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County‑level longitudinal clustering 
of COVID‑19 mortality to incidence 
ratio in the United States
Nasim Vahabi1,5, Masoud Salehi 2,5, Julio D. Duarte3, Abolfazl Mollalo4 & 
George Michailidis1*

As of November 12, 2020, the mortality to incidence ratio (MIR) of COVID‑19 was 5.8% in the US. A 
longitudinal model‑based clustering system on the disease trajectories over time was used to identify 
“vulnerable” clusters of counties that would benefit from allocating additional resources by federal, 
state and county policymakers. County‑level COVID‑19 cases and deaths, together with a set of 
potential risk factors were collected for 3050 U.S. counties during the 1st wave of COVID‑19 (Mar25–
Jun3, 2020), followed by similar data for 1344 counties (in the “sunbelt” region of the country) during 
the 2nd wave (Jun4–Sep2, 2020), and finally for 1055 counties located broadly in the great plains 
region of the country during the 3rd wave (Sep3–Nov12, 2020). We used growth mixture models to 
identify clusters of counties exhibiting similar COVID‑19 MIR growth trajectories and risk‑factors over 
time. The analysis identifies “more vulnerable” clusters during the 1st, 2nd and 3rd waves of COVID‑
19. Further, tuberculosis (OR 1.3–2.1–3.2), drug use disorder (OR 1.1), hepatitis (OR 13.1), HIV/AIDS 
(OR 2.3), cardiomyopathy and myocarditis (OR 1.3), diabetes (OR 1.2), mesothelioma (OR 9.3) were 
significantly associated with increased odds of being in a more vulnerable cluster. Heart complications 
and cancer were the main risk factors increasing the COVID‑19 MIR (range 0.08–0.52% MIR↑). We 
identified “more vulnerable” county‑clusters exhibiting the highest COVID‑19 MIR trajectories, 
indicating that enhancing the capacity and access to healthcare resources would be key to successfully 
manage COVID‑19 in these clusters. These findings provide insights for public health policymakers on 
the groups of people and locations they need to pay particular attention while managing the COVID‑
19 epidemic.

As of Nov 2020, the total number of confirmed COVID-19 (caused by the SARS-CoV-2 virus) cases and deaths 
worldwide were 50,676,072 and 1,261,075, respectively. COVID-19 was first discovered in Wuhan, China, on 
December 31, 2019. The outbreak of the disease was declared on Jan 30, 2020, and eventually was declared as a 
pandemic by the World Health Organization (WHO) on Mar 11,  20201. Shortly after, few countries, most notably 
Iran and Italy, experienced a significant increase in the number of confirmed cases and  deaths1.

As of Nov 2020, the total number of confirmed COVID-19 cases and deaths in the United States were 
9,913,553 and 237,037, respectively. The mortality rate (MR) was 71.7 per 100,000 population, and the mortality 
to incidence ratio was 2.4%, i.e., 2.4% of the COVID-19 confirmed cases experienced death as the outcome (U.S. 
population on Nov 2020 was 330.57 million) (https ://usafa cts.org). Within the United States, according to the 
Center for Disease Control and Prevention (CDC) report, the maximum number of confirmed cases and deaths 
were reported in Queens County in New York state and King County in Washington state, respectively. The first 
COVID-19 case in the United States was confirmed on Jan 19, 2020, in Washington State. Subsequently, New 
York City became one of the epicenters of the disease and on Mar 17, 2020, all fifty states across the United States 
had at least one confirmed case of COVID-19. On Mar 26, 2020, the United States became the leading country 
in the number of COVID-19 cases worldwide, replacing Italy that was previously in the lead of COVID-19 cases 
(Center for Infectious Disease Research and Policy, 2020, https ://www.cidra p.umn.edu/).

OPEN

1Informatics Institute, University of Florida, Gainesville, FL, USA. 2Department of Biostatistics, College of 
Public Health, Iran University of Medical Sciences, Tehran, Iran. 3Center for Pharmacogenomics, Department 
of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, 
USA. 4Department of Public Health and Prevention Sciences, School of Health Sciences, Baldwin Wallace 
University, Berea, OH, USA. 5These authors contributed equally: Nasim Vahabi and Masoud Salehi. *email: 
gmichail@ufl.edu

http://orcid.org/0000-0001-9485-8371
https://usafacts.org
https://www.cidrap.umn.edu/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-82384-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3088  | https://doi.org/10.1038/s41598-021-82384-0

www.nature.com/scientificreports/

The U.S. descended from the 1st peak on Apr 7, 2020, with 31,865 new cases per day to 17 230 new cases per 
day on Jun 8 (see the 7-day moving average graph of new cases, Mar to Nov 2020, on https ://coron aviru s.jhu.
edu/data/new-cases  and https ://covid track ing.com/data/chart s/us-daily -posit ive). During the 1st wave, most 
cases were concentrated in New York and other American Northeast states (https ://www.world omete rs.info/
coron aviru s/count ry/us/). The mitigation strategies to reduce disease transmission during this wave included 
shelter in place, mask-wearing, hand washing, distancing, crowd avoidance (such as restaurants) and cancelation 
of social  activities2. During summer, COVID-19 cases had another spike on July 24, 2020 (74,857 new cases per 
day) before decreasing once more to 33 621 new cases per day (on Sep 14, 2020). During this wave (2nd wave, 
Jul–Sep 2020), most cases were concentrated in states in the southern US, the so-called sunbelt region. The 3rd 
wave started in mid-September, where cases had another massive spike in mid-November, 2020 (192,805 new 
cases per day). Most of the cases during this period were concentrated in states located in the great plains. Dur-
ing the 2nd and 3rd waves, the same mitigation measures followed. However, mask-wearing increased over time 
with many state and local governements issuing such orders, but strategies focusing on crowd avoidance such 
as in-dining options  decreased2. Further, many Universities and Colleges offered on campus teaching options.

Studies have reported multiple risk factors for COVID-19 mainly categorized into three groups: (1) comor-
bidities (including chronic lung disease, heart diseases, diabetes, cancer, and chronic liver disease), (2) demo-
graphics & social factors (including age, gender, ethnicity, and smoking status), and (3) environmental factors 
(including temperature, humidity, and air pollution). Understanding the associated risk factors can aid in future 
healthcare planning on where to dedicate additional and subject-specific resources for vulnerable people and 
also areas. Despite numerous claims in the literature of the significant role that pre-existing conditions play, 
the studies to date are not conclusive given the fast-changing landscape of data and the current understanding 
of the disease. Moreover, to the best of our knowledge, longitudinal model-based clustering using the disease 
mortality pattern over time has not yet been considered in published studies. Hence, this study using an appro-
priate modeling framework contributes to the literature by finding relevant clusters considering disease growth 
trajectories. To this end, we first determined the county-level risk factors of COVID-19 MIR in the United States 
using a longitudinal generalized estimating equations (GEE) model. Next, we trained a latent growth mixture 
model (LGMM) to cluster the U.S. counties and to identify significant risk factors for each cluster separately. This 
longitudinal model-based clustering approach enables us to incorporate the possible heterogeneity of COVID-19 
MIR growth trajectories present due to the previously mentioned factors. Note that such heterogeneity is not 
accounted in other simpler, but widely used models, such as the SIR (susceptible, infected, and recovered) model 
and its variants. Our methodology enables us to cluster different counties into distinctive subpopulations based 
on their similarities in COVID-19 patterns over time (Mar 25–Nov 12, 2020).

The proposed methodology aids in understanding the evolution of COVID-19 disease transmission and 
severity by examining MIR and developing a model-based clustering system that takes into consideration both 
disease patterns over time and pre-existing risk factors. Identifying disease-specific clusters of vulnerable com-
munities and risk factors provides insights for public health policymakers on the groups of people and locations 
that require attention both in terms of resources and mitigation strategies. Finally, the methodology is readily 
applicable to other countries if similar granularity data are available.

Next, we review the primarily published evidence reporting associations between the above mentioned risk 
factors and COVID-19 incidence, mortality, and severity. We consider more severely impacted patients from 
COVID-19, those in need of requiring oxygen, hospitalization, or ventilation. A more exhaustive literature review 
is available in the Supplement.

Comorbidities. Chronic lung diseases, CLD. COVID-19 is an acute respiratory disease that primarily af-
fects the pulmonary alveolar epithelial cells, which can lead to respiratory failure and  death3. There are different 
hypotheses about whether people with pre-existing CLD (especially chronic obstructive pulmonary disease, 
COPD) would be at a higher risk of infection with the SARS-CoV-2 virus and representing more severe symp-
toms than others.

Halpin et al.4 showed that the CLD prevalence among COVID-19 cases was less than the general population’s 
estimated  prevalence4. In a study from Italy (Mar 23, 2020), COPD was not reported for any of the patients who 
died from COVID-19 (n = 355, mean-age = 79.5)5. Similarly, in data from the US (Mar 31, 2020), chronic respira-
tory diseases were comorbidities in 8.5% of patients with COVID-19, compare to the Global Burden of Disease 
(GBD) estimate of 11.3% for the same  disease6. Several published studies show the synergistic effect of CLD 
in worsening the severity of COVID-197–11. Guan et al. reported more than 50% of chronic pulmonary disease 
presence for COVID-19 patients admitted to the  ICU12. In a meta-analysis study on both Chinese- and English-
language published articles, Zhao et al. showed that pre-existing COPD was significantly associated with a nearly 
fourfold higher risk of developing severe COVID-19. The association remained significant in the subgroup of 
patients with a death outcome or requiring ICU  admission8. Moreover, in large case-series, they reported a higher 
prevalence of COPD in patients with severe presentation and worse  outcomes9. In another meta-analysis (May 
1, 2020), the reported prevalence of COPD patients was 2% in COVID-19 cases. They showed that although the 
COPD prevalence was low, it was significantly associated with a higher risk of more severe COVID-19 (63%) and 
higher mortality (60%)13. Brake et al. reported higher (upregulated) expression of the angiotensin-converting 
enzyme 2 (ACE2) in resected lung tissue from COPD patients compared to those with healthy lung  function10. 
Some published evidence also indicates higher ACE2 expression in smokers compared to never smokers, which 
suggests that smokers can be more susceptible to infection by the SARS-CoV-2  virus10,11.

It is necessary to put all these findings into context and consider that people with CLD, especially past or 
current smokers, are more likely to have immune dysregulation. Therefore, these groups of people can be at 
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higher risk of developing more severe symptoms out of a simple upper respiratory infection (similar to the Bhat 
et al.  suggestion14).

Cardiovascular disease, CVD. In addition to respiratory complications, published studies are showing the 
impact of pre-exist CVDs on developing COVID-19 and on worsening its severity and clinical outcomes. Hen-
dren et al. showed that COVID-19 might cause myocarditis-like syndrome and acute myocardial injury associ-
ated with reduced left ventricular ejection fraction (LVEF), which can also be complicated by heart  failure15. A 
different analysis based on Chinese data showed that 8–20% of the patients hospitalized with COVID-19 had 
abnormal cardiac troponin I (cTnI), were also older and had more comorbid  diseases16,17. There is also published 
literature suggesting that SARS-CoV-2 can infect fibroblasts and cardiomyocytes via the ACE2-pathway causing 
myocardial  injury18–22. Moreover, it is shown that patients with viral myocarditis, which commonly exhibit chest 
pains, can mimic ventricular arrhythmia or coronary  syndrome23,24. Historically, research has shown a signifi-
cant increase in SARS patients’ mortality with pre-existing  CVD25–30.

