tree
oil [18,19].

The advent of World War II was the primary driver in the development of new repellent
technologies, as the Pacific and North African theaters posed significant disease threats to Allied
military personnel. The testing of over 6000 chemicals from 1942 to 1947 in a variety of research
institutions led to the identification of multiple successful repellent chemistries [20–23]. This work
established a number of independent research projects that inevitably identified one of the most
effective and widely used insect repellents to date, N,N-diethyl-meta-toluamide (DEET). Since then, a
number of other compounds have been synthesized that heavily relied on previous research, which
identified amide and imide compounds as highly successful contact repellents. Among these are
picaridin, a piperidine carboxylate ester, and IR3535, which are currently considered to rival DEET in
some repellency bioassays [24].

While synthetic repellent chemistries have shown to be highly effective since the mid-20th century,
newly discovered natural chemistries are also highly effective. Para-menthane-3,8-diol represents
a naturally derived repellent compound from the oil of lemon eucalyptus that has been officially
recognized by the Centers for Disease Control (CDC) [25]. The paucity of CDC recommended and
Environmental Protection Agency (EPA) approved plant-based repellents is largely based on their
relatively short-lived residual character on treated surfaces when compared to the less volatile synthetic
repellents, DEET and picaridin [26].

However, many researchers have demonstrated the efficacy of botanical compounds as insect
repellents [27–29]. These reports have characterized numerous plant compounds as potent repellents
to a wide variety of pestiferous insects. These chemistries represent potential in the development of
novel repellent approaches, via improved formulations or novel synthetic approaches based off of
original botanically derived chemistries. These biorational synthetic approaches may increase the
repellent and residual character of these compounds on treated surfaces and represent exciting areas
of active research. By identifying the physicochemical properties that contribute to high levels of
repellency and long-lasting residual character on treated surfaces, new, highly efficacious spatial and
contact repellent technologies may be brought to market.

3. The Role of Repellents in Disease Prevention

The interruption of host-seeking is the cornerstone of all arthropod disease vector control
programs. Even approaches aimed at curtailing wild vector populations inevitably rely on the
prevention of host-seeking or biting as an endpoint. Vectorial capacity is a measure of the effectiveness
of a given vector species to transmit a particular etiologic disease agent. This metric is reliant on a
number of factors that either increase or decrease the likelihood of an arthropod vector to successfully
disseminate biologically viable disease agents to their target host species [30]. Because mosquito-biting
rates represent a second-order parameter in overall vector capacity, it is theoretically possible to
drastically lower the spread of mosquito-borne disease by disrupting host-seeking and feeding
(Figure 1). Therefore, repellents represent an important tool in the fight against mosquito-borne
disease. Unfortunately, their place in official integrated pest management approaches have been
largely neglected.
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Figure 1. Equation describing the vectorial capacity of a particular vector population. m = mosquito
abundance, a = interaction describing the man-biting rate, p = probability of daily mosquito survival,
n = extrinsic incubation period (EIP) in days [30].

Numerous studies have attempted to characterize the effects of repellent chemistries on the
mitigation of arthropod disease transmission [31–33]. The majority of these studies utilize modeling
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approaches, which aim to characterize the effects of repellent usage in an isolated, albeit artificial,
scenario. These studies have repeatedly reported the promising potential of repellents in preventing
the spread of mosquito-borne disease. Various models have attempted to characterize the impact
of repellents on the presence of mosquitoes in treated areas and relate this to disease transmission.
Lutambi et al. demonstrated that spatial repellents were capable of preventing mosquito entry into
particular areas if mosquito sources were below a certain threshold. Lower travel distances for
mosquitoes in treated compared to untreated control regions may also limit the ability of mosquitoes
to complete aspects of their life cycle (e.g., oviposition, mating, blood-feeding) and thus contribute to
an even higher negative impact on overall disease transmission [34].

