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Automatic classification of healthy 
and disease conditions from images 
or digital standard 12‑lead 
electrocardiograms
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Standard 12-lead electrocardiography (ECG) is used as the primary clinical tool to diagnose changes 
in heart function. The value of automated 12-lead ECG diagnostic approaches lies in their ability to 
screen the general population and to provide a second opinion for doctors. Yet, the clinical utility of 
automated ECG interpretations remains limited. We introduce a two-way approach to an automated 
cardiac disease identification system using standard digital or image 12-lead ECG recordings. Two 
different network architectures, one trained using digital signals (CNN-dig) and one trained using 
images (CNN-ima), were generated. An open-source dataset of 41,830 classified standard ECG 
recordings from patients and volunteers was generated. CNN-ima was trained to identify atrial 
fibrillation (AF) using 12-lead ECG digital signals and images that were also transformed to mimic 
mobile device camera-acquired ECG plot snapshots. CNN-dig accurately (92.9–100%) identified every 
possible combination of the eight most-common cardiac conditions. Both CNN-dig and CNN-ima 
accurately (98%) detected AF from standard 12-lead ECG digital signals and images, respectively. 
Similar classification accuracy was achieved with images containing smartphone camera acquisition 
artifacts. Automated detection of cardiac conditions in standard digital or image 12-lead ECG signals is 
feasible and may improve current diagnostic methods.

Because of its simplicity, noninvasiveness and low cost, standard 12-lead electrocardiography (ECG) is used 
as the primary clinical tool to diagnose changes in heart conditions. It has been shown as the single adequate 
source to diagnose cardiac rhythm1 and morphology2, such as cardiac arrhythmia3, acute and prior myocardial 
infarctions4, pericardial disease5 and atrial or ventricular enlargement6.

The value of automatic 12-lead ECG diagnostic approaches lies in their ability to screen the general population 
and to provide an additional opinion for health care providers. Since 1957, attempts have been made to auto-
mate interpretation of ECG recordings, with emphasis on atrial fibrillation (AF)-related findings. Yet, currently 
available automated algorithms have demonstrated mediocre performance7. Thus, despite current technologies, 
particularly in the areas of advanced machine learning and artificial intelligence (AI) methods, the clinical utility 
of automated ECG interpretations remains limited and standard 12-lead ECG recordings are still evaluated by 
cardiologists. There are several challenges that embrace the design of clinically relevant automated algorithms 
of classification of cardiac conditions from 12-lead ECGs. Achieving high accuracy is the first step. Note that 
even experienced cardiologists can disagree, thus achieving high accuracy is challenging even for cardiologists8. 
In recent years, advanced machine learning and AI methods have been applied to classify one-lead ECGs2,9–11 
and have provide sensitivity to most rhythm classes slightly exceeding that of the average cardiologist. These 
methods comprise a deep genetic ensemble of classifiers12,13, attention mechanisms on ECG strip14, feature 
extraction and voting methods15, different pattern recognitions based on transforms, e.g., wavelet transform16, 
unique feature utilization, e.g., output of Welch transform17, discrete Fourier transform17, spectral power density 
transform17 and evolutionary neural systems18. However, to date, all these methods have only been applied on 
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single-lead ECG, and therefore are only suitable for classification of select diseases, which are mainly rhythm 
conditions. Translation of such algorithms to 12-lead ECG recordings, which enable detection of both rhythm 
and morphology conditions, is complicated by the format of available databases which are sometimes available 
in digital signal format and sometimes as machine plot images. Thus, a general, hybrid approach that allows 
for disease identification from both types must be developed. Moreover, because machine plot images are now 
scanned by mobile devices, the approach must take into account artifacts introduced by mobile device image 
acquisition. In addition, standardization of the applied algorithms requires a large dataset at the development 
stage. However, to the best of our knowledge, a database with standard, open-source, 12-lead ECG records from a 
heterogenous group of patients and healthy volunteers, that includes both digital and machine plot formats, does 
not exist. Apart from the aforementioned technical hurdles, multiple disorders are often concomitantly present 
in the same ECG record. However, the majority of the published methods classify the ECG into a single disease 
category3,19,20. In addition, as an AI system must be trained on labeled data, there will always be disorders which 
do not appear in a specific training dataset, questioning the applicability of such algorithms to these additional 
diseases. Thus, only a generic architecture that can be applied to many disease types and which can detect all 
disorders appearing in the same record, will be of physiological relevance.