Demographic and social factors. Age. People 65 years of age and older are at significantly higher risk 
of experiencing COVID-19 or hospitalization and death, especially if they have pre-existing comorbidities such 
as CVD, DM, CLD, Hypertensive heart disease, and  obesity31,32. Ferguson et al. reported that 27–71% of patients 
older than 60 years needed special care in an ICU with an infection fatality rate of about 2–9.5%33,34. Stang et al. 
discussed a potential bias in age-significance in COVID-19 patients due to overestimation caused by the limited 
testing capacity to more symptomatic patients. They showed that the fatality rate from COVID-19 started in-
creasing after the age of 60 years in Italy, Spain, and the  USA35,36. There is also a study on children with a median 
age of 7 years in China (April 1, 2020) in which most of the cases were male (not significant, though) with mild 
 symptoms37. Note that the evidence and data to confirm whether increase in mortality is directly related to age or 
other confounders related to age is still rather mixed. For instance, Starke et al.38 showed that when adjusting for 
other comorbidities, there is no additional risk of death by age. Other similar studies in  Austria39 and  Italy40 sup-
port the insignificant effect of age on COVID-19 severity and mortality rate, after accounting for other factors. 
However, recent studies in the USA (New York)41 and Brazil (Espírito Santo)42 showed an increase in COVID-19 
mortality (OR 6.3% in Brazil and OR 1.7 in the USA).

Gender. Most evidence suggests that men are infected at a higher rate than women by COVID-19 and exhibit 
a higher mortality rate. However, most studies showed no significant differences in infection and mortality 
between men and women in COVID-19  cases3,43. Wenham et al. indicated that although an equal number of 
male and female COVID-19 cases was observed, MR is different by gender. Wenham et al. also suggested that 
women can be at high risk of getting infected since they have more front-line interaction with communities and 
provide more informal care within families besides their physical and cultural  differences44,45.

Further, selected studies report significantly different gender-distributions between male and female COVID-
19 cases. For example, Zhao Y et al., using single-cell data, reported that ACE2 was upregulated in Asian males 
compared to women and other ethnicities, which may lead to more severe incidents of COVID-1911,46–49.

Environmental factors. Air pollution. Exposure to air pollution and particulate matter (PM) can have 
a positive association with increased risk of certain viral respiratory diseases such as influenza and SARS pan-
demic 2003. Studies show that exposure to PM increased the MR from 2009 H1N1 and Spanish  influenza50–53. 
Air pollution is also linked to cellular damage, inflammation, CVD, and CLD, which are potential comorbidities 
associated with COVID-19  severity50,54–56. Ye et al. showed that air pollution could also play a role in infectious 
disease transmission, although it has not been studied for COVID-19 as of May 15,  202057.

Wu et al. and Mollalo et al., in nationwide studies in the USA, showed that exposure to PM increased COVID-
19 mortality and  severity50,58,59. Setti et al. reported a significant relationship between PM and experiencing 
COVID-19 in Italy (Jan 1, 2020)60.

A number of studies did not confirm the association between air pollution and COVID-19 severity, mortal-
ity, and transmission. However, they agreed that since exposure to air pollution, and PM has a link with other 
complications, there can be a risk factor in increasing COVID-19 MR and disease  severity61–64.

Methods
Data resources. We collected county-level cumulative COVID-19 confirmed cases and death from Mar 25 
to Nov 12, 2020, across the contiguous United States from USAFacts (usafacts.org). As explained in the intro-
ductory section, we considered Mar 25 to Jun 3 as the “1st wave”, Jun 4 to Sep 2 as the “2nd wave”, and Sep 3 to 
Nov 12 as the “3rd wave” of COVID-19. For the 2nd and 3rd waves, we analyzed targeted counties in the sunbelt 
region (including AL, AZ, AR, CA, FL, GA, KS, LA, MS, NV, NM, NC, OK, SC, TX, TN, and UT states) and 
the great plains region (including IA, IL, IN, KS, MI, MO, MN, ND, NE, OH, SD, and WI states), respectively. 
MIR, as a proxy for survival rate, is calculated by dividing the number of confirmed deaths in each county by 
the confirmed cases in the same county at the same time-period multiplied by 100. MIR ranges from 0 to 100%, 
100% indicating the worst situation where all confirmed cases have died.

Thirty-eight potential risk factors (covariates), including county-level MR of comorbidities & disorders, 
demographics & social factors, and environmental factors, were retrieved from the University of Washington 
Global Health Data Exchange (http://ghdx.healt hdata .org/us-data). Comorbidities and disorders include CVD, 
cardiomyopathy and myocarditis and myocarditis, hypertensive heart disease, peripheral vascular disease, atrial 
fibrillation, cerebrovascular disease, diabetes, hepatitis, HIV/AIDS, tuberculosis (TB), lower respiratory infection, 
interstitial lung disease and pulmonary sarcoidosis, asthma, COPD, ischemia, mesothelioma, tracheal cancer, 

http://ghdx.healthdata.org/us-data
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leukemia, pancreatic cancer, rheumatic disease, drug use disorder, and alcohol use disorder. Demographics & 
social factors include age, female African American%, female white American%, male African American%, 
male white American%, Asian%, smokers%, unemployed%, income rate, food insecurity, fair/poor health, and 
uninsured%. Environmental factors include county population density, air quality index (AQI), temperature, 
and PM. A descriptive table, including all potential risk factors, is provided in Table S1).

Analysis (descriptive methods and models). We first provide summary statistics for COVID-19 data 
for the period under consideration. Full descriptive statistics for n = 38 potential risk factors are provided in 
Table S1in the Supplement.

Second, we applied GEE marginal approaches to model the COVID-19 MIR over time and found signifi-
cant risk factors. To this end, we first used the forward-selection method to select the most relevant risk factors 
(covariates) among the covariates using univariate GEE  models65, as follows:

where µij indicates the mean COVID-19 MIR for the ith county in week jth , β0 is the starting rate of MIR before 
considering the effect of any potential risk factor (intercept), β1 and β2 s are the effects of time and risk factors X 
(such as Asthma) on the COVID-19 MIR. For variable selection purposes, we chose variables with (univariate) 
P value < 0.2 to be included in the final multivariate GEE model, as follows:

where µij indicates the overall marginal mean MIR for the ith county in the jth week. α0 is the intercept and αp is 
the coefficient of the pth potential risk factor ( Xp ), p = 1, 2, . . . , n1 , where n1 is the total number of the selected 
variables based on the univariate GEE model (Eq. 1). Variables with (multivariate) P value < 0.05 will be selected 
as the potential risk factors. In each marginal model, an appropriate correlation structure (with the best good-
ness of fit index, QIC) was utilized. Statistical analysis and visualization for this step were performed using the 
geepack R-package (https ://cran.r-proje ct.org/web/packa ges/geepa ck/).

Third, we evaluated COVID-19 MIR growth trajectories over the study time periods (1st, 2nd, and 3rd waves) 
using a latent growth model (LGM). An LGM approach considers both the mean MIR differences between coun-
ties at each time point (inter-subject) and MIR growth trajectories over time (intra-subject). Specifically, suppose 
yti is the COVID-19 MIR in the ith county at time t  ; then, it can be modeled as  follows66:

where η0i and η1i are two latent growth factors and �t s are time scores (factor loadings); εti is a normally distrib-
uted error term for the ith county at time t  ; η0 and η1 indicate the estimated overall mean COVID-19 MIR in each 
county and the average rate of MIR change, respectively. We also employed a number of non-linear (quadratic) 
LGMs, based on a polynomial time function (quadratic or higher-order) of time  scores67 to decrease estimation 
bias to account for the MIR trajectories exhibiting non-linear behavior over time. The non-linear LGM using a 
quadratic time function is given by:

where η2 indicates the growth factor, which can be a concave or convex form of the COVID-19 MIR pattern over 
the study time periods (1st, 2nd, and 3rd waves), and �2t  are the squared time scores. Both linear and non-linear 
LGMs were applied to 1736 U.S. counties with MIR > 0, i.e., counties with at least one confirmed death between 
Mar 25 to Nov 12, 2020. We then used information criteria (AIC, BIC) to find the best model among linear and 
non-linear LGMs to determine the COVID-19 MIR changes and patterns over the study time. Smaller AIC and 
BIC values indicate a better fit of the underlying models. We also calculated Moran’s I68 to evaluate the spatial 
autocorrelation of COVID-19 MIR across the U.S. counties.

Fourth, we identified clusters of the U.S. counties based on the COVID-19 MIR growth trajectory over time 
using longitudinal  LGMMs66, as follows:

(1)
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where k is the upper bound of the number of the clusters, ηk00 indicates the initial COVID-19 MIR at the begin-
ning of the study, and ηk10 indicates the average rate of COVID-19 MIR change over time. To find the optimal 
number of clusters ( k ), we fit a series of LGMMs with different numbers of clusters of counties and conducted 
tests for the adequacy of the reduced models with respect to the number of clusters. Information criteria such as 
AIC, BIC, and a bootstrap likelihood ratio test (BLRT) were used to compare the k-cluster model to the (k − 1)

-clsuter  model69,70. Also, cluster sample sizes greater than 1% of the total sample size and a relative entropy (REN) 
statistic greater than 0.8 were considered as the qualified latent class membership classification  criteria71. The REN 

statistic for a k-class model is calculated as REN(k) = 1−
−
∑N

i=1

∑K
k=1 PiklnPik

N−lnK  , where k and i correspond to the 
number of clusters and counties, respectively, and Pik indicates the posterior probability for the ith county to be in 
cluster k . We then applied a multinomial logit model to find the significant risk factors in each cluster as follows:

where yi is a categorical variable with K possible categories (indicating the cluster number), αk is the intercept 
for cluster k , βk is a vector of regression coefficients of the pth potential risk factor ( Xp ), p = 1, 2, . . . , n1 , where 
n1 is the total number of the selected variables based on the univariate GEE model (Eq. 1).

Statistical analysis for LGMMs and multinomial logit model were performed using Mplus v6.12 (Muthén & 
Muthén, CA, USA, www.statm odel.com) and the nnet R-package (https ://cran.r-proje ct.org/web/packa ges/nnet/
index .html), respectively. The clusters’ geographical distribution was illustrated in a color-coded geographical 
map using ArcGIS 10.7 (ESRI, Redland, CA).

Results
During the 1st wave, the mean COVID-19 MIR in the contiguous United States significantly increased (P 
value < 0.001) from MIR = 0.8% on Mar 25 to MIR = 3.0% on April 22 (Table 1). Henceforth, the rate slightly 
increased (P value = 0.501) to MIR = 3.2% on April 29 and remained at this level until Jun 3, 2020 (Table 1). During 
the 2nd wave, for the targeted counties (counties in the states of AL, AZ, AR, CA, FL, GA, KS, LA, MS, NV, NM, 
NC, OK, SC, TX, TN, and UT), there were two significant decreases in the mean COVID-19 MIR from Jun 25 to Jul 
2 (MIR = 2.8% to MIR = 2.4%, P value = 0.031), and from Jul 2 to Jul 9 (MIR = 2.4% to MIR = 2.2%, P value = 0.043). 
At the beginning of the 3rd wave (Sep 3), for the targeted counties (counties in the states of IA, IL, IN, KS, MI, MO, 
MN, ND, NE, OH, SD, and WI), the mean COVID-19 MIR started from MIR = 1.8% and decreased to MIR = 1.6% 
by Oct 15, 2020. This rate then decreased to MIR = 1.4% by the end of the wave on Nov 12, 2020 (Table 1).

At the beginning of the 1st wave (Mar 25), about 93% (n = 2830) of the U.S. counties had zero confirmed death 
(MIR = 0%), which decreased to 42.9% (n = 1311) by the end of the 1st wave (Jun 3, 2020). This percentage at 
the beginning of the 2nd wave (Jun 4) for the states under consideration was 32.9% (n = 442) and decreased to 
11.2% (n = 150) by the end of this wave (Sep2, 2020). During the 3rd wave for the states under consideration, 
this rate started from 30.3% (n = 320) and decreased to 10.0% (n = 105).