While topical repellent technologies can be somewhat successful in limiting cases of
mosquito-borne disease in endemic regions, their efficacy in preventing mosquito-borne disease
is still currently under debate from an epidemiological perspective. In field studies, the effect of
repellents on the biting rates of mosquitoes is significant. In a double-blind randomized cross-over
placebo-controlled study in Senegal, repellents composed of DEET, para-menthane-3,8-diol, and
picaridin all provided significant biting protection on exposed human subjects compared to the control
group when biting rates were monitored for 9 h after exposure to topical repellents [35]. However, it is
not known whether this temporary decrease in biting rate could translate to decreased transmission
of mosquito-borne disease. A six-month field trial in Pakistan indicated repellent soap containing
DEET was highly successful in limiting Plasmodium falciparum cases compared to the control [36].
Cluster-randomized, placebo-controlled trials in Tanzania reported a non-significant decrease in the
malaria cases observed in the contact repellent group compared to the placebo [37]. However, authors
reported that both low compliance and differences in socioeconomic statuses of the treatment and
control group may have confounded the results in this study. These conflicting results demonstrate that
much is still to be learned about the value of contact repellents from an integrated pest management
strategy aimed at preventing the spread of mosquito-borne disease.

A commonly reported logistic hurdle with the deployment of contact repellents is the failure
of susceptible individuals to reapply at recommended time intervals [37–39]. For example, even
the most highly concentrated commercial formulations of DEET need to be reapplied every several
hours in order to adequately prevent mosquito bites. This can be impractical or impossible in regions
where supplies are limited or education paradigms face challenges in instilling the importance of this
recommendation to community members. Moreover, in many tropical areas where mosquito-borne
diseases are endemic, high levels of perspiration can further limit the recommended reapplication
interval, making this approach more impractical [40]. As such, chemical repellent strategies need to
be re-envisioned, to integrate the lifestyles and resources available to many susceptible individuals
in mosquito-borne disease endemic areas. Spatial repellents offer great potential in this respect.
Wada et al. demonstrated that metofluthrin-impregnated lattices were capable of preventing the resting
of Ae. aegypti within residences for a minimum of 8 weeks after introduction. This study demonstrates
the potential of this approach in curtailing mosquito entry into living quarters [41] for relatively long
periods of time compared to the protection afforded by current contact repellent technologies.

The benefit of these technologies needs to be adequately quantified via large scale epidemiological
comparisons of regions utilizing these chemistries compared to those which are not. To date, no studies
of this kind have been completed. However, numerous research projects are underway which aim to
characterize their effects in real-world, public-health-focused trials. Kawada et al. demonstrated that
metofluthrin-impregnated plastic strips caused statistically significant repellency of Anopheles gambiae
(sensu lato) from entering rural houses in coastal Tanzania for >18 weeks after introduction [41].
While this study does not relate the decrease of mosquito density in homes to the occurrence of
mosquito-borne disease, it represents the promise of spatial repellents as a novel intervention strategy.
Recently, SC Johnson announced the expansion of WOW™, a business model that attempts to provide
pest control and repellent technologies alongside home cleaning products in an attempt to combat
disease transmission in malaria-endemic regions [42]. This model utilizes transfluthrin applied to a
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surface, such as a wall-mounted poster or substrate, in a passive-emanation approach. The long-term
effects of this campaign on both mosquito density in homes and the subsequent impact on disease
transmission will need to be evaluated in the years to come.

4. Spatial vs. Contact Repellents: Similarities and Differences

Repellent technologies are similar in regards to their ability to prevent mosquitoes from feeding on
susceptible individuals. However, the modes by which these chemistries exert their effects are unique.
Biting deterrence may be accomplished by a variety of means including the disruption or interference
of proper host-seeking, altering the locomotion of the insect, or causing mortality when in contact with
repellent compounds. All of these responses disrupt the ability of the vector to successfully contact
and feed on the host, resulting in successful repellency. The responses of mosquitoes to these various
compounds is a function of both the physiological responses elicited by these compounds and the
physicochemical properties of these repellent molecules.