This work aimed to develop a two-way approach to a standard 12-lead ECG database, that can use as an 
input either standard digital or image 12-lead ECG signals and would classify recordings as normal sinus or 
one or more of the following disorder types: atrial fibrillation (AF), first-degree atrioventricular block (I-AVB), 
left bundle branch block (LBBB), right bundle branch block (RBBB), premature atrial contraction (PAC), pre-
mature ventricular contraction (PVC), ST-segment depression (STD) or ST-segment elevation (STE). There are 
several innovative aspects that are included in this paper: (1) This proof-of-concept work demonstrated that an 
automated ECG interpretation system can be created and can reach high accuracy using deep learning tools. (2) 
An open-source database, which is accessible upon request and is compatible with a well-known and frequently 
used deep learning framework (PyTorch), was established. (3) The work developed a generic deep network 
architecture that can be applied to many diseases of different types with high accuracy, can detect all disorders 
appearing in the same record, and can be extended to additional diseases with relatively minimal effort. (4) The 
deep network architecture proved compatible with both digital 12-lead signals (i.e., 13 signals) and with standard 
plots of all leads, which are typically printed on paper. (5) The deep network architecture proved compatible 
with images with background noise and change of plot perspective that observed when ECG plot is captured by 
mobile device. Achieving these innovative aspects will promote the generation of an automated 12-lead ECG 
diagnostic system that will allow for screening of the general population in any clinic equipped with a standard 
12-lead ECG machine and provide a second opinion for the health care provider.

Methods
The database, analytic methods, and study materials that support the findings of this study are available upon 
request.

Data source and standard 12‑lead ECG database generation.  The database was constructed using 
6877 published digital (Fig. 1A) patient records (female 3178; male 3699), of durations of 6–60 s, that were col-
lected in 11 hospitals21. ECG recordings were acquired at a sampling rate of 500 Hz. The data were classified by 
board-certified practicing cardiologists in these 11 hospitals as normal sinus or one or more of the following 
conditions: AF, I-AVB, LBBB, RBBB, PAC, PVC, STD or STE. Because standard 12-lead ECG records consist of 
of 2.5-s recording for each one of the 12 leads and 10-s recordings for lead II, recordings longer than 10 s were 
divided to 10-s segments with no overlaps. Each 10 s segment was used to generate four standard ECG records 
by taking 2.5 s of 12 leads without overlap, and the same 10 s of lead II. The 11 ECG records shorter than 10 s 
were omitted. Following these steps, a database of 41,830 recordings (in hdf5 format22 compatible with PyTorch) 
from 6866 patients (female 3174; male 3692) was created. The dataset scheme followed that of other known data-
bases (e.g., MNIST). A “one-hot” classification binary vector with a length of 9 was generated for each database 
entry: (1) Normal, (2) AF, (3) I-AVB, (4) LBBB, (5) RBBB, (6) PAC, (7) PVC, (8) STD and (9) STE. The corre-
sponding vector entry was “1” if the disease existed in the database entry and otherwise was “0”. Table 1 presents 
the number of patients and records in each category.

The image dataset.  ECG recordings are available in two modalities—digital signal or paper plots. Our goal 
was to show that automated identification of diseases can be achieved with standard available ECG data, regard-
less of their format. Because there is no accessible dataset of labeled ECG plots with a sufficiently large volume 
of data, we generated such a set from the digital signal dataset21.

A publicly available template of ECG paper was used to generate ECG images (see Fig. 1B). Of note, the 
machine learning techniques we used were agnostic to the specific ECG paper template, thus identical results 
can be obtained using any template. Each small red box represents 0.04 s (imitating ECG paper that is fed into 
the machine at a rate of 25 mm/s) and 1-mm height. ECG lead label was added next to each lead plot and a 
calibrated signal (10 mm-high and 0.2 s-wide) was added at the beginning of each ECG line.