On Jun 3, 2020, the median population of the 3050 U.S. counties was 25 884, with Loving county in Texas 
having the smallest population (n = 169) and Los Angeles County in California the largest one (n = 1,039,107). 
Queens County in New York state had the maximum number of confirmed cases at the beginning of the study on 
Mar 25 (n = 6,420), while Cook County in Illinois had the maximum confirmed cases (n = 80,204) at the end of 
the 1st wave on Jun 3, 2020; whereas the maximum number of confirmed death was reported in King County in 
Washington state on Mar 25 (n = 100) and in Kings County in New York state on Jun 3 (n = 6,774). On Jun 4 (the 
beginning of the 2nd wave for the states under consideration), Los Angeles County in CA had the maximum 
number of both confirmed cases (n = 59,650) and deaths (n = 2,531). This county had the maximum number of 
both confirmed cases (n = 243,935) and deaths (n = 5,878) at the end of the 2nd wave (Sep 2), as well. During the 
3rd wave for the states under consideration, Cook County in IL had the maximum number of cases (n = 128,012 
on Sep 3 and n = 227,425 on Nov12) and deaths (n = 5,080 on Sep 3 and n = 5,667 on Nov 12).

Based on the univariate variable selection method (Table 2), some potential risk factors were excluded from 
the final analysis. The description table of the potential risk factors is provided in Table S1 in the Supplement.

Results of the final multivariate GEE model for the 1st wave (Table 3) showed significant positive associations 
between COVID-19 MIR and cardiomyopathy and myocarditis (β = 0.15%, P value < 0.001), hypertensive heart 
disease (β = 0.11%, P value = 0.001), peripheral vascular disease (β = 0.31%, P value = 0.038), cerebrovascular dis-
ease (β = 0.07%, P value = 0.034), ischemia (β = 0.08%, P value = 0.017), mesothelioma (β = 0.58%, P value = 0.031), 
pancreatic cancer (β = 0.52%, P value < 0.001), drug use disorder (β = 0.08%, P value < 0.001), and smokers% 
(β = 0.11%, P value = 0.019). Whereas, there were negative associations between COVID-19 MIR and CVD 
(β =  − 0.08%, P value = 0.011), tracheal cancer (β =  − 0.03%, P value < 0.001), alcohol use disorder (β =  − 0.17%, 
P value = 0.002), and fair/poor health (β =  − 0.09%, P value = 0.024).

During the 2nd wave, there were positive associations between COVID-19 MIR and cardiomyopathy and 
myocarditis (β = 0.12%, P value = 0.004 ), hypertensive heart disease (β = 0.09%, P value = 0.005), cerebrovascular 
disease (β = 0.07%, P value = 0.025), HIV/AIDS (β = 0.09%, P value = 0.020), ischemia (β = 0.06%, P value = 0.035), 
rheumatic disease (β = 0.42%, P value < 0.001), age (β = 0.12%, P value < 0.001), uninsured% (β = 0.08%, P 

(5)

ykit = ηki0 + ηki1�
k
t + εkit ,

ηki0 = ηk00 + εki0,

ηki1 = ηk10 + εki1,

(6)ln
p
(

yi = k
)

p
(

yi = 0
) = αk +

n1
∑

p=1

βpXp, k = 1, . . . ,K(cluster)
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value = 0.002), and population density (β = 0.0003%, P value = 0.011). Whereas, there were negative associations 
between COVID-19 MIR and CVD (β =  − 0.06%, P value = 0.036), asthma (β =  − 0.75%, P value = 0.011), and 
tracheal cancer (β =  − 0.02%, P value = 0.022).

During the 3rd wave, there were positive associations between COVID-19 MIR and diabetes (β = 0.04%, 
P value = 0.044), interstitial lung disease & pulmonary sarcoidosis (β = 0.15%, P value = 0.046), female-AA% 
(β = 6.85%, P value = 0.004), smokers% (β = 0.08%, P value = 0.035), and population density (β = 0.0001%, P 
value < 0.001). Whereas, there were negative associations between COVID-19 MIR and hepatitis (β =  − 3.31%, 
P value = 0.021), asthma (β =  − 0.65%, P value = 0.029), alcohol use disorder (β =  − 0.08%, P value = 0.030), male-
AA% (β =  − 6.88%, P value < 0.001), fair/poor health (β =  − 0.09%, P value = 0.016), and PM (β =  − 0.49%, P 
value = 0.015).

The effect of time on the COVID-19 MIR was significant and negative for both the 2nd (β =  − 0.09, P 
value < 0.001) and the 3rd (β =  − 0.03, P value < 0.001) waves, suggesting that the use of longitudinal (repeated 
measures) approaches instead of cross-sectional studies are more suitable to evaluate the growth trajectory of 
COVID-19 MIR over time.

Tables S2–S4 show the full results based on the LGMs. Based on the information criteria, a non-linear LGM 
with a quadratic term exhibited a better fit than the linear LGM. Figure 1 shows the overall COVID-19 MIR 

Table 1.  Descriptive statistics of COVID-19 MIR in the United States for the 1st wave (Mar 25–Jun 3, 2020; 
n = 3050 counties), the 2nd wave (Jun 4–Sep 2, n = 1344) and the 3rd wave (Sep 3–Nov 12, n = 1055). *Year of 
2020. **Mean difference between mean COVID-19 MIR at each time and the previous time. ** P values from 
the t test comparing mean COVID-19 MIR in each time with the previous time. Bold values are statistically 
significant for P < 0.05.

Wave Time*

COVID-19 MIR P value***

Minimum (N, %) Maximum (N, %) Mean (%) SD (%) Mean Difference (%)**

1st

Mar 25 0.0 (2830, 92.8%) 1.0 (9, 0.3%) 0.8 6.5 NA NA

Apr 1 0.0 (2507, 82.2%) 1.0 (11, 0.4%) 1.6 7.5 0.7  < 0.001

Apr 8 0.0 (2185, 71.6%) 1.0 (10, 0.3%) 2.1 7.9 0.5 0.004

Apr 15 0.0 (1936, 63.5%) 1.0 (7, 0.2%) 2.6 6.4 0.5 0.002

Apr 22 0.0 (1763, 57.8%) 1.0 (8, 0.3%) 3.0 6.4 0.4 0.020

Apr 29 0.0 (1643, 53.9%) 1.0 (4, 0.1%) 3.2 5.4 0.1 0.501

May 6 0.0 (1553, 50.9%) 0.55 (9, 0.3%) 3.2 5.1 0.08 0.600

May 13 0.0 (1487, 48.8%) 0.50 (3, 0.1%) 3.2 5.2 0.02 0.900

May 20 0.0 (1417, 46.4%) 1.0 (1, 0.0%) 3.2 5.1 0.02 0.900

May 27 0.0 (1376, 45.1%) 1.0 (1, 0.0%) 3.2 5.2  − 0.00 0.989

Jun 3 0.0 (1311, 42.9%) 1.0 (1, 0.0%) 3.2 5.0  − 0.01 0.900

2nd

Jun 4 0.0 (442, 32.9%) 0.5 (2, 0.1%) 3.3 4.6 NA NA

Jun 11 0.0 (426, 31.7%) 0.5 (3, 0.2%) 3.2 4.5  − 0.1 0.488

Jun 18 0.0 (406, 30.2%) 0.5 (3, 0.2%) 3.0 4.3  − 0.2 0.267

Jun 25 0.0 (399, 29.7%) 0.5 (3, 0.2%) 2.8 4.2  − 0.3 0.128

Jul 2 0.0 (386, 28.7%) 0.5 (2, 0.1%) 2.4 3.7  − 0.3 0.031

Jul 9 0.0 (368, 27.4%) 0.5 (2, 0.1%) 2.2 3.3  − 0.3 0.043

Jul 16 0.0 (350, 26.0%) 0.5 (1, 0.1%) 2.0 2.9  − 0.2 0.074

Jul 23 0.0 (318, 23.7%) 0.3 (1, 0.1%) 1.8 2.4  − 0.1 0.190

Jul 30 0.0 (249, 18.5%) 0.2 (2, 0.1%) 1.9 2.4 0.1 0.292

Aug 6 0.0 (222, 16.5%) 0.5 (1, 0.1%) 2.0 2.6 0.1 0.615

Aug 13 0.0 (195, 14.5%) 0.5 (1, 0.1%) 2.1 2.5 0.1 0.351

Aug 20 0.0 (181, 13.5%) 0.5 (1, 0.1%) 2.1 2.5 0.05 0.577

Aug 27 0.0 (165, 12.3%) 0.5 (1, 0.1%) 2.2 2.4 0.1 0.476

Sep 2 0.0 (150, 11.2%) 0.4 (1, 0.1%) 2.2 2.2 0.02 0.788

3rd

Sep 3 0.0 (320, 30.3%) 0.2 (1, 0.1%) 1.8 2.3 NA NA

Sep 10 0.0 (296, 28.1%) 0.3 (1, 0.1%) 1.8 2.3 0.0 0.933

Sep 17 0.0 (284, 26.9%) 0.3 (1, 0.1%) 1.7 2.2  − 0.1 0.578

Sep 24 0.0 (263, 24.9%) 0.3 (1, 0.1%) 1.7 2.2 0.0 0.812

Oct 1 0.0 (235, 22.3%) 0.3 (1, 0.1%) 1.7 2.1 0.0 0.916

Oct 8 0.0 (219, 20.8%) 0.3 (1, 0.1%) 1.7 2.0 0.0 0.736

Oct 15 0.0 (188, 17.8%) 0.3 (1, 0.1%) 1.6 1.9 0.0 0.674

Oct 22 0.0 (167, 15.8%) 0.2 (1, 0.1%) 1.6 1.7 0.0 0.849

Oct 29 0.0 (144, 13.6%) 0.2 (1, 0.1%) 1.6 1.6 0.0 0.520

Nov 5 0.0 (119, 11.3%) 0.2 (1, 0.1%) 1.5 1.4  − 0.1 0.376

Nov 12 0.0 (105, 10.0%) 0.2 (1, 0.1%) 1.4 1.3  − 0.1 0.237
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non-linear growth trajectories for all three waves. The overall growth trajectory of the estimated mean COVID-
19 MIR for 1736 U.S. counties (with MIR > 0) during the 1st wave showed a sharp increase from MIR = 1.9% on 
Mar 25 to MIR = 5.6% on April 29. Henceforth, the rate slightly increased to MIR = 5.9% on May 20 and then 
slightly decreased to MIR = 5.7% till Jun 3, 2020 (Fig. 1A, Table S2). During the 2nd wave for the states under 
consideration, the estimated mean COVID-19 MIR showed a sharp decrease from MIR = 3.5% on Jun 4 to 
MIR = 2.1% on Jul 30. Hereafter, the rate slightly increased to MIR = 2.4% till Aug 27, 2020 (Fig. 1B, Table S3). 
During the 3rd wave for the states under consideration, the mean COVID-19 MIR started from MIR = 1.9% 
on Sep 3 and decreased to MIR = 1.6% till Nov 12, 2020 (Fig. 1C, Table S4). Note that for the targeted counties 
(great plains) during the 3rd wave, the mean COVID-19 MIR was already elevated, therefore, we observe a 

Table 2.  Univariate GEE variable selection results. COVID-19 MIR risk factors based on univariate 
longitudinal GEE models (Mar 25 to Nov 12, 2020, USA). * P value < 0.2 is considered as significant. Bold 
values are statistically significant for P < 0.05.