The physiological responses of the most commonly utilized contact repellent, DEET, have been
investigated in numerous studies, and the elucidation of its mechanism of action has been complex.
Results from various behavioral assays indicate that DEET is capable of decreasing attraction caused
by various host odorants, such as L-lactic acid and 1-octen-3-ol [43–46]. These studies, in concert, led to
the hypothesis that DEET was capable of attenuating the antennal responses of mosquitoes and other
hemotophagous insects to various human and veterinary attractive odorants via direct inhibition or
attenuation of action potential amplitudes or frequencies emanating from olfactory receptor neurons
(ORN). While this hypothesis has been substantiated by changes in direct antennal recordings after
exposure to DEET [43], a number of other studies have elucidated a more complex physiological
mechanism for the perception of DEET by host-seeking female mosquitoes. DEET was shown to
decrease the attractancy of mosquitoes to a simple stimulus of carbon dioxide. This observation
suggests that DEET was not only capable of attenuating the perception of host organic volatiles, but
also of inorganic carbon dioxide, as well. The current understanding of how DEET causes significant
decreases in mosquito host-seeking is that its perception by antennal and palpal sensilla is mapped
to an aversive behavioral response. Syed et al. demonstrated that mosquito antennal sensilla were
capable of detecting DEET alone. This combined with the observed aversion of both male and female
mosquitoes to a sucrose/water-only treatment indicated that the mechanism of DEET did not include
the masking of various organic and inorganic host-seeking volatiles, but instead, repellency was
due to direct stimulation of antennal sensillae and subsequent activation of an aversive response.
These results are further corroborated by the identification of an odorant receptor, DmOr42a, from
Drosophila melanogaster which was capable of binding to DEET, picaridin, and IR3535, leading to
a subsequent action potential. This study also demonstrated the behavioral aversion of fruit flies
to exposures of DEET alone [47]. Other studies have also shown that DEET is capable of directly
attenuating the antennal responses of mosquito antennae to host volatiles. Ditzen et al. showed
that DEET was capable of directly decreasing the antennal response of An. gambiae to both CO2

and 1-octen-3-ol when exposed to both DEET and odorant compounds simultaneously [48]. These
studies in concert suggest that DEET is capable of causing both an aversive stimulus and masking
the perception of host odors. Many other studies have demonstrated that the piperidinecarboxylate
picaridin and aminopropanoate IR3535 function in a similar manner, but with varying efficacies [49].
As such, these compounds have served as successful insect repellents for years. Their physicochemical
properties, however, directly affect their utility and limit their use in certain exposure methods.

DEET, picaridin, and IR3535 are all classified as contact repellents [50,51]. Because of their low
volatility, these compounds remain on treated surfaces and do not volatilize to an appreciable degree
into the surrounding atmosphere. Multiple studies have demonstrated their longevity on treated
surfaces [52,53]. In order for these compounds to be effective, mosquitoes must come into close
proximity or direct contact with the treated surface in order to be repelled from an attractive source.
While this is a successful means of exposing mosquitoes to repellent compounds, it requires that
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susceptible individuals reapply these contact repellents to their skin or the skin of susceptible animal
hosts after their volatilization or absorption into the skin, which limits their effectiveness. This may
be impractical in certain environments where reapplication is difficult or must occur more frequently.
Spatial repellents offer an alternative to this approach and allow for the continual emanation of
repellent compounds into the air.

In general, spatial repellent compounds are highly volatile and capable of diffusing through
the air in treated regions [54]. The volatilization of these compounds creates repellent vapors that
host-seeking mosquitoes may come into contact with, leading to an aversive behavior or deleterious
physiological response from the vector. Currently marketed spatial repellent products utilize either
synthetic pyrethroids or botanical compounds. Through the use of passive emanators, candles, burned
coils, heating elements, and motorized fans, these compounds may be directly volatilized into the area
around susceptible individuals or host animals [16,55]. Studies performed on the mechanism of action
of pyrethroid-based spatial repellents are numerous. Because the ultimate goal of repellent technologies
is to deter host-blood-feeding, these compounds may exert their effects through a variety of means.
Transfluthrin and metofluthrin were capable of deterring overall mosquito entry into treated huts and
inhibited feeding, decreased fecundity, and higher percentage mortalities were observed in mosquito
groups that entered these treated huts [56]. Other studies have also demonstrated the sublethal effects
of spatial repellents on mosquitoes that have been exposed to these repellent vapors. While the
physiological responses caused by these compounds have not been fully elucidated, it has been
demonstrated that antennal perception of these pyrethroid compounds may be involved [57]. Although
the molecular mechanisms behind the mode of action of synthetic pyrethroid spatial repellents still
needs to be explored and further characterized, the modes of action of these spatial repellents may be
particularly important for an integrated pest management strategy.