When the data are available in paper plot form only, the easiest way to make it accessible to an automated 
classification system is by capturing the plot image, which then serves as the input to the system. Today, it is 
easy to capture the plot image using cameras in smartphones or other mobile devices. However, this practice 
is likely to incorporate distortions in the resulting image. Because of lack of an accessible database comprising 
labeled ECG images captured by smartphones, we simulated the artifacts caused by smartphone acquisition of 
ECG images, by applying random perspective image transformations to imitate projection from 3D view into 
2D image (Fig. 1C) and added random backgrounds resembling various table textures (Fig. 1D).
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Data sets for developing and testing the neural network.  After an initial split of the data into 
development (83% of the population; n = 36,000 records) and holdout (17% of the population; n = 5830 records) 
datasets, the development dataset was further divided into training (95% of the development set) and internal 
validation (5%) datasets. To avoid cross-contamination, the development and holdout datasets consisted of data 
from different sets of patients. Similarly, the training and test sets consisted of different sets of patients. Train-
ing both the deep convolution neural network (CNN) for digital data (CNN-dig) and the CNN for plot images 
(CNN-ima) networks, was done using the Adam23 optimizer with binary cross-entropy as the loss function. The 
internal validation data set was used to tune the hyper-parameters and to select the optimal model. The same 
data split (training, validation, and testing sets) was used for both the digital signal and image networks.

Overview of the deep network model.  CNNs were implemented using the Pytorch Framework with 
Python. The same basic architecture was used in different variations for all digital signal identification networks 

Figure 1.   Examples of data format. (A) Digital 12-lead ECG signal data. (B) A rendered ECG image. The 
digital signal was plotted on a publicly available ECG paper template29. The lead labels indicate lead recording 
locations on the template (2.5 s each). The lower long lead recording is lead II (10 s). The calibration signal is 
also drawn on the left side of each row. (C) Image without (left) and with (right) perspective transformation. The 
perspective transformation imitates human (or camera) view of a rectangular ECG plot. (D) Rendered image 
after applying a random perspective transformation and a random background to simulate acquisition by a 
mobile device, such as a smartphone.

Table 1.   Classification of source data, with number of patients and records for each condition type. AF Atrial 
fibrillation, I-AVB first-degree atrioventricular block, LBBB left bundle branch block, RBBB right bundle 
branch block, PAC premature atrial contraction, PVC premature ventricular contraction, STD ST-segment 
depression, STE ST-segment elevation.

Condition type # of patients # of records

Normal 918 5453

AF 1220 7080

I-AVB 721 3969

LBBB 235 1356

RBBB 1853 10,401

PAC 614 4552

PVC 699 5598

STD 868 5069

STE 220 1458
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(CNN-dig) (Fig.  2A) and for all image identification networks (CNN-ima) (Fig.  2B). CNN-ima takes color 
images (RGB) of size of 675 pixels on 1450 pixels as an input, thus forming a tensor of [675,1450,3].

While CNNs are mainly applied to images, we adjusted the network architecture and the convolution kernel 
size to produce spatial and temporal feature extraction layers. The network was trained by adjusting the weights 
of the convolutional filters to extract meaningful and relevant features in an unsupervised way. Both the ECG 
image and digital signal networks were built using stacked blocks of convolutional, batch normalization and 
dropout layers (Fig. 2). For training with digital signal data, two separate stacked blocks were used to extract 
temporal features from short leads and from the long lead. After flattening each stacked block (either short or 
long lead), the features extracted from both blocks were concatenated and were used as input to a fully connected 
network. Both networks used a linear rectifier (ReLU) as their activation function. The difference between the 
image CNN-dig and digital signal CNN-ima networks was in the convolution output. The image network is one 
stack of convolutional layers followed by a fully connected layer (see Fig. 2A). Another difference is the 1D con-
volution kernels in the digital signal network (17) versus 2D convolution kernels in the image network (7 × 7). 
Hyperparameters (batch size, initial learning rate, number of nodes in the fully connected layers, and number of 
convolutional layers) were adjusted during training to obtain the optimal model. Initial learning rates were set 
in the range of 1e–2 to 1e–5, and testing batch sizes varied in the range of 50–150 for the image network CNN-
ima, and 150–256 for the digital signal network CNN-dig. The actual used learning rate was selected in such 
a way that the learning process would be effective, i.e. large enough to converge with reasonable speed, on the 
one hand, but small enough to sustain the learning process and avoid divergent behaviors. We tested different 
learning rates for several epochs to find the one suitable for our needs. With respect to convolution kernel, we 
tested a span of convolution kernels, plotted the performance versus convolution kernel size, fitted a parabolic 
function and chose the kernel which provided optimal accuracy. Selected hyperparameters included batch size 
of 256 for the digital signal network, whereas for the image network, we chose a batch size of 150. Note that for 
the digital signal case, the same net architecture (Fig. 2A) was used for each condition (8 diseases and normal 
sinus), while, obviously, the model parameters (the outcome of the training process) differed. Optimal CNN 
structure and parameters are described in the legend of Fig. 2.