Variable

1st wave 2nd wave 3rd wave

Est. (%) P value* Est. (%) P value Est. (%) P value

Time 0.21  < 0.001 0.03  < 0.001  − 0.03  < 0.001

Comorbidities and disorders

CVD 0.004 0.003 0.005  < 0.001 0.01  < 0.001

Cardiomyopathy and myocarditis 0.21  < 0.001 0.13  < 0.001 0.12  < 0.001

Hypertensive heart disease 0.06  < 0.001 0.05  < 0.001 0.05  < 0.001

Peripheral vascular disease 0.42 0.008 0.29 0.010 0.37  < 0.001

Atrial fibrillation  − 0.14  < 0.001  − 0.20  < 0.001 0.01 0.788

Cerebrovascular disease 0.01 0.100 0.01 0.073 0.01 0.055

Diabetes 0.08  < 0.001 0.07 0.001 0.08  < 0.001

Hepatitis 0.72 0.158  − 0.31 0.146 4.54  < 0.001

HIV/AIDS 0.23 0.022 0.17 0.046 0.83  < 0.001

TB 2.02  < 0.001 3.45  < 0.001 0.38 0.196

Lower respiratory infection 0.02 0.026 0.03  < 0.001 0.02  < 0.001

Interstitial lung disease and pulmonary sarcoidosis 0.23  < 0.001 0.04 0.544 0.19  < 0.001

Asthma 0.005 0.980 0.93  < 0.001  − 0.60 0.003

COPD 0.002 0.703 0.002 0.626 0.03  < 0.001

Ischemia 0.002 0.074 0.004 0.030 0.01  < 0.001

Mesothelioma 0.83 0.002  − 0.44 0.096 0.72 0.003

Tracheal cancer 0.02  < 0.001 0.01 0.144 0.02  < 0.001

Leukemia 0.08 0.402  − 0.05 0.619 0.12 0.086

Pancreatic cancer 0.48  < 0.001 0.28  < 0.001 0.35  < 0.001

Rheumatic disease 0.02 0.774 0.42  < 0.001  − 0.10 0.307

Drug use disorder 0.06  < 0.001  − 0.01 0.306 0.08  < 0.001

Alcohol use disorder  − 0.08  < 0.001 0.03 0.344  − 0.03 0.137

Demographics and social

Age  − 0.34 0.230 0.07 0.039 0.0001 0.952

Female-AA% 3.82  < 0.001 3.58  < 0.001 5.68  < 0.001

Female-WA%  − 3.21  < 0.001  − 3.80  < 0.001  − 0.66 0.143

Male-AA% 3.86  < 0.001 3.71  < 0.001 4.38  < 0.001

Male-WA%  − 3.26  < 0.001  − 3.92  < 0.001  − 0.41 0.367

Asian% 0.13  < 0.001  − 0.03 0.012 0.02 0.444

Smokers% 0.07 0.004 0.09  < 0.001 0.07  < 0.001

Unemployed% 0.18  < 0.001 0.24  < 0.001 0.21  < 0.001

Income rate 0.40  < 0.001 0.66  < 0.001 0.13 0.128

Uninsured%  − 0.04 0.008 0.06 0.004  − 0.03 0.012

Food insecurity 0.08  < 0.001 0.13  < 0.001 0.07  < 0.001

Fair/poor health 0.03 0.124 0.08  < 0.001 0.05  < 0.001

Environmental

Population density 0.004  < 0.001 0.0002 0.121 0.0001  < 0.001

AQI 0.10  < 0.001 0.03 0.028 0.04  < 0.001

Temperature 0.04  < 0.001 0.005  < 0.001 0.06  < 0.001

PM 0.38  < 0.001 0.11 0.050 0.12 0.002
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constant decreas in the growth trajectory. Moreover, the 3rd wave is still in progress at the time that marks the 
end of our observation period (Nov 2020).

A clustered pattern of COVID-19 MIR across the U.S. is confirmed by Moran’s I statistics (1st wave: MIR-
Morans’I = 0.46, P value < 0.001; 2nd wave: MIR-Morans’I = 0.38, P value < 0.001; 3rd wave: MIR-Morans’I = 0.41, 
P value < 0.001).

Based on the LGMM results, an 8-cluster non-linear model for the 1st wave, a 5-cluster non-linear model for 
the 2nd wave, and a 4-cluster non-linear model for the 3rd wave were selected as the best models to find clusters 
of the U.S. counties. Detailed results for the LGMM models are provided in tables S5–S9. Table 4 and Fig. 2 show 
the detailed MIR information over time (factor loadings are reported in Table S6).

Table 3.  Multivariate GEE mo**del’s results. COVID-19 MIR risk factors based on a multivariate longitudinal 
GEE model (Mar 25 to Nov 12, 2020, USA). *P value < 0.05 is considered as significant. Bold values are 
statistically significant for P < 0.05.

Variable

1st wave 2nd wave 3rd wave

Est. (%) P value* Est. (%) P value Est. (%) P value

Time 0.01 0.501  − 0.09  < 0.001  − 0.03  < 0.001

Comorbidities and disorders

CVD  − 0.08 0.011  − 0.06 0.036 0.01 0.768

Cardiomyopathy and myocarditis 0.15  < 0.001 0.12 0.004 0.00 0.865

Hypertensive heart disease 0.11 0.001 0.09 0.005 0.02 0.461

Peripheral vascular disease 0.31 0.038 0.13 0.321  − 0.07 0.717

Atrial fibrillation 0.00 0.961  − 0.04 0.418 – –

Cerebrovascular disease 0.07 0.034 0.07 0.025  − 0.01 0.595

Diabetes 0.02 0.514  − 0.01 0.671 0.04 0.044

Hepatitis  − 0.27 0.629  − 0.15 0.704  − 3.33 0.021

HIV/AIDS 0.04 0.497 0.09 0.020 0.36 0.264

TB  − 0.30 0.666  − 0.30 0.684 0.05 0.951

Lower respiratory infection 0.00 0.976 0.01 0.135 0.01 0.237

Interstitial lung disease and pulmonary sarcoidosis 0.06 0.487 – – 0.15 0.046

Asthma – –  − 0.75 0.011  − 0.65 0.029

COPD – – – – 0.00 0.890

Ischemia 0.08 0.017 0.06 0.035 0.00 0.994

Mesothelioma 0.58 0.031  − 0.03 0.915 0.32 0.236

Tracheal cancer  − 0.03  < 0.001  − 0.02 0.022  − 0.02 0.091

Leukemia – – – –  − 0.03 0.784

Pancreatic cancer 0.52  < 0.001 0.13 0.120 0.19 0.061

Rheumatic disease – – 0.42  < 0.001 – –

Drug use disorder 0.08  < 0.001  −  − 0.02 0.214

Alcohol use disorder  − 0.17 0.002  −  −  − 0.08 0.030

Demographics and social

Age – – 0.12  < 0.001 – –

Female-AA% 12.70 0.241  − 16.20 0.199 6.85 0.004

Female-WA% 7.59 0.398  − 23.20 0.095 0.29 0.796

Male-AA%  − 15.90 0.165 15.40 0.243  − 6.88  < 0.001

Male-WA%  − 10.90 0.254 20.40 0.165 – –

Asian% 0.01 0.814 0.02 0.436 – –

Smokers% 0.11 0.019 0.01 0.783 0.08 0.035

Unemployed% 0.05 0.466 0.09 0.080 0.12 0.108

Income rate 0.02 0.891 0.13 0.468 0.02 0.559

Uninsured% 0.00 0.864 0.08 0.002 0.00 0.840

Food insecurity 0.02 0.580 0.04 0.297  − 0.03 0.324

Fair/poor health  − 0.09 0.024  − 0.06 0.074  − 0.09 0.016

Environmental

Population density 0.00 0.196 0.0003 0.011 0.0001  < 0.001

AQI 0.05 0.720  − 0.20 0.072 0.11 0.057

Temperature 0.01 0.501 0.02 0.287 0.03 0.110

PM 0.03 0.953 0.63 0.131  − 0.49 0.015
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Details of the nine clusters (including a cluster of counties with zero MIR) during the 1st wave are as follows: 
Cluster 0 contains 1314 counties with zero confirmed death from COVID-19 (i.e., MIR = 0) during the study 
time (1st wave).

Cluster 1, with 52 counties from 28 different states, had the highest MIR at the beginning of the study (inter-
cept = 12.9% ± 3.1%) compare to other clusters (Table 4). This cluster continued having the highest MIR at the 
end of the study, on Jun 3, 2020 (Table S7, MIR = 13.2%). IA (Audubon, Floyd, and Guthrie counties), IL (Car-
roll, Clinton, and Jasper counties), NC (McDowell, Moore, Orange, and Polk counties), OK (Cotton, Le Flore, 
Mayes counties), and VA (Northumberland, Page, and Scott counties) were the most frequent states present in 
this cluster. Within this cluster, McHenry (ND), Crowley (CO), Terrell (GA), and Shelby (KY) counties had the 
highest COVID-19 MIR. COVID-19 MIR growth trajectory for the counties in this cluster showed a 5% decrease 
from Mar 25 (MIR = 12.9%) to April 1 (MIR = 7.9%) and stayed steady (flat) till April 8, 2020. From here, the 
rate slightly increased to MIR = 9% and stayed at this level till May 6, and thereafter, had another increase to 
MIR = 13.2% on Jun 3, 2020.

Cluster 2 includes 74 counties from 27 different states. MI (Delta, Grand Traverse, Iosco, Lapeer, Oscoda, and 
Wexford counties), and WI (Adams, Bayfield, Buffalo, Clark, Door, Grant, and Marquette counties) were the most 
frequent states present in this cluster. Within this cluster, Winona (MN), Emmons (ND), and Lyon (KY) coun-
ties had the highest COVID-19 MIR. COVID-19 MIR growth trajectory for the counties in this cluster showed 
a 1.4% decrease from Mar 25 (MIR = 2.2%) to April 1 (MIR = 0.8%). From here, the rate slightly increased to 
MIR = 15.4% till May 6. From here till May 20, the rate slightly decreased to MIR = 13.7%), and again increased 
to MIR = 15.5% till May 27. Hereafter, the rate decreased to MIR = 9.1% till the end of the 1st wave (Jun 3, 2020).

Figure 1.  Overall growth trajectories of observed and estimated COVID-19 MIR for the (A). 1st wave, (B) 2nd 
wave, and (C) 3rd wave. Green lines indicate the estimated MIR trajectories using an LGM model (linear and 
non-linear). Orange lines indicate the observed mean MIR.
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Cluster 3 includes 66 counties from 21 different states. IL (Bond, Boone, Ford, Jackson, and Tazewell coun-
ties), KY (Sumner, Grant, Laurel, Lincoln, McLean, Meade, and Pike counties), NC (Craven, Hertford, Jones, 
Rockingham, Wilkes, and Yadkin counties), TN (Carter Hamblen Hamilton, Macon, and Obion counties), and 
TX (Cherokee, Crosby, Grimes, Hale, Howard, Kleberg, Medina, and Wise counties) were the most frequent 
states present in this cluster. Within this cluster, Hamilton (TN), Benton (OR), Appanoose (IA), Crosby (TX), and 
Dickinson (MI) counties had the highest COVID-19 MIR. COVID-19 MIR growth trajectory for the counties 
in this cluster showed a 1.2% decrease from Mar 25 (MIR = 1.9%) to April 1 (MIR = 0.7%). From here, the rate 
increased to MIR = 22.3% on April 22 and then decreased to MIR = 5.6% by the end of the 1st wave on Jun 3, 2020.

Cluster 4 includes 39 counties from 21 different states. MN (Brown, Itasca, and Kanabec counties), TX (Fisher, 
Harrison, Jackson, Lamar, Panola, Red River, Walker, and Wood counties), and VA (Brunswick, Campbell, and 
Northampton counties) were the most frequent states present in this cluster. Within this cluster, Beadle (SD), 
Panola (TX), Brown (MN), and Wyoming (PA) counties had the highest COVID-19 MIR. COVID-19 MIR 
growth trajectory for the counties in this cluster showed a 0.3% increase from Mar 25 (MIR = 0.8%) to April 1 
(MIR = 1.1%) and stayed steady (flat) till May 13, 2020. From here, the rate sharply increased to MIR = 14.4% till 
May 27, and thereafter, slightly decreased to MIR = 10.5% till Jun 3, 2020.