Botanical compounds exert similar effects to synthetic pyrethroid spatial repellents, however,
the physiological responses of exposed mosquitoes that mediate these effects are different. Whereas
spatial repellent pyrethroids are most likely perceived by a small subset of antennal receptors, the
physiological perception of botanical compounds is most certainly mediated via the binding of these
compounds to numerous odorant binding receptors in mosquito antennae. Terpenoid compounds
were shown to increase antennal spike frequency in Culex quinquefasciatus females exposed to various
plant terpenoids. The spike frequencies caused by terpenoids were greater than those caused by
other repellent compounds, such as diethyl phthalate [58]. Moreover, numerous odorant receptors
were identified in An. gambiae after transfection into empty neuron systems that bound various
terpenoid molecules and elicited increases in antennal spike frequencies [59]. The behavioral responses
of mosquitoes exposed to these chemistries is similar to synthetic spatial pyrethroids. Mosquitoes
exposed to various plant essential oils experienced significant repellency away from treated regions.
Much like spatial repellent pyrethroids, lethal effects of these plant essential oil repellent treatments
were also noted [60]. It is possible that botanically derived compounds may exert much the same
effects as synthetic pyrethroid spatial repellents. Because of this, they may represent promising
alternatives to synthetic pyrethroid spatial repellents without the potential of cross-resistance with
these molecules. The lack of structural similarity between most botanically derived compounds and
synthetic pyrethroid spatial repellents may indicate that distinct odorant receptors are involved in the
perception of these separate chemistries. However, the similarity in the behavioral responses elicited
by these two chemical classes provides evidence that both may be useful in future integrated pest
control management strategies that incorporate spatial repellents in their paradigm.

5. Resistance to Repellent Chemistries

While repellent pyrethroid and benzamide chemistries represent promising tools in the prevention
of mosquito-borne disease to both humans and animals, resistance (or insensitivity) to these chemistries
is developing and comprises a significant hurdle in the development and deployment of these strategies
in the future. In general, resistance to both contact repellents and synthetic pyrethroid spatial repellents
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has been reported. While the physiological mechanisms behind these different types of resistance
are still being elucidated, preliminary studies have demonstrated that these resistant phenotypes are
distinct and unique.

Behavioral and physiological resistance to contact repellents have been reported in a number of
laboratory studies and selection of repellent insensitive colonies has been achieved. Vinauger et al.
showed that Aedes aegypti females were less averse to DEET-treated substrates if they had been
exposed to DEET previously, indicating that a behavioral desensitization to continual exposures to
DEET may occur in wild mosquito populations [61]. Pellegrino et al. demonstrated that individual
fruit flies that were insensitive to DEET possessed a single amino acid polymorphism compared
to the DEET sensitive group [62]. This single amino acid polymorphism, located in the Or59b,
leads to lack of feeding inhibition upon exposure to DEET. This prevents DEET from masking host
odors used in the perception of susceptible individuals and animals. This study, in concert with
another previously mentioned [47], demonstrates that multiple receptors are responsible for the
perception of DEET in fruit flies. Moreover, mutations in odorant receptors capable of perceiving
DEET may be sufficient to allow for insensitivity to DEET. DeGennaro et al. demonstrated that
specific mutations achieved via targeted zinc finger nucleases in orco, an obligate co-receptor required
for the perception of many host and non-host odors, resulted in a lack of sensitivity to DEET [63].
While this obligate co-receptor is important in normal host-feeding, its role in the development of
resistance to DEET has yet to be determined in wild field populations. A loss-of-function mutation
in this receptor may lead to significant fitness costs and may not confer resistance to repellents in
future field populations of mosquitoes. Another study noted increased insensitivity of antennal
sensilla via continual laboratory selection of DEET-insensitive Ae. aegypti females after nine generations
compared to the unselected control colony [64]. This study further characterized the trait as dominant
in its inheritance. These studies indicate that contact repellent resistance to benzamide compounds,
such as DEET, are inheritable and selectable. The prevalence of DEET insensitivity in wild mosquito
populations has yet to be determined, however, insensitivity to DEET and other contact repellents
in wild field populations is possible. Populations of An. albimanus from Belize and El Salvador
displayed different susceptibilities to DEET and a piperidine analog of picaridin, SS220 [65]. This report
demonstrates that intrinsic or selected differences in repellent sensitivities may exist in wild mosquito
populations. As mosquito repellents become more utilized in integrated pest management control
measures, the issue of resistance to various contact repellents may become more important in the years
to come.