Figure 2.   CNN architectures. (A) 12-lead ECG digital signal data classification net CNN-dig, and (B) 12-lead 
ECG image classification net CNN-ima. In both networks, the input enters a convolution layer with a stride 
step of 2. Next is a batch normalization30 layer in which the batch distribution is normalized. The dropout31 
layer randomly deletes a fraction of the network edges with a given probability during the training to improve 
robustness. Next, the 3D convolution output is flattened, goes through a fully connected classification layer and 
serves as a thresholder for the final outcome. Notice that each of the resulting networks is trained on a single 
disease and generates a binary output for each input: in class or out of class. Kernel size is 17 for digital signal 
processing net, and 7 × 7 for image processing net.
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Network depth was optimized in such way that, on the one hand, the number of trainable parameters will fit 
the size of the training dataset, but on the other hand, the net will be deep enough to learn complex features and 
provide high detection accuracy. We tried different numbers of staggered convolution blocks (5–8; see Fig. 2) 
both for short-lead data and long-lead data, and eventually used 6 staggered blocks for short-lead data and 8 
for long-lead data for CNN-dig, because it provided the best accuracy. With regards to CNN-ima, we tested the 
same span of blocks (5–8) and selected 7 staggered convolution layers because it provided the best results. With 
respect to Adam optimizer learning rates, we tested a set of learning rates [10–3,10–4,10–5,10–6] and selected 
the one which allowed the learning process to converge at a reasonable rate (10–4).

Training process.  Deep net implementation was performed in Python, using the PyTorch framework (ver-
sion 1.4.0). In addition, torchvision (version 0.5.0), numpy (version 1.17.5) and openCV (version 4.1.1) libraries 
were used.

The server used for training was: Intel(R) Core(TM) i9-7900X @ 3.30 GHz. RAM: 32 GB. GPU: GeForce GTX 
1080 Ti (of NVIDIA). Cuda version was 10.2. OS: Linux version 4.15.0-108-generic.

Training time of CNN-dig was 20 s per epoch, whereas a maximum of 100 epochs was defined (unless early 
stopping condition was reached, i.e., 3 epochs in which training loss is getting smaller but test loss is not). With 
regards to CNN-ima, training time was 9 min and 20 s per epoch, and after 9 epochs, the stop condition was 
reached. With respect to classification, CNN-ima classified one records in about 2 s, whereas CNN-dig did so 
in the sub-second period.

Model evaluations and statistical methods.  For each disease, a binary classifier (disease exists or not) 
was designed with an output P, where P was in the range of 0–1. In cases of inconclusive discrimination, P will 
be closer to 0.5, thus, a trivial threshold of 0.5 was used for final binary classification. In the training stage, the 
networks were fed the entire training set. After every iteration (epoch), the model was evaluated on the valida-
tion set. The software callback saved only the best model based on the validation performance (checkpoints). To 
avoid overfitting, we used the early stopping method. Training was terminated when the validation performance 
ceased to improve over 5 or 10 consecutive epochs, for CNN-ima or CNN-dig, respectively. Our experience 
showed that CNN-dig had to be trained for 100 epochs, whereas the CNN-ima achieved optimal results already 
after 6 epochs.