Cluster 5 includes 1406 counties from 45 different states. GA (including 117 counties), TX (including 85 
counties), MS (including 69 counties), IN (including 63 counties), NC (including 62 counties), AL (including 
54 counties), FL (including 53 counties), OH (including 51 counties), PA (including 50 counties), LA (including 
49 counties), NY (including 49 counties), MI (including 46 counties), and IL (including 40 counties) were the 
most frequent states present in this cluster. Within this cluster, Pennington (SD), Dade (GA), Oglethorpe (GA), 
Marquette (MI), and Chaffee (CO) counties had the highest COVID-19 MIR. COVID-19 MIR growth trajectory 
for the counties in this cluster showed a slight increase from Mar 25 (MIR = 1.0%) to May 27 (MIR = 5.0%) and 
thereafter, had a slight decrease to MIR = 4.5% till the end of the 1st wave (Jun 3, 2020).

Cluster 6 with 64 counties (from 28 different states) had the second-highest MIR at the beginning of the study 
(intercept = 9.8% ± 3.0%) compare to other clusters. However, on Jun 3, it had the third-lowest MIR compare to 
other clusters. GA (with seven counties), KY (with four counties), MI (with five counties), OH (with six counties), 
and VA (with six counties) are the most frequent states in this cluster. Iron (WI), Gallia (OH), Bourbon (KY), and 
Missaukee (MI) had the highest COVID-19 MIR trajectories within this cluster. COVID-19 MIR growth trajec-
tory had a sharp increase from MIR = 9.8% on Mar 25 to MIR = 36.0% on April 1, 2020. Then. The rate had a sharp 
decrease to MIR = 9.5% till April 22 and continued decreasing with a gentle slope till Jun 3, 2020 (MIR = 7.7%).

Cluster 7 includes 12 counties from 11 different states. TX (Lavaca and Barbour counties) was the most 
frequent state present in this cluster. Within this cluster, Catron (NM) county had the highest COVID-19 MIR. 
COVID-19 MIR growth trajectory for the counties in this cluster was MIR = 1.5% on Mar 25 and stayed steady 
(flat) till April 15. From here, the rate had a sharp increase to MIR = 26.2% till April 29, but thereafter, it had a 

Table 4.  GLMM clustering results. Clustering (based on COVID-19 MIR > 0) of the 1736 counties during 
the 1st wave (Mar 25–Jun 3, 2020), 1344 targeted counties (sunbelt region) during the 2nd wave (Jun 4–Sep 
2, 2020), and 1055 targeted counties (great plains region) during the 3rd wave (Sep 3–Nov 12, 2020), USA. * 
Intercept indicates the estimated mean MIR of COVID-19 at the beginning of the wave, for each cluster. ** 
Slope indicates the overall change of MIR of COVID-19 during each wave, for each cluster.

Wave Cluster Cluster size N (%)

Intercept* Slope**

Mean (SE) P value Mean (SE) P value

1st

0 1314 (43.1%) 0% (0%) NA 0% (0%) NA

1 52 (1.7%) 12.9% (3.1%)  < 0.001  − 1.0% (0.6%) 0.122

2 74 (2.4%) 2.2% (0.8%) 0.010 3.5% (1.0%)  < 0.001

3 66 (2.1%) 1.9% (0.9%) 0.027 2.8% (0.4%)  < 0.001

4 39 (1.3%) 0.9% (0.5%) 0.089 2.0% (0.4%)  < 0.001

5 1406 (46.1%) 1.0% (0.3%)  < 0.001  − 3.0% (0.5%)  < 0.001

6 64 (2.1%) 9.8% (3.0%) 0.001 3.4% (0.7%)  < 0.001

7 12 (0.4%) 1.5% (1.3%) 0.236  − 3.1% (0.5%)  < 0.001

8 23 (0.8%) 1.9% (1.3%) 0.127  − 4.2% (0.0%)  − 

2nd

0 156 (11.6%) 0% (0%) NA 0% (0%) NA

1 32 (2.4%) 1.5% (0.3%)  < 0.001 10.6% (4.5%) 0.018

2 1035 (77.0%) 3.0% (0.2%)  < 0.001 12.5% (4.3%) 0.004

3 43 (3.2%) 10.6% (1.8%)  < 0.001 20.7% (12.7%) 0.102

4 59 (4.4%) 1.8% (0.3%)  < 0.001 16.3% (6.5%) 0.012

5 19 (1.4%) 14.1% (4.5%) 0.002 74.7% (0.0%)  − 

3rd

0 111 (10.5%) 0% (0%) NA 0% (0%) NA

1 125 (11.8%) 5.2% (0.2%)  < 0.001  − 3.7% (0.5%)  < 0.001

2 47 (4.5%) 1.0% (0.6%) 0.082 3.1% (1.8%) 0.088

3 11 (1.0%) 3.5% (1.1%) 0.002  − 20.0% (3.2%)  < 0.001

4 761 (72.2%) 1.4% (0.1%)  < 0.001  − 0.9% (0.3%) 0.001
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Figure 2.  Estimated mean COVID-19 MIR growth trajectories for (A) 8 clusters of the U.S. counties during the 
1st wave (Mar 25–Jun 3, 2020), (B) 5 clusters of the targeted U.S. counties (sunbelt region) during the 2nd wave 
(Jun 4–Sep 2, 2020), and C. 4 cluster of the targeted U.S. counties (great plains) during the 3rd wave (Sep 3–Nov 
12, 2020).
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sharp decrease to MIR = 14.5% till May 6, 2020. This rate then had a slight decrease to MIR = 11.6% till the end 
of the 1st wave (Jun 3, 2020).

Cluster 8 includes 23 counties from 13 different states. OH (Highland, Perry, and Putnam counties), and 
TX (Comanche, Hansford, Hartley, and Martin counties) were the most frequent states present in this cluster. 
Within this cluster, Shasta (CA), Clare (MI), Jackson (KY), Mahnomen (MN), Carlisle (KY), Comanche (TX), 
and Martin (TX) counties had the highest COVID-19 MIR. COVID-19 MIR growth trajectory for the counties 
in this cluster was MIR = 1.9% on Mar 25 and stayed steady (flat) till April 29, 2020. From here, the rate had a 
sharp increase to MIR = 18.6% till May 6, but thereafter, it had a sharp decrease to MIR = 12.7% till May 20, 2020. 
From here, this rate had a slight decrease to MIR = 12.2% till the end of the 1st wave (Jun 3, 2020).

Details of the six clusters (including the cluster of counties with zero MIR) during the 2nd wave are as follows: 
Cluster 0 contains 156 counties with zero confirmed death from COVID-19 during the 2nd wave (i.e., MIR = 0). 
Cluster 1, with 32 counties from 7 different states (AR, GA, LA, MS, NM, SC, and TX), had the lowest MIR at 
the beginning of the 2nd wave (Intercept = 1.5% ± 0.3%). However, by the end of the 2nd wave (Sep 2, 2020), it 
had the second-highest MIR (MIR = 4.8%) compare to other clusters (with the maximum increase in COVID-19 
MIR of 3.3%↑, Table S8). TX (Aransas, Atascosa, Bandera, Blanco, Burleson, Dickens, Duval, Fayette, Gillespie, 
Goliad, Grimes, Guadalupe, Hudspeth, Kenedy, Liberty, Marion, Medina, Newton, Sabine, San Jacinto, Stephens, 
Throckmorton, Upton, Wharton, and Zavala counties) was the most frequent state present in this cluster. Within 
this cluster, Blanco (TX), Sabine (TX), Marion (TX), and Throckmorton (TX) counties had the highest COVID-
19 MIR. COVID-19 MIR growth trajectory for the counties in this cluster showed a 0.9% decrease from Jun 4 
(MIR = 1.5%) to Jun 18 (MIR = 0.6%) and stayed steady (flat) till Jul 16, 2020. Hereafter, the rate sharply increased 
to MIR = 6.3% till Jul 30, it slightly decreased to MIR = 4.8% till Aug 27, 2020.

Cluster 2 includes 1035 counties from 17 different states. TX (156 counties), GA (131 counties), NC (89 
counties), and TN (87 counties) were the most frequent states present in this cluster. Within this cluster, Crosby 
(TX), Pearl River (MS), and Stonewall (TX) counties had the highest COVID-19 MIR. COVID-19 MIR growth 
trajectory for the counties in this cluster was MIR = 3.0% at the beginning of the 2nd wave (Jul 4) and steadily 
decreased to MIR = 1.8% till Aug 27, 2020.

Cluster 3, with 43 counties from 11 different states, had the second-highest MIR at the beginning of the 2nd 
wave (intercept = 10.6% ± 1.8%) compare to other clusters (Table 4). However, on Sep 2 (end of the 2nd wave), it 
had the highest MIR (MIR = 8.0%) compare to other clusters. TX (Briscoe, Coke, Culberson, Floyd, Hall, Lamb, 
Lynn, Oldham, Reagan, Red River, San Augustine, and Washington counties), and GA (Butts, Early, Hancock, 
Mitchell, Randolph, Sumter, Terrell, Turner, Upson, and Wilcox counties) were the most frequent states present 
in this cluster. Within this cluster, Catron (NM), Hall (TX), and Morton (KS) counties had the highest COVID-
19 MIR. COVID-19 MIR growth trajectory for the counties in this cluster showed a 1.0% increase from Jun 4 
(MIR = 10.6%) to Jul 2 (MIR = 11.6%). From here, the rate decreased to MIR = 8.3% till Jul 30 and stayed steady 
till Aug 27, 2020.

Cluster 4 includes 59 counties from 15 different states. TX (25 counties), GA (Candler, Glascock, Hart, Lau-
rens, Warren, and Wheeler counties), and KS (Cloud, Jewell, Nemaha, Stafford, Stanton, and Trego counties) 
were the most frequent states present in this cluster. Within this cluster, Matagorda (TX), Lee (TX), Lowndes 
(MS), Newton (AR), and Trego (KS) counties had the highest COVID-19 MIR. COVID-19 MIR growth trajec-
tory for the counties in this cluster showed a 1.1% decrease from Jun 4 (MIR = 1.8%) to Jun 18 (MIR = 0.7%) 
and stayed steady (flat) till Jul 16, 2020. From here, the rate increased to MIR = 3.5% till Aug 13, and thereafter, 
slightly decreased to MIR = 3.3% till Aug 27, 2020.

Cluster 5, with 19 counties from 9 different states, had the highest MIR at the beginning of the study (inter-
cept = 14.1% ± 4.5%) compare to other clusters (Table 4). However, on Aug 27, it had the third-lowest MIR 
compare to other clusters (Table S7, MIR = 4.0%). TX (Brown, Callahan, Fisher, Hood, Martin, and Palo Pinto 
counties) and OK (Cotton, Delaware, Kiowa, and Latimer counties were the most frequent states present in this 
cluster. Within this cluster, Fisher (TX), Cotton (OK), and Jenkins (GA) counties had the highest COVID-19 
MIR. COVID-19 MIR growth trajectory for the counties in this cluster showed a 1.0% increase from Jun 4 
(MIR = 14.1%) to Jun 18 (MIR = 15.1%) but thereafter, had a sharp decrease to MIR = 5.2% till Jul 16, 2020. This 
rate slightly decreased to MIR = 4.0% till Aug 27, 2020.