Resistance to synthetic pyrethroid spatial repellents is now being explored in laboratory colonies.
Because of the prevalence of pyrethroid resistant wild mosquito populations, the likelihood of
resistance to synthetic pyrethroid spatial repellents in wild mosquito populations is quite high.
In a recent study, laboratory colonies that were selectively bred for multiple generations based on
their non-responsiveness to transfluthrin in a spatial repellency bioassay were more likely to be less
susceptible to the repellent effects of transfluthrin in subsequent generations. Later, the toxicity of
transluthrin to these selected mosquitoes was evaluated via CDC bottle bioassay, resulting in lower
toxicity in the selected group and higher knockdown resistance (kdr) allele frequencies [66]. This study
indicates the potential of extant pyrethroid resistance in wild mosquito populations conferring
resistance to these spatial repellents. Other groups have also demonstrated that the kdr allele confers
resistance to pyrethroids as repellents. Agramonte et al. demonstrated that a kdr Puerto Rican strain
of Ae. aegypti were less repelled by permethrin impregnated clothing [67]. Moreover, kdr mosquitoes
collected from field sites in Puerto Rico were shown to be less susceptible to synthetic pyrethroids in a
spatial repellent bioassay compared to control (susceptible) mosquitoes [49]. These studies demonstrate
the potential for the development of resistance to synthetic pyrethroid spatial repellents. Because of
the reliance on pyrethroids in the control of wild mosquito vector populations and the concomitant
development of pyrethroid-resistance, it is likely that the deployment of synthetic pyrethroid spatial
repellents will be met with efficacy concerns in regions where extant pyrethroid resistance is prevalent.
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Because of resistance to both contact and synthetic pyrethroid spatial repellent compounds, new
chemistries need to be utilized in future repellent technologies. Botanical compounds offer great
potential for the purposes of developing new repellents against pyrethroid-resistant mosquitoes.
A variety of odorant receptors have been demonstrated to bind and respond to multiple botanical
compounds [59]. Among 50 odorant binding receptors isolated from An. gambiae expressed in empty
neuron systems, multiple receptors were responsive to terpenes and terpenoid ketone compounds
(carvone and fenchone). The authors also describe that many odorant receptors were not screened in
this study, indicating that many more receptors may be involved in the detection of botanical repellent
compounds. Moreover, their efficacy as repellents and the safety of these compounds to mammals
has been shown in multiple examinations [68]. The large number of odorant receptors implicated
in the perception of these botanical compounds in both mosquitoes and fruit flies [69] may indicate
that resistance to these compounds may evolve more slowly than to other synthetic pyrethroid spatial
repellents. Instead of a specific single receptor implicated in the perception of these compounds
in mosquito antennae, the presence of multiple receptors may make it difficult for single mutation
events to lead to resistance to these compounds. Moreover, the repellency of botanical compounds
may be heavily correlated with their fumigant toxicity [70]. The mechanism of action behind the
toxicity of various plant compounds is complex and diverse. The mechanism of toxic action of various
terpenoid compounds include inhibition of acetylcholinesterase, activity at octopamine and tyramine
receptors, nicotinic acetylcholine receptor activity, and modulation of GABA-gated chloride receptors
in insects [2]. Because of these diverse mechanisms of action and the potential of causing repellency via
both antennal perception and fumigant toxicity, resistance to botanical compounds utilized as future
repellent technologies may occur more slowly than toward synthetic contact and spatial repellents.
These chemistries may represent some of the most promising leads for the development of repellents
for the prevention of mosquito-borne disease transmission.

6. Current and Future Technologies

There are a variety of contact repellent products currently on the market which have been
recommended by the Centers for Disease Control and the Environmental Protection Agency in
preventing arthropod-borne disease [71]. These recommendations are primarily made based on
the residual character of these compounds on treated surfaces or human skin. These products include
DEET, picaridin, and para-menthane-3,8-diol. Numerous products containing DEET are used and
considered to be highly efficacious as contact repellents and provide repellency to a wide range of
hematophagous insects. These products provide repellency for one to eight hours (depending on
concentration) after their application. Although these persistence times are considered long-lasting
with respect to other products that are currently on the market, there is still significant room for
improvement in repellent technologies.

With respect to spatial repellents, numerous products are available. These include transfluthrin,
metafluthrin, and various botanical oils or compounds (e.g., oils of citronella, peppermint, lemongrass)
volatilized into a head space with the goal of repelling biting mosquitoes [54]. In recent years,
these products have become significantly more common, and the potential of their deployment
in large scale disease prevention campaigns throughout the world is becoming more feasible [16].
However, due to the potential of resistance to various old and currently utilized repellent technologies,
new chemistries and strategies must be developed and employed. The modification of botanical
compounds also represents a very promising avenue in the development of new, long-lasting, and safe
repellent technologies.