The following metrics were used to assess performance of the networks (True positive (TP), True negative 
(TN), False positive (FP), False negative (FN), Accuracy (ACC), Sensitivity (TPR), Specificity (TNR), Positive 
prediction value (PPV), Negative predictive value (NPV)):

(1.1)TP =
# correctly detected disease occurences

# episodes with presence of the disease

(1.2)TN =
# correctly detected disease absence

# episodes with absence of the disease

(1.3)FN =
#misdetected disease occurences

# episodes with presence of the disease

(1.4)FP =
# incorectly classified episodes

# episodes with absence of the disease

(1.5)Sensitivity: True positive rate(TPR) =
TP

TP + FN

(1.6)Specificity: True negative rate (TNR) =
TN

TN + FP

(1.7)Precision or positive predictive value: PPV =
TP

TP + FP

(1.8)Negative predictive value: NPV =
TN

TN + FN

(1.9)Accuracy: ACC =
TP + TN

TP + TN + FP + FN

(1.10)F1 =
2 ∗ TP

2 ∗ TP + FP + FN



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16331  | https://doi.org/10.1038/s41598-020-73060-w

www.nature.com/scientificreports/

Results
Creation of a relatively large, publicly available, standard12‑lead ECG database.  A database of 
41,830 standard 12-lead ECG records collected from a total of 6866 patients and volunteers, was created. Each 
digital ECG recording was classified to one or more of nine categories (see “Methods” section). In total, there 
were 13.03% normal, 16.92% AF, 9.48% I-AVB, 3.24% LBBB, 24.86% RBBB, 10.88% PAC, 13.38% PVC, 12.11% 
STD and 3.48% STE recordings. The training set, including the validation set, was comprised of 36,000 ECG 
recordings. The testing set was comprised of 5830 ECG recordings collected from individuals who were not 
included in the training set.

Generic, optimal convolution kernel size for digital signal data.  To identify a network architecture 
suitable for as many other diseases as possible, including both morphological and rhythm disorders, we searched 
for the optimal convolution kernel size providing high accuracy for all conditions. Small convolution kernels 
are expected to be more suitable for identifying morphological disorders, while large convolution kernels are 
expected to be sensitive to changes between subsequent beats and therefore suitable for identifying both rhythm 
and morphological disorders. Table 2 shows that a kernel size of 17 provided the best average performance over 
all disease types.

Detection of multiple disorders from digital signal data: generalizability and extensibil‑
ity.  Figure 3 illustrates the receiver operation characteristic (ROC) of each disease classification. Overall area 
under the curve for each disease was between 0.8 and 0.98. Table 3 shows the statistical measurements for each 
disease. The accuracy (in gray) was 92.9–100%, depending on the disease type.

A confusion matrix was generated to identify trends in misidentification in our network (Fig. 4). Because 
our method was based on independent identification of each cardiac disorder, only data from the test set which 

Table 2.   Convolution kernel size optimization using the validation set (1000 records). AF Atrial fibrillation, 
I-AVB first-degree atrioventricular block, LBBB left bundle branch block, RBBB right bundle branch block, 
PAC premature atrial contraction, PVC premature ventricular contraction, STD ST-segment depression, STE 
ST-segment elevation.

Convolution 
kernel size/

Arrhythmia 
type

3 5 7 9 11 13 15 17 19

Normal 95.1 95 96.2 96.5 96.5 97 97 96.7 97.2

AF 96.7 94.7 98 97.8 98 98.1 98.2 98.1 98.2

I-AVB 97.4 98.6 98.2 97.7 97.6 97.8 98.8 98.7 98.7

LBBB 99.9 100 100 100 100 100 100 100 100

RBBB 98.5 99.2 99.2 98.9 98.8 99.1 99.5 98.6 98.8

PAC 90.9 89.6 91.5 92.3 91.7 92.3 93.7 94.1 93.2

PVC 89.2 89.2 89.4 89.7 88.8 91.6 91.5 92.9 92.3

STD 87 90.9 91.2 91.3 91 92 90.9 91.2 91.3

STE 99.9 98.4 98.4 100 98.8 98.3 98.3 98.4 98.3

Mean 95.0 95.0 95.8 96.0 95.7 96.2 96.4 96.5 96.4
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included only one classified disease (annotated as well as predicted) were used for the confusion matrix. Out of 
5830 records, 3184 were used to generate the matrix. Two significant trends of misidentification were detected 
(Fig. 4): PAC was mistakenly classified as either RBBB or STD and PVC was mistakenly classified as STD.