Details of the five clusters (including the cluster of counties with zero MIR) during the 3rd wave are as fol-
lows: Cluster 0 contains 111 counties with zero confirmed death from COVID-19 during the 3rd wave (i.e., 
MIR = 0). Cluster 1, with 125 counties from 11 different states, had the highest MIR at the beginning of the 3rd 
wave (intercept = 5.2% ± 0.2%). However, by the end of the 3rd wave (Nov 12, 2020), it had the second-highest 
MIR (MIR = 3.6%) compare to other clusters (also, with the maximum decrease in COVID-19 MIR of 1.6%↓, 
Table S9). IN (25 counties) and MI (25 counties) were the most frequent states present in this cluster. Within 
this cluster, Morton (KS) and Monroe (OH) counties had the highest COVID-19 MIR. COVID-19 MIR growth 
trajectory for the counties in this cluster showed a 1.6% decrease from Sep 3, 2020 (MIR = 5.2%) to Nov 12, 2020 
(MIR = 3.6%).

Cluster 2 with 47 counties from 12 different states had the lowest MIR at the beginning of the 3rd wave 
(intercept = 1.0% ± 0.6%) compare to other clusters (Tables 4 and S9). However, at the end of the 3rd wave (Nov 
12, 2020), it had the third-highest MIR (MIR = 2.5%) with the highest increase in COVID-19 MIR over time. 
ND (Bottineau, Bowman, Divide, Emmons, McHenry, Morton Nelson, Renville, Sargent, and Sheridan coun-
ties), KS (Cheyenne, Decatur, Kingman, Lane, Lyon, Ness, Rooks, Russell, and Wilson counties), and IL (Clay, 
Edgar, Fayette, Greene, Hamilton, Marshall, and Wabash counties) were the most frequent states present in this 
cluster. Within this cluster, Jackson (SD), Bottineau (ND), and Ness (KS) counties had the highest COVID-19 
MIR. COVID-19 MIR growth trajectory for the counties in this cluster was MIR = 1.0% at the beginning of the 
3rd wave (Sep 3) and stayed steady (flat) till Sep 17, 2020. Hereafter, this rate had a sharp increase to MIR = 3.1% 
till Oct 15. From here, the rate decreased to MIR = 2.5% till Nov 12, 2020.
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Cluster 3, with 11 counties from 6 different states (IL, KS, MO, NE, ND, OH), had the second-highest MIR at 
the beginning of the 3rd wave (intercept = 3.5% ± 1.1%) compare to other clusters (Table 4). However, on Nov 12 
(end of the 3rd wave), it had the highest MIR (MIR = 3.8%) compare to other clusters. NE (Cherry, Dundy, and 
Perkins counties) was the most frequent state present in this cluster. Within this cluster, and Perkins (NE) coun-
ties had the highest COVID-19 MIR. COVID-19 MIR growth trajectory for the counties in this cluster showed 
a sharp increase (3.9%↑) from MIR = 3.5% on Sep 3 to MIR = 7.4% on Sep 17. From here, the rate decreased to 
MIR = 2.5% till Nov 12, 2020.

Cluster 4 includes 761 counties from 12 different states. MO (99 counties), IA (83 counties), IL (75 counties), 
and MN (74 counties) were the most frequent states present in this cluster. Within this cluster, Phillips (KS) and 
Renville (MN) counties had the highest COVID-19 MIR. COVID-19 MIR growth trajectory for the counties 
in this cluster was MIR = 1.4% at the beginning of the 3rd wave and decreased to MIR = 1.2% till the end of the 
wave (on Nov 12, 2020).

More information about the COVID-19 MIR estimation at both the beginning and the end of each wave, 
the amount of increase (or decrease) in this rate, and each cluster’s rank are presented in tables S7–S9. One 
important point in Table S7 is that during the 1st wave, counties in cluster 4 (MIR: 0.8% → 10.5%) and cluster 7 
(MIR: 1.5% → 11.6%) had the highest increase in COVID-19 MIR from Mar 25 to Jun 3, 2020. During the 2nd 
wave, counties in cluster 1 (MIR: 1.5% → 4.8%) had the highest increase in COVID-19 MIR; whereas, counties 
in cluster 5 (MIR: 14.1% → 4.0%) had the highest decrease in this rate from Mar 25 to Jun 3, 2020 (Table S8). 
During the 3rd wave, counties in cluster 2 (MIR: 1.0% → 2.5%) had the highest increase in this rate from Sep 
3 to Nov 12, 2020 (Table S9). Counties in cluster 1 (MIR: 5.2% → 3.6%) had the highest decrease in COVID-19 
MIR; however, it had the second-highest COVID-19 MIR compare to other clusters.

Tables 5, 6 and 7 show the significant risk factors in each cluster during the 1st, 2nd, and 3rd waves, respec-
tively. To find the odds ratios (ORs), we used cluster 0 as the baseline (with MIR = 0) and compared all other 
clusters to it. The full results of the multinomial logit models are provided in the Supplement (Tables S10–S12).

For the 1st wave, hypertensive heart disease (OR 1.4), cerebrovascular disease (OR 1.4), hepatitis (OR 1.1), 
TB (OR 1.5), ischemia (OR 1.3), pancreatic cancer (OR 1.7), drug use disorder (OR 1.1), and PM (OR 1.6) are 
significantly associated exhibiting a 40%, 40%, 10%, 50%, 30%, 70%, 10%, and 60% increase in the relative log-
odds of being in “vulnerable cluster 7” vs. cluster 0, respectively (Tables 5 and S10). Population density (OR 
1.01) is significantly associated with a 1% increase in the relative log-odds of being in cluster 1 vs. cluster 0. 
Hepatitis (OR 2.1), mesothelioma (OR 2.1), pancreatic cancer (OR 1.5), female AA% (OR 2.0), male-AA% (OR 
2.5), uninsured% (OR 1.1), and population density (OR 1.02) are significantly associated with 110%, 110%, 50%, 
100%, 150%, 10%, and 2% increase in the relative log-odds of being in cluster 2 vs. cluster 0, respectively. TB 
(OR 2.3), drug use disorder (OR 1.1), female AA% (OR 2.1), male AA% (OR 1.6), and population density (OR 
1.01) are significantly associated with 130%, 10%, 40%, 110%, 60%, and 1% increase in the relative log-odds 
of being in cluster 3 vs. cluster 0, respectively. Diabetes (OR 1.1), hepatitis (OR 4.8), mesothelioma (OR 3.3), 
female-AA% (OR 1.7), and food insecurity (OR 1.1) are significantly associated with 10%, 380%, 230%, 70%, and 
10% increase in the relative log-odds of being in cluster 4 vs. cluster 0, respectively. CVD (OR 1.1), hepatitis (OR 
10.7), female-AA% (OR 17.9), male-AA% (OR 5.0), Asian% (OR 1.3), uninsured% (OR 1.1), population density 
(OR 1.02), and AQI (OR 1.7) are significantly associated with an increase in the relative log-odds of being in 
cluster 5 vs. cluster 0. Drug use disorder (OR 1.1), female AA% (OR 3.0), male AA% (OR 3.0), and population 
density (OR 0.01) are significantly associated with 10%, 200%, 200%, and 2% increase in the relative log-odds 
of being in cluster 6 vs. cluster 0, respectively. Hepatitis (OR 1.6), and mesothelioma (OR 3.7) are significantly 
associated with 60% and 270% increase in the relative log-odds of being in cluster 8 vs. cluster 0. Table S10 
contains the detailed output of the multinomial logit model for all potential risk factors in each cluster separately.

For the 2nd wave, hepatitis (OR 13.1), HIV/AIDS (OR 2.3), TB (OR 2.1), unemployed% (OR 1.5), and 
temperature (OR 1.2) are significantly associated with a 1210%, 130%, 110%, 50%, and 20% increase in the 
relative log-odds of being in “vulnerable cluster 1” vs. cluster 0, respectively (Tables 6 and S11). Diabetes (OR 
1.1), hepatitis (OR 53.1), TB (OR 44.5), female AA% (OR 101.1), male WA% (OR 6.3), unemployed% (OR 1.1), 
population density (OR 1.01), and temperature (OR 1.1) are significantly associated with an increase in the 
relative log-odds of being in cluster 2 vs. cluster 0. HIV/AIDS (OR 2.9), rheumatic disease (OR 2.5), male AA% 
(OR 3.0), population density (OR 1.01), temperature (OR 1.1), and PM (11.7) are significantly associated with 
a 190%, 150%, 200%, 1%, 10%, and 1070% increase in the relative log-odds of being in cluster 3 vs. cluster 0, 
respectively. Unemployed% (OR 1.6), population density (OR 1.01), and temperature (OR 1.1) are significantly 
associated with a 60%, 1%, and 10% increase in the relative log-odds of being in cluster 4 vs. cluster 0. Hepatitis 
(OR 13.9), HIV/AIDS (OR 2.2), TB (OR 1.8), unemployed% (OR 1.5), and population density (OR 1.01) are 
significantly associated with a 1290%, 120%, 80%, 50%, and 1% increase in the relative log-odds of being in 
cluster 5 vs. cluster 0.

For the 3rd wave, cardiomyopathy and myocarditis (OR 1.3), diabetes (OR 1.2), TB (OR 3.2), mesothelioma 
(OR 9.3), female AA% (OR 33.4), smokers% (OR 1.3), and population density (OR 1.02) are significantly associ-
ated exhibiting an increase in the relative log-odds of being in “vulnerable cluster 1” vs. cluster 0 (Tables 7 and 
S12). HIV/AIDS (OR 4.0), TB (OR 33.6), Lower respiratory infection (OR 1.1), and mesothelioma (OR 20.5) are 
significantly associated with an increased relative log-odds of being in cluster 2 vs. cluster 0. HIV/AIDS (OR 
78.8), TB (OR 7.0), Lower respiratory infection (OR 1.1), and mesothelioma (OR 3.6) are significantly associated 
with an increased relative log-odds of being in cluster 3 vs. cluster 0. Cardiomyopathy and myocarditis (OR 
1.2), TB (OR 31.4), mesothelioma (OR 8.7), female AA% (OR 22.9), male AA% (OR 1.3), population density 
(OR 1.02), and AQI (OR 1.4) are significantly associated with an increase in the relative log-odds of being in 
cluster 4 vs. cluster 0.
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Figure 3 shows the geographical distribution of the clusters of the contiguous United States during the 1st 
(Mar 25–Jun 3, 2020), 2nd (Jun 4–Sep 2, 2020), and 3rd (Sep 3–Nov 12, 2020) waves, based on the estimated 
COVID-19 MIR growth trajectory over time.

Discussion
This study investigated the county-level COVID-19 confirmed cases and death from Mar 25 to Nov 12, 2020, in a 
longitudinal fashion in the contiguous United States. We considered Mar 25 to Jun 3 as the “1st wave”, Jun 4 to Sep 
2 as the “2nd wave”, and Sep 3 to Nov 12 as the “3rd wave” of COVID-19. We assessed the growth trajectories of 
COVID-19 MIR and found the county-level clusters of the contiguous United States with similarities in COVID-
19 MIR growth trajectory over time. We also considered the effects of different county-level potential risk factors 
on MIR (for each wave), including comorbidities & disorders, demographics & social factors, and environmental 
factors. We selected MIR as a measure of mortality since it also considers the number of confirmed cases to 
adjust the mortality rates. However, the estimates of all COVID-19 epidemiological-measures (i.e., incidence, 
prevalence, and mortality rates) are subject to bias due to the imprecise number of affected (confirmed) cases, 
especially those with mild or no disease symptoms. Moreover, there are not enough studies presenting and dis-
cussing county level risk factors, especially pre-existing comorbidities, with COVID-19 incidence and mortality.

Table 5.  1st Wave (Mar 25–Jun 3, 2020): significant risk factors and their odds ratios in each cluster compare 
to cluster 0 (counties with MIR = 0). Blank spots indicate the insignificant risk factors. *For instance, OR 1.1 
means that 1% increase in CVD MR is associated with a 10% increase in the relative log odds of being in 
cluster 5 vs. cluster 0 (MIR = 0).