Botanical repellent technologies have been a promising area of research for many years.
Their efficacy and safety to mammals makes them ideal alternatives to synthetic insecticide and
repellent technologies. The evolutionary arms-race between plants and herbivorous insects has
produced numerous plant compounds that are toxic, repellent, and modulatory to the behavior
of insects [72]. Many secondary plant compounds are also considered important due to their low
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residual character in the environment. Their lack of persistence on treated surfaces, soil, or on
human skin makes many of them ideal, safe alternatives to the currently utilized chemistries that
are not readily labile in the environment. While this quality can be considered valuable for their
potential risk to the environment or individuals, it may also be considered a hurdle that must be
overcome in the identification and deployment of long-lasting repellent technologies. Surfaces treated
with various plant compounds were in some cases no longer capable of producing appreciable
repellency after 30 min [73]. This represents a need for improvement in the repellency of these various
botanical compounds.

Our group has extensively characterized the repellency of numerous plant compounds in the
previous decades [74–76]. From these explorations, a wide range in efficacy has been identified among
various plant compounds as spatial and contact repellents. Many of the most successful botanical
repellents have been identified as terpenoids. Terpenoids are compounds produced via the isoprene
biosynthesis and phenylpropanoid pathways in plants [77]. Great variation exists within this class
which can be exploited for the development of novel repellents. Among this class of compounds,
two types of terpenoids appear to be highly efficacious at repelling arthropods: monoterpenoids and
sesquiterpenoids. Paluch et al. demonstrated that various sesquiterpenoids were highly effective at
repelling yellow fever mosquitoes in a static air chamber designed for monitoring spatial repellency,
and in other studies identified numerous monoterpenoids that were capable of repelling a large
variety of arthropod pest species [73,74,77]. While many of these compounds are successful repellents,
their residual character on treated surfaces is quite low. Figure 2 shows the repellency of various
plant essential oils tested at multiple time points [78]. While many of these plant essential oils are
efficacious if screened immediately after applying them to a treated surface (Figure 2a), their efficacy
rapidly decreases if treated surfaces are allowed to dry for 5 h before being screened in our spatial
repellency chamber (Figure 2b). Plant essential oils with high levels of spatial repellency after 5 h
are predominantly composed of sesquiterpenoids (Amyris oil: Figure 2b), whereas oils containing
predominantly monoterpenoids produce very high levels of initial spatial repellency followed by
relatively lower repellent efficacy after a five hour period (citronella oil, thyme oil: Figure 2a,b).
These differences are predominantly a function of the intrinsic repellency of these molecules (i.e., their
ability to elicit a physiological response at an odorant receptor) and their volatility, which is dictated
by their molecular weight, polarity, and the intermolecular forces among the molecules of the repellent
compound or with the treated surface. Monoterpenoids, containing ten carbons, possess much lower
molecular weights than sesquiterpenoids and are thus more volatile. This translates to much higher
spatial repellency values in the short term, followed by low levels of repellency after significant
quantities have volatilized off of a treated surface. Sesquiterpenoids, are larger molecules composed of
15 carbons and thus volatilize off of a treated surface more slowly, providing a longer lasting repellent
character. These trends are crucial in understanding the repellent characteristics of various molecules
within this chemical class and represent an exploitable paradigm from which novel repellent molecules
may be crafted.

Via a novel biorational approach, esters of monoterpenoid alcohols and acids have been created
by coupling them to small molecular weight carboxylic acids and alcohols, respectively. The goal of
this project has been to increase the long-lasting character of the highly repellent monoterpenoid
compounds by increasing their molecular weight or polarity [78]. Numerous derivatives have
been synthesized with this approach and many compounds possess higher percentage short-term
and long-term repellency than the original starting monoterpenoid. Table 1 highlights the relative
short-term and long-term repellency of a select monoterpenoid (citronellol) and various esters of
this compound at various time points. A large number of compounds have been identified to cause
significantly higher short-term and long-term repellency than citronellol itself. While modulating
the molecular weight of these compounds represents a valuable approach in the development of
future repellent compounds, it is only one means by which the repellency of these compounds may
be improved.
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primarily of repellent sesquiterpenoids cause lower immediate repellency, but maintain a higher 
level of repellency in the long-term assay (amyris oil).  