Atrial fibrillation identification from ECG images.  Because of added redundant information (e.g., red 
squares), it may seem that identifying diseases from 2D images is harder than doing so with 1D digital signals. 
This intuition was challenged by training CNN-ima to identify AF, the most common arrhythmia, using images 
only. Figure 5 illustrates the ROC curve for digital versus image input signals. Similar degrees of accuracy were 
achieved with digital (98%) as compared to image (96%) input signals.

AF identification from ECG images with mobile device acquisition distortion.  Today, images 
of ECG plots sent for automatic image classification, are likely to be acquired using smartphones, and there-
fore are likely to be distorted. Due to the lack of an adequate labelled dataset of ECG images, distorted image 
ECG plots were simulated by employing random perspective transformations as well as incorporating random 
backgrounds. Figure 5 illustrates the ROC curve for digital versus image signals, with versus without perspec-
tive transformation and random texture background. As previously shown, AF identification was slightly less 
accurate using ECG images as compared to digital ECG recordings. In addition, AF identification of ECG images 
with distortion was a bit less accurate than without.

Classification accuracy versus sample size.  In deep learning, the output accuracy depends on the 
number of training samples. To determine the size-effect of our results and to quantify how additional data may 
improve them, we explored the dependence of AF identification accuracy on the number of training samples. 
To this end, the CNN-dig model was trained with increasing amounts of training data, and then tested each 
time with the same test set. Figure 6 shows how increasing the volume of training data increased the accuracy of 
the results. Moreover, the fitting curve ( y = a · sin(b · x + c) ), coefficients which were found by optimization) 
showed that no saturation was achieved, namely, that additional data would result in higher accuracy.

Discussion
Standard 12-lead ECG is one of the most common tools used for cardiac disease diagnosis and is easily accessible 
in any clinic. This proof-of-concept work demonstrated that an automated ECG interpretation system can be 
created and can reach high accuracy using deep learning tools. The proposed generic deep network architecture 

Figure 3.   The receiver operation characteristic (ROC) of disease identification from digital signals, using CNN-
dig. (A) Normal, area under curve 0.89, (B) AF, area under curve 0.96, (A,C) I-AVB, area under curve 0.98, 
(D) LBBB, area under curve 0.98, (E) RBBB, area under curve 0.97, (F) PAC, area under curve 0.80, (G) PVC, 
area under curve 0.80, (H) STD, area under curve 0.95, (I) STE, area under curve 0.85. AF Atrial fibrillation, 
I-AVB first-degree atrioventricular block, LBBB left bundle branch block, RBBB right bundle branch block, 
PAC premature atrial contraction, PVC premature ventricular contraction, STD ST-segment depression, STE 
ST-segment elevation.
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can be applied to many conditions of different types (i.e., rhythm or morphology conditions) with high accuracy, 
can detect all disorders appearing in the same record, and can be extended to additional diseases with relatively 

Table 3.   Performance statistics for each disease type, as determined using digital signals. AF atrial fibrillation, 
I-AVB first-degree atrioventricular block, LBBB left bundle branch block, RBBB right bundle branch block, 
PAC premature atrial contraction, PVC premature ventricular contraction, STD ST-segment depression, STE 
ST-segment elevation, TP true positive, TN true negative, FP false positive, FN false negative, ACC​ accuracy, 
TPR sensitivity, TNR specificity, PPV positive prediction value, NPV negative predictive value.