Variable

Cluster

1 2 3 4 5 6 7 8

Comorbidities and disorders

CVD 1.1* 0.7

Cardiomyopathy and myocarditis

Hypertensive heart disease 1.4

Peripheral vascular disease 0.5

Atrial fibrillation 0.8

Cerebrovascular disease 0.9 1.4

Diabetes 1.1

Hepatitis 0.3 2.1 0.5 4.8 10.7 0.1 1.1 1.6

HIV/AIDS

TB 0.7 2.3 0.6 1.3 1.5

Lower respiratory infection 0.9

Interstitial lung disease and pulmonary sarcoidosis

Ischemia 0.9 1.3

Mesothelioma 0.2 2.1 3.3 0.8 3.7

Tracheal cancer

Pancreatic cancer 1.5 1.7

Drug use disorder 1.1 1.1 1.1

Alcohol use disorder 0.8

Demographics and social

Female-AA% 2.0 2.1 1.7 17.9 3.0 0.9

Female-WA% 0.2 0.1 0.1 0.3 0.1 0.1 0.5 0.4

Male-AA% 2.5 1.6 5.0 3.0 0.8 0.8

Male-WA% 0.2 0.1 0.1 0.3 0.4 0.1 0.5

Asian% 0.5 1.3

Smokers%

Unemployed%

Income rate 0.3

Uninsured% 1.1 1.1

Food insecurity 1.1 0.9

Fair/poor health 0.8 0.9 0.8

Environmental

Population density 1.01 1.02 1.01 1.02 1.01

AQI 1.7 0.8

Temperature 0.9

PM 0.1 1.6 0.7
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We found nine, six and five clusters of U.S. counties (including a cluster of counties with zero MIR) based 
on the COVID-19 MIR pattern (growth trajectory) using a longitudinal LGMM in the 1st, 2nd and 3rd waves, 
respectively. All counties in the same cluster have a similar COVID-19 MIR growth pattern over the study time. 
This approach considered both spatial and temporal heterogeneities in COVID-19 MIR due to pre-existing 
comorbidities, environmental factors, and demographics. We also identified significant risk factors associated 
with the identified clusters using a multinomial logit model. It is shown that different age and sex distributions 
in the U.S. counties impact differentially COVID-19 mortality and  severity72,73. Race is also a factor that leads 
to heterogeneity. For instance, it has been reported African Americans having a higher risk of getting infected, 
experiencing more severe COVID-19 and  death74. Further, note that about 43% of the northern and central U.S. 
counties did not experience death from COVID-19 until Jun 3.

During the 1st wave, nearly 116 counties in clusters 1 and 6 had the highest mean COVID-19 MIR at the 
beginning of the study on Mar 25, 2020. On Jun 3, 2020, cluster 1 still had the highest mean COVID-19 MIR 
(MIR = 13.2%), while counties in cluster 6 improved to the third lowest (excluding the cluster with MIR = 0). 
Counties in cluster 7 had a low level of COVID-19 MIR at the beginning of the study on Mar 25 (MIR = 1.5%). 
However, they had a very dramatic increase (10.1%↑) in COVID-19 MIR till Jun 3, 2020 (MIR = 11.6%). Cluster 
7 became the one with the second-highest COVID-19 MIR at the end of the 1st wave on Jun 3, 2020. Based on 

Table 6.  2nd Wave (Jun 4–Sep 2, 2020): significant risk factors and their odds ratios in each cluster compare 
to cluster 0 (counties with MIR = 0). Blank spots indicate the insignificant risk factors. *For instance, OR 1.1 
means that 1% increase in diabetes MR is associated with a 10% increase in the relative log odds of being in 
cluster 2 vs. cluster 0 (MIR = 0).

Variable

Cluster

1 2 3 4 5

Comorbidities and disorders

CVD

Cardiomyopathy and myocarditis

Hypertensive heart disease

Peripheral vascular disease

Atrial fibrillation

Cerebrovascular

Diabetes 1.1*

Hepatitis 13.1 53.1 0.2 13.9

HIV/AIDS 2.3 2.9 2.2

Tuberculosis 2.1 44.5 0.2 1.8

Asthma 0.3 0.1

Lower respiratory infection

Ischemia

Mesothelioma

Tracheal cancer

Pancreatic cancer

Rheumatic disease 2.5

Demographics and social

Age 0.9 0.8 0.9 0.8

Female-AA% 101.1 0.4 0.2 0.1

Female-WA% 0.1

Male-AA% 2.9 0.2 0.2

Male-WA% 6.3 0.3

Asian%

Smokers%

Unemployed% 1.5 1.3 1.6 1.5

Income Rate

Uninsured%

Food insecurity 0.9

Fair/poor health

Environmental

Population density 1.01 1.01 1.01 1.01

AQI 0.4

Temperature 1.2 1.1 1.1 1.1

PM 11.7
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these clustering results, we considered clusters 1 and 7 as the so-called “more vulnerable” clusters of counties 
requiring a more concerted effort and stronger mitigation strategies to control disease mortality. Cluster 7 
includes the following counties: Marion (KS), Seward (NE), Churchil (NV), Catron (MN), Crater (OK), Benton 
(TN), Gonzales (TX), Lavaca (TX), and Barbour (WV). Most frequent states in cluster 1 were IA (Audubon, 
Floyd, and Guthrie counties), IL (Carroll, Clinton, and Jasper counties), NC (McDowell, Moore, Orange, and Polk 
counties), OK (Cotton, Le Flore, Mayes counties), and VA (Northumberland, Page, and Scott counties). In states 
where the majority of “more vulnerable” clusters (1 and 7) were during the first wave, there were no state-wide 
face-mask mandates, which might cause an increase in COVID-19 incidence and subsequently in COVID-19 
 MIR75,76. For instance, OK does not have any state mandate for public mask-wearing to date. A partial mask-
wearing rule was announced in IA in Nov 2020 (for Iowans age 2 and up in indoor public places). Therefore, 
different face-mask mandates can be one reason for having higher COVID-19 MIR in these vulnerable clusters 
and be further mitigated by issuing state-wide full face-covering mandates.

Table 7.  3rd Wave (Sep 3–Nov 12, 2020): significant risk factors and their odds ratios in each cluster compare 
to cluster 0 (counties with MIR = 0). Blank spots indicate the insignificant risk factors. *For instance, OR 1.2 
means that 1% increase in diabetes MR is associated with a 20% increase in the relative log odds of being in 
cluster 1 vs. cluster 0 (MIR = 0). **Due to the sparsity of hepatitis mortality rate in these particular counties 
(during the 3rd wave), the odds ratio estimation of hepatitis is not reliable. One way around this issue is to 
categorize the hepatitis MR and use the categorical version of this variable in the multinomial model. However, 
we decided to avoide this approach to stay consistent with the rest of the results.

Variable

Cluster

1 2 3 4

Comorbidities and disorders

CVD

Cardiomyopathy and myocarditis 1.3 1.2

Hypertensive heart disease

Peripheral vascular disease

Cerebrovascular

Diabetes 1.2*

Hepatitis 0.5 0.1 0.6 10,099.2**

HIV/AIDS 4.0 78.8

Tuberculosis 3.2 33.6 7.0 31.4

Lower respiratory infection 1.1 1.1

Interstitial lung disease and pulmonary sarcoidosis 0.5

Asthma 0.4

COPD

Ischemia

Mesothelioma 9.3 20.5 3.6 8.7

Tracheal cancer 0.9

Leukemia

Pancreatic cancer

Drug use disorder 0.7

Alcohol use disorder 0.6

Demographics and social

Female-AA% 33.4 0.1 0.4 22.9

Female-WA% 0.03 0.02 0.1 0.001

Male-AA% 0.1 0.1 0.1 1.3

Smokers% 1.3

Unemployed%

Income Rate

Uninsured%

Food insecurity 0.8

Fair/poor health

Environmental

Population density 1.02 1.02

AQI 0.7 1.4

Temperature 0.8

PM 0.6 0.3
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TB (OR 1.3) and drug use disorder (OR 1.1) are two significant comorbidities associated with a 30% and 
10% increase in the odds of being in cluster 7 vs. cluster 0. Among the demographic and environmental factors, 
male-WA% (OR 1.8) and PM (OR 1.1) are significantly associated with an 80% and 10% increase in the relative 
log-odds of being in cluster 7 vs. cluster 0. Therefore, protecting subjects with TB and drug use disorder and 
managing the PM2.5 level of the air (a mixture of solid particles and liquid droplets found in the air, such as dust, 
dirt, or smoke) can help ameliorate the COVID-19 mortality in these counties. Moreover, more than 80% of the 
counties in clusters 1 and 7 were rural areas based on the U.S. Census Bureau definition (https ://www.censu s.gov/
progr ams-surve ys/geogr aphy/guida nce/geo-areas /urban -rural .html). Lack of access to health and critical care 
infrastructure and more limited resources, in general, may be responsible for higher COVID-19 MIR. Therefore, 
addressing these factors would be beneficial in the long run for managing the epidemic.

During the 2nd wave, nearly 62 counties in clusters 3 (MIR = 10.6%) and 5 (MIR = 14.1%) had the high-
est mean COVID-19 MIR at the beginning of the wave on Jun 4, 2020. However, on Sep 2, 2020, cluster 3 
had the highest mean COVID-19 MIR (MIR = 4.8%), while counties in cluster 5 improved to the third low-
est (MIR = 4.0%). Counties in cluster 1 had the lowest level of COVID-19 MIR at the beginning of the 2nd 
wave on Jun 4 (MIR = 1.5%), but experienced a dramatic increase (3.3%↑) in COVID-19 MIR till Sep 2, 2020 
(MIR = 4.8%), and therefore became the highest COVID-19 MIR at the end of the 2nd wave. Based on the clus-
tering result (as of Sep 2, 2020), we considered cluster 1 as the so-called “more vulnerable” cluster of counties 
requiring more attention to control disease mortality. TX (Aransas, Atascosa, Bandera, Blanco, Burleson, Dickens, 
Duval, Fayette, Gillespie, Goliad, Grimes, Guadalupe, Hudspeth, Kenedy, Liberty, Marion, Medina, Newton, 
Sabine, San Jacinto, Stephens, Throckmorton, Upton, Wharton, and Zavala counties) was the most frequent state 
present in this cluster. Cluster 1 includes the following counties: Marion (KS), Seward (NE), Churchil (NV), 
Catron (MN), Crater (OK), Benton (TN), Gonzales (TX), Lavaca (TX), and Barbour (WV). Moreover, Blanco 
(TX), Sabine (TX), Marion (TX), and Throckmorton (TX) counties had the highest COVID-19 MIR. Only in 
mid-July (middle of the 2nd wave), the TX governor signed an executive order requiring residents (> 10 yo) to 
wear a face mask in public (state-wide), yet nearly 80 counties have opted out of the order, and others are not 
enforcing it. Therefore, the difference between face-mask mandates can also be one reason for having higher 
COVID-19 MIR in cluster 1.