Figure 2. The relative spatial repellency of various plant essential oils at points immediately after
treating a surface and after a five hour waiting period. Adult mosquitoes are placed in a closed 2-ft ×
90-mm diameter cylinder, with one side containing a filter paper treated with the plant essential oil of
interest. Relative mosquito abundance on both sides is quantified throughout the experimental interval
to calculate percentage repellency. (a) Corresponds to the repellency caused by the plant essential
oils if mosquitoes are immediately exposed to the filter paper after treatment and (b) corresponds to
the repellency caused by various plant essential oils if mosquitoes are exposed to the treated filter
paper after it is allowed to dry for 5 h. Oils that are predominantly composed of monoterpenoids
(citronella and thyme oil) cause rapid, high levels of repellency in the short-term assay, with relatively
lower values of repellency in the long-term assay. Oils that are composed primarily of repellent
sesquiterpenoids cause lower immediate repellency, but maintain a higher level of repellency in the
long-term assay (amyris oil).
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Table 1. Relative short-term and long-term repellency of various biorational repellent esters. A repellent
monoterpenoid causes relatively high percentage repellency immediately after filter papers are treated
and mosquitoes are subsequently exposed. This repellency is drastically diminished if filter papers
are allowed to dry for 5 h before being introduced into the testing chamber (time points 315–450 min).
By derivatizing monoterpenoids via various biorational approaches, we have developed numerous
compounds that are effective in both the short-term and long-term assay, potentially indicating their
residual character on treated surfaces. Some compounds were even capable of causing immobilization
or knockdown (KD) of exposed mosquitoes. These results may indicate that not only are these repellents
highly efficacious but could represent compounds that are much more repellent than chemistries
currently being utilized in current repellent technologies.

Natural and
Biorational Compounds

Minutes after Treating Filter Paper

15 90 150 315 390 450

monoterpenoid 32.5 80 87.5 30 21.5 30
derivative 1 10 60 62.5 30 30 40
derivative 2 22.5 92.5 90 70 80 65
derivative 3 KD KD KD 27.5 40 55
derivative 4 25 90 92.5 27.5 17.5 20

Moreover, the identification of which odorant receptors are responsible for the perception of these
botanical repellents could further allow for the biorational synthesis of future repellents. Currently,
technologies are being developed to rapidly screen various odorant binding receptors for their ability
to recognize and respond to various repellents. The use of empty neuron systems that are capable of
expressing heterologous odorant receptors in odorant neurons may be a viable method for screening
numerous repellent molecules. This approach has been utilized to deorphanize a number of mosquito
odorant receptors from An. gambiae [59]. A number of odorant receptors isolated from An. gambiae
responded to botanical compounds and may suggest that other related compounds may also bind to
these receptors. Future screening studies coupled to quantitative structure-activity relationship studies
could represent a promising method by which research groups could correlate repellent potency
to physicochemical characteristics of biorational molecules. These and other novel technologies
aimed at identifying the odorant receptors that respond to specific terpenoids may lead to a better
understanding of the relative intensity of these nervous responses. This may further elucidate which
chemical properties are most conducive to the production of highly efficacious biorational repellent
molecules. This approach coupled with a rational modulation of the volatility of these molecules may
in turn produce some of the most repellent compounds to date.

7. Conclusions

Repellent technologies are important tools in the arsenal for preventing the spread of
mosquito-borne disease. Current and future resistance to various repellent technologies in wild
mosquito populations, lack of user compliance in adequate and timely repellent reapplication, and
low residual character of current repellent technologies all represent a significant impetus for the
development of novel repellent technologies. Spatial repellents represent a novel approach that could
provide long-lasting repellency without the need for continual reapplication of formulations to human
skin. Within this class, botanical and biorational repellents are diverse and are promising alternatives
to synthetic pyrethroid spatial repellents, which are largely ineffective against pyrethroid-resistant
mosquito populations. Botanical repellents are numerous and target a wide variety of odorant receptors
and physiological targets, suggesting that the potential for resistance to these chemistries is sufficiently
low. Current and future technologies directed toward the development of long-lasting botanical or
biorational repellents could lead to promising alternatives to repellent formulations that are currently
on the market. Via the optimization of repellent character by promoting binding of these compounds
to odorant receptors on the mosquito antennae and lowering their volatility, a logical and exploitable
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paradigm exists for the development of new repellent formulations that could be deployed as spatial
repellents in integrated pest management strategies throughout the world.
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