Name TP TN FP FN ACC TPR TNR PPV NPV F1

Normal 71 893 21 15 0.96 0.83 0.98 0.77 0.98 0.80

AF 209 771 7 13 0.98 0.94 0.98 0.97 0.98 0.95

I-AVB 101 885 1 13 0.99 0.89 0.99 0.99 0.99 0.94

LBBB 37 963 0 0 1.00 1.00 1.00 1.00 1.00 1.00

RBBB 235 757 5 3 0.99 0.99 1.00 0.98 1.00 0.98

PAC 30 894 15 61 0.92 0.33 0.94 0.67 0.94 0.44

PVC 98 826 23 53 0.92 0.65 0.94 0.81 0.94 0.72

STD 72 832 31 65 0.90 0.53 0.93 0.70 0.93 0.60

STE 0 983 0 17 0.98 0.00 0.98 NA 0.98 0.00

Figure 4.   Confusion matrix of predicted class versus true class. AF Atrial fibrillation, I-AVB first-degree 
atrioventricular block, LBBB left bundle branch block, RBBB right bundle branch block, PAC premature atrial 
contraction, PVC premature ventricular contraction, STD ST-segment depression, STE ST-segment.
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minimal effort. In addition, the approach was shown to be applicable to both digital ECG and ECG image sig-
nals, including images captured by smartphones. Such an automated system would provide a second opinion on 
manually assessed ECG results and cost-effectively scan massive at-risk populations.

12-lead ECG is essential for accurate diagnosis of both morphological and rhythm disorders. Moreover, 
this device can be found at any clinic. However, interpretations are currently manually performed by clinicians, 
without any means of automation. AI methods provide promising new platforms for development of such auto-
mated arrhythmia detection tools. To apply these methods, a large dataset was essential. However, to the best 
of our knowledge, a database of standard, open-source, 12-lead ECG records from many patients and healthy 
volunteers does not exist. As part of this research, we built such a database, which is accessible upon request, 
and compatible with a well-known and frequently used deep learning framework (PyTorch). We believe that 
availability of this database will very positively impact future research in the field.

A multiclass model3,19,20 was recently suggested for automated classification of cardiac diseases. However, 
the straightforward learning approach proposed in these works had two critical limitations. First, more than 
one disorder commonly concomitantly present in the same ECG record. Second, disorders other than the one 
considered in the multiclass model exist, which raises the question whether published results are applicable to 
these additional diseases. To overcome these limitations, we proposed a generic deep network architecture that 
can be applied to many diseases of different types with high accuracy, can detect all disorders appearing in the 
same record, and can be extended to additional diseases with relatively minimal effort.

Analysis of 12-lead ECG recordings must be sufficiently sensitive to identify and differentiate between con-
comitant conditions. Assignment of such a task to a multiclass classifier would require training for the theoretical 
number of disease combinations (28), making our classifier cumbersome, inefficient, and practically impossible 
to train due to lack of data. The same logic makes the multiclass classifier approach non-scalable for identify-
ing even larger sets of diseases. For this reason, we took a different approach, which used a generic architecture 
that is separately trained for binary identification of each disease. Using this approach, given a set of N trained 
models and for any m < N, it takes N inference operations to detect a set of m existing disorders in a single ECG 
recording. Such network training is much more efficient, the results are more accurate, and, most importantly, 
requires a reasonable number of samples. Furthermore, with this approach, the effort required to extend the 
system to detect an additional disease is relatively low, simply requiring training of yet another model using the 
same architecture.

The advantages of our solution were demonstrated by binary classification (exist or not) of the eight most-
common rhythm and/or morphological cardiac arrhythmias. The solution was also capable of identifying nor-
mal sinus rhythm. Each of the binary classification networks was trained independently, and therefore did not 
negatively impact other classes. Thus, these datasets comprising other disorders can be easily incorporated with 
existing training data and used with the same network architecture as developed here, without affecting the high 
accuracy of our system.