Hepatitis (OR 13.1), HIV/AIDS (OR 2.3), and TB (OR 2.1) are three significant comorbidities that are associ-
ated with an increase in the odds of being in cluster 1 vs. cluster 0. Among the demographic and environmental 

Figure 3.  Geographical distribution of the clusters of U.S. counties based on the estimated COVID-19 MIR 
growth trajectories at the: (A) beginning of the1st wave (Mar 25, 2020), (B) end of the 1st wave (Jun 3, 2020), 
(C) beginning of the 2nd wave (Jun 4, 2020), (D) end of the 2nd wave (Sep 2, 2020), (E) beginning of the 3rd 
wave (Sep 3, 2020), and (F) end of the 3rd wave (Nov 12, 2020). Red color indicates the highest MIR, blue color 
indicates the lowest MIR, and green color shows the counties with MIR = 0.
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factors, unemployed% (OR 1.5) and temperature (OR 1.2) are significantly associated with a 50% and 20% 
increase in the relative log-odds of being in cluster 1 vs. cluster 0 (tables S10–S12). Therefore, protecting subjects 
with hepatitis, HIV/AIDS, and TB and managing the unemployment rate can help ameliorate the COVID-19 
mortality in these counties. The effect of temperature, however, could be due to other confounding variables. For 
instance, when the weather is cold, people spend more time together indoors. Therefore, informing the residents 
of these counties about distancing and mask-wearing may help to improve the COVID-19 MIR. Moreover, about 
60% of the counties in cluster 1 were rural areas based on the U.S. Census Bureau definition (https ://www.censu 
s.gov). Similar to the conlucsion for the 1st wave, lack of access to health and critical care infrastructure and 
more limited resources, in general, may be responsible for higher COVID-19 MIR.

During the 3rd wave, 125 counties in cluster 1 (MIR = 5.2%) had the highest mean COVID-19 MIR at the 
beginning of the wave on Jun 4, 2020. Although the mean COVID-19 MIR of the counties in cluster 1 decreased 
(MIR = 3.6%) by the end of the wave, this cluster remained the second-highest compared to other clusters. Based 
on the clustering result (as of Nov 12, 2020), we considered cluster 1 as the so-called “more vulnerable” cluster 
of counties requiring more attention to control disease mortality. IN (Bartholomew, Boone, Carroll, Daviess, 
Dearborn, Decatur, Floyd, Franklin, Greene, Hancock, Hendricks, Howard, Jennings, Johnson, Lawrence, Madi-
son, Montgomery, Morgan, Newton, Ohio, Orange, Perry, Pike, Pulaski, and Tipton counties) and MI (Alcona, 
Alpena, Arenac, Bay, Clare, Crawford, Genesee, Gogebic, Gratiot, Hillsdale, Iosco, Jackson, Keweenaw, Lapeer, 
Macomb, Muskegon, Oakland, Ogemaw, Otsego, Saginaw, St. Clair, Sanilac, Shiawassee, Tuscola, and Wayne 
counties) were two most frequent states present in this cluster. Moreover, Morton (KS) and Monroe (OH) 
counties had the highest COVID-19 MIR. Regarding the face-covering rules in the two most frequent states 
represented by the counties in cluster 1, in MI mask-wearing order was issued only in Oct 2020 (for people age 
5 and up, in most public places). The IN governor ordered mask-wearing (for Hoosiers age 8 and up, in indoor 
and outdoor public spaces) only at the beginning of Aug (middle of the 2nd wave). Therefore, having inadequate/
no rules for face covering in these states can cause a worse COVID-19 MIR trend.

Cardiomyopathy and myocarditis (OR 1.3), diabetes (OR 1.2), TB (OR 3.2), mesothelioma (OR 9.3) are 
four significant comorbidities that are associated with an increase in the odds of being in cluster 1 vs. cluster 0. 
Among the demographic and environmental factors, female AA% (OR 33.4), smokers% (OR 1.3), and popu-
lation density (OR 1.02) are significantly associated with increased relative log-odds of being in cluster 1 vs. 
cluster 0 (tables S10–S12). Therefore, protecting subjects with diabetes, TB, mesothelioma and cardiomyopathy 
and myocarditis, and smoking history can help ameliorate COVID-19 mortality in these counties. The effect of 
population density, however, could be complicated and due to other confounding variables. At the beginning of 
the COVID-19 pandemic, dense (urban) areas around the world such as New York (USA), Madrid (Spain), Milan 
(Italy), London (UK), and Tehran (Iran) were identified as disease hotspots. In our analysis, nearly 40% of the 
counties in cluster 1 (during the 3rd wave) were urban areas based on the U.S. Census Bureau definition (https 
://www.censu s.gov). One reason that may explain the effect of population density on disease mortality/spread 
could be that large cities are mostly connected with many other  locations77. Crowding and transport infrastruc-
ture quality are conducive for the spread of the  disease78. Therefore, addressing these factors and continuously 
informing residents about social distancing, mask-wearing, and self-isolation (and household quarantine) would 
be beneficial in the long run for managing the epidemic in this region.

Amongst the comorbidities, we found a significant positive association between COVID-19 MIR and heart 
diseases, including cardiomyopathy and myocarditis (0.15% MIR↑ in the 1st wave, and 0.12% MIR↑ in the 2nd 
wave), hypertensive heart disease (0.11% MIR↑ in the 1st wave, and 0.09% MIR↑ in the 2nd wave), peripheral 
vascular disease (0.31% MIR↑ in the 1st wave), and cerebrovascular disease (0.07% MIR↑ in the 1st wave, and 
0.07% MIR↑ in the 2nd wave). This finding is in accordance with recent studies on the topic, even though 
its etiology remains uncertain. This can be due to antiviral drugs (as a treatment of COVID-19), which can 
cause different cardiovascular disorders (such as cardiac insufficiency and arrhythmia)79. Moreover, most of the 
patients with pre-existing heart disorders use renin–angiotensin–aldosterone system (RAAS) blockers, which 
are suggested to increase the COVID-19 severity and  MR80,81. Additionally, SARS-CoV-2 infection can act as a 
precipitating factor that worsens the cardiac insufficiency and leads to death in patients with pre-existing heart 
 complications79. Cardiovascular diseases can also increase the COVID-19 severity and MR via aggravating 
 pneumonia79. Historically, it is shown that patients with pre-existing heart and lung diseases had a higher mor-
tality rate from  SARS18,25–30. The same findings have been reported in  China16,17,82 and the United  Kingdom83. 
Lippi et al. showed that about 20% of hospitalized COVID-19 cases had heart complications, as  well17. A meta-
analysis with 46,248 confirmed COVID-19 cases showed that patients with severe disease were more likely to 
have CVD (odds ratio = 3.4) and hypertensive heart disease (odds ratio = 2.4)84. Recent studies have reported 
ACE2 as the coreceptor for the coronavirus in patients with different complications as well as heart and lung 
disorders compared with healthy  individuals30,85. There is also evidence showing the critical role of the ACE2 and 
its peptides in the  inflammatory86,87 and oxidative organ  activities88,89, which are significant triggers in the initia-
tion and progression of cardiovascular disease, cardiac hypertrophy, lung complications, and acute pancreatitis.

We did not find a significant positive association between most of the respiratory diseases (including COPD, 
Asthma, and lower respiratory infection) and COVID-19 MIR, which is consistent with the Halpin et al.  study4, 
Onder et al. in Italy (Mar 2020)5, and the CDC report of health conditions’ prevalence in the USA (April 2020)6. 
We only found a positive association between interstitial lung disease and pulmonary sarcoidosis during the 3rd 
wave. One possible explanation might be that having CLD causes a different immune response, which eventually 
protects against infection from SARS-CoV24. However, this is not supported by other publications showing a 
significant association between COPD and an increased COVID-19 MR. Another possibility is that treatments 
and therapies used by patients with CLD can protect against COVID-19 as well (for instance, topical intra-
nasal  sprays90 and mPGES-191,92), or that CLD treatments can reduce symptoms and hence affecting COVID-19 
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 diagnosis4. Notably, the Chinese CDC (http://www.china cdc.cn/en/) has reported a 6.3% COVID-19 case-fatality 
rate for cases with pre-existing chronic respiratory diseases.

Besides heart diseases, we found significant positive associations between COVID-19 MIR and cancer, includ-
ing mesothelioma (0.58% MIR↑ in the 1st wave) and pancreatic (0.51% MIR↑ in the 1st wave) in the United 
States. Typically, patients with cancer are known to be at higher risk for community respiratory viruses (such as 
influenza and coronaviruses) due to their suppressed immune system and poor physiological  baseline93–95. Based 
on a descriptive study from Wuhan, China (Mar 2020), the incidence of COVID-19 patients with pre-existing 
cancer was about 1%, which is five times higher than the general cancer incidence in  China64. In a report of 72 
314 cases from the Chinese CDC (Mar 2020), the COVID-19 case fatality for cancer patients was 3.5% higher than 
those without  cancer96. In another report from Italy (April 2020), the prevalence of pre-existing cancer among 
COVID-19 death was 16.5%5. Du et al., in a multi-omics study, indicated an indirect connection between the 
ACE2 pathway and cancer via Transforming Growth Factor Beta 1, TGFB1, association with colorectal  cancer97,98.

Our findings also indicated that demographics and social factors at the county level, such as mean age, drug 
use disorders, smokers%, uninsured%, and population density, significantly increased COVID-19 MIR by 0.12%, 
0.08%, 0.11%, 0.08%, and 0.0003%, respectively. One possible explanation might be that uninsured patients or 
patients with drug use disorder, especially in the areas with more health disparities, are less likely to seek medical 
 care99,100. Moreover, drug use disorders can result in increased inflammation of multiple organ systems, par-
ticularly lungs, which may lead to respiratory failure. In turn, it can directly contribute to the elevated mortality 
rate of COVID-19 among confirmed cases. Marsden et al. showed that people with opioid use disorder have a 
higher prevalence of co-occurrence of health problems, subsequently leading to an increased rate of COVID-
19101. Regarding the effect of population density on disease mortality/spread, one reason could be that the large 
cities are mostly connected with many other  locations77; plus, crowding is conducive to the spread of the disease.

This study has several limitations. First, the mortality and MIR estimates from the current COVID-19 related 
data are biased since most of the individuals with mild or no symptoms have not been tested for COVID-19 in 
most of the counties. Moreover, the COVID-19 reporting system appears to differ regionally, which introduces 
further inaccuracies in the available data. For example, for a small number of counties, we found MIR = 100%, 
which is an unlikely event and can be due to an incomplete disease recording system. Timely sharing of infor-
mation and collaboration between organizations and governors can partly solve this problem. There also needs 
to be additional testing and follow-ups to have higher quality data, especially for younger individuals with 
mild symptoms. Recent data (CDC Jun 19,  2020102) showed that more young people are testing positive for 
COVID-19 in the United States. Second, the reporting of disease data is mostly based on ICD9/10 codes, which 
can be fairly  inaccurate103. Third, the analysis was based on county-level data. It would be beneficial to analyze 
individual-level and multi-countries data to gain deeper insights into the impact of risk factors on COVID-19 
progression. Fourth, some of the counties, especially in Maine, were excluded from the study because some of 
the environmental factors such as climate and air pollution were not directly available. Fifth, different testing 
strategies (especially among health-care workers), re-opening, self-isolation, physical distancing, and mask poli-
cies can act as cofounders in the analysis of COVID-19 MIR.

In summary, accounting for heterogeneity in both risk factors and COVID-19 mortality patterns over time 
leads to a more informative clustering system, which can then be leveraged in managing the epidemic by identify-
ing and informing groups of people at higher risk and also in managing healthcare resources (access to facilities, 
ICUs, vaccination, etc.) more judiciously. Findings of this study suggest that counties in clusters 1 and 7 (in the 
1st wave), cluster 1 (in both 2nd and 3rd waves) experience higher COVID-19 MIR growth trajectories over time 
and are facing more challenges due to the prevalence of rural counties (60–80%), and different face-covering 
rules/mandates in managing the disease. Further, heart complications and cancer were statistically significant 
pre-existing comorbidities related to COVID-19 MIR across the U.S. TB, drug use disorder, HIV/AIDS, diabetes, 
and hepatitis were explicitly associated with an increased chance of being in a more “vulnerable” cluster.

Data availability
All datasets used in the current study are publicly available (sources are mentioned in Table S1). Datasets gener-
ated during the study are available from the corresponding author.
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