Figure 5.   The receiver operation characteristic (ROC) of atrial fibrillation detection. ROCs of digital ECG 
signal classification (area under curve: 0.96), ECG image classification without distortions (area under curve: 
0.94), ECG image classification with distortions (area under curve: 0.96) and random guess (area under curve: 
0.5).
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The deep network architecture constructed in this work was designed to be compatible with both digital 
12-lead signals (i.e., 13 signals) and with standard plots of all leads, which are typically printed on paper. The 
presented generic architecture reached high accuracy for both CNN-ima and CNN-dig networks. Despite the 
increase in data dimensionality and the incorporation of redundant information, such as background pixels, 
CNN-ima suffered only a negligible reduction in accuracy. Our results show that the network can extract the 
important information from the images and ignore the redundant parts. In the age of smartphones and Inter-
net of Things, images of an ECG plot can be acquired using a mobile device24. Doing so, however, is prone to 
background noise and change of plot perspective. The results of this work showed that our generic network 
architecture can cope with such input distortions without significantly affecting output accuracy.

The neural network approach is subject to inherent limitations, including reliance on large volumes of data. 
However, neural networks may offer a higher level of accuracy than other statistical methods as they are only 
dependent on the data and can operate independently of the biases of the investigator. We showed here that 
increasing the amount of data improved the AF detection accuracy. Moreover, the volume of data used here did 
not reach system accuracy saturation. Namely, additional data may very well further improve the results. This 
observation may also apply for the other tested disorders; it is plausible that our already highly accurate results 
relating to other disorders will further improve with the availability of additional datasets.

Because one-lead data can be measured from wearable devices, at first glance, it may seem appealing to 
develop a classification system based on single-lead data. Recent state-of-the-art classification type paper that 
is based on a single-lead ECG was presented by the Ng group11. Their study used a rather large dataset (91,232 
single-lead ECG recordings collected from a total of 53,549 patients), but, because of the use of single-lead, they 
limited their diagnostics to a small set of diseases. Furthermore, because their classifier used a multiclass model, 
it is not clear how the presented work can be extended to other disorders. It also did not design to handle situ-
ations of more than one condition present in the same ECG. An additional state-of-the-art work was recently 
published by the Radinsky group25, which demonstrated application of deep neural networks for multiclass 
ECG classification. However, their database (MIT-DB26 from Physionet) included only 47 patients. Thus, the 
training and validation sets were not mutually exclusive with respect to patient identity, which could lead to 
potential overfitting.

A recent work attempted to automatically classify 12-lead ECG into 17 groups of conditions27. Although this 
work overcame the challenge of identifying both rhythm and morphology conditions and successfully detected 
more than one disease per ECG, it provided low accuracy and was only suitable for digital signals. Moreover, the 
database and the program are not public, rendering it impossible to compare its performance to ours. Note also 
that instead of standard 2.5-s 12-lead ECG reads, the work used 10 s recordings in each channel. A recent work 
using the same database to detect the same subset of cardiac diseases28, yielded results inferior to those reported 
here, in all categories and for accuracy in general (Table 4).

Limitations versus advantages
This paper provides a proof of concept for the feasibility of automated detection of cardiac conditions using 
12-lead ECG signals. The proposed system can use either standard digital or image of 12-lead ECG signals and 
is equally accurate with images containing smartphone camera acquisition artifacts.

One possible limitation of this work lay in the construction of an algorithm for rendering ECG images instead 
of using real images. The network may not be capable of dealing with real-world artifacts. A second possible 
limitation derived from use of a deep learning system instead of a known machine learning-based feature sys-
tem. In machine learning systems, a set of features is designed, and the individual values of each feature can be 
analyzed. Because of the complex nature of neural networks, we are unable to indicate how different features of 
the ECG contributed to the final network output.

Future works.  One possibility for future work relates to the first limitation. We aim to develop open-source 
database of real ECG images (before and after camera scan) and test the algorithm performance. A second pos-

Figure 6.   Binary accuracy. Accuracy of binary classification of atrial fibrillation as a function of training set 
size.
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sible future work can relate to population homogeneity of the data. We aim to acquire 12-lead ECG standard 
digital or image from different machines and from different populations. A third possible future work should 
address the design of a model interpretability tool, to allow clinicians to understand which factors led to the AI 
system’s decision.

Data availability
The data analysis code, and a link to the datasets will be made freely available on GitHub following publication 
of the paper.
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