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KDM6A is the disease causative gene of type 2 Kabuki Syndrome, a rare multisystem disease; it is also
a known cancer driver gene, with multiple somatic mutations found in a few cancer types. In this
study, we looked at eleven missense variants in lung squamous cell carcinoma, one of the most com-
mon lung cancer subtypes, to see how they affect the KDM6A catalytic mechanisms. We found that
they influence the interaction with histone H3 and the exposure of the trimethylated Lys27, which is
critical for wild-type physiological function to varying degrees, by altering the conformational
transition.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the mechanisms of gene regulation is determined
by the access to DNA and the recruitment of transcription
factors. These processes depend on the histones modification
states. For example, tri-methylation of the 27th lysine residue
on histone H3 (H3K27me3) impacts the accessibility to chro-
matin, with a direct consequence on gene expression.
Although largely thought of as a genetic disease, alterations
in these epigenetic processes were also crucial in cancer ori-
gin and progression [1].

Among the several isoforms of histone demethylases, the Ubiq-
uitously transcribed Tetratricopeptide repeat, X chromosome (UTX),
better known as KDM6A, is one of the most frequently mutated
histone modifiers [2] and has been recently identified as a cancer
driver gene [3]. KDM6A is an X-encoded histone demethylase that
escapes X chromosome inactivation and is ubiquitously expressed.
It specifically mediates the removal of di- and trimethylation
markers on the histone H3 Lys27 and its loss or inactivation has
been often correlated with the onset of a broad spectrum of con-
genital anomalies, particularly with type 2 Kabuki Syndrome.
Notably, KDM6A somatic mutations can be found in multiple can-
cer types [4], including B-cell lymphoma, bladder urothelial carci-
noma, head and neck squamous cell carcinoma, pancreatic
adenocarcinoma, lung squamous cell carcinoma (LUSC), and kidney
renal papillary cell carcinoma. However, their contribution to
oncogenesis and tumor progression is still poorly characterized [5].

Several single nucleotide variants and deletions were found in
the two primary, well-structured, functional domains, the N-
terminal and the C-terminal, or the intrinsically disordered region
(IDR) connecting them, and proved to affect the molecular mecha-
nisms of the KDM6A protein and its interactions with the cellular
environment. The catalytically active C-terminal, which includes
the fundamental Jumonji domain, has been extensively character-
ized, and its alteration was mainly correlated with the reduction of
the demethylase activity [6]. On the contrary, mutations occurring
in the N-terminal, containing multiple tetratricopeptide repeat ele-
ments (TPR domain) and mainly described as a protein interaction
motif, were poorly described due to the lack of an available struc-
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ture model. In [7], we investigated the impact of seven missense
mutations associated with type 2 Kabuki Syndrome using an
enhanced Molecular Dynamics (MD) approach. From a structural
point of view, we found that their pathogenic mechanisms could
be ascribed to the disruption of the interaction between specific
subdomains, with a putative impact on the recognition and
demethylation of histone H3K27me3. Chi et al. [8] came to similar
conclusions by characterizing the functional alteration of the
demethylase function caused by multiple Kabuki mutations using
a combination of genomic and structural features.

The same researchers recently evaluated 197 new somatic
KDM6A mutations, reclassifying them based on their overall
impact on protein structure and dynamics, as well as providing
insight into their putative role in altering biophysical and bio-
chemical mechanisms [9]. On this line, we focused on LUSC
and analyzed eleven variants in greater atomic detail, by taking
advantage of recent advances in structural modeling [10], which
allowed us to predict and use the entire KDM6A protein, and
exploiting multiple replicas of one order of magnitude longer
MD simulations.

Lung cancer is one of the most common cancers and is con-
sidered the leading cause of cancer-related death worldwide
[11]. Non-small-cell lung cancer represents the most frequent
lung cancer type and can be subdivided into lung adenocarci-
noma (LUAD) and LUSC. Clinically, both cancer types are highly
heterogeneous, and the definition of the best course of treatment
mainly depends on extensive subclassification and the identifica-
tion of molecular targets. Interestingly, KDM6A has been recently
identified as a fundamental tumor suppressor in lung cancer,
representing a promising therapeutic target [12]. However, the
functional consequences of its alterations are still a matter of
debate [13,14]. Hence, this work aims to comprehend whether
a selected set of LUSC-associated variants may impact the
demethylase activity of KDM6A in LUSC cancer and therefore
provide helpful insights for diagnostic, prognostic, and therapeu-
tic purposes.
2. Materials and methods

2.1. KDM6A missense variants in LUSC

Missense variants in the KDM6A gene were retrieved from the
Integrative Onco Genomics database (https://www.intogen.org,
accessed on 1st February 2021), which fetches data from the
TCGA/PanCanAtlas database. Variants were 7 truncating and 11
missense originated from 16 individuals included in the TCGA’s
LUSC cohort. The missense variants under consideration were
Gly174Val, Val195Phe, Tyr217Ala, Ala337Ser, Glu745Asp,
Gly795Arg, Arg901Lys, Glu1049Asp, Asp1163Glu, Ala1246Pro,
and Ile1318Leu. Allelic frequencies were retrieved from gnomAD
v3.1.2 [15] and COSMIC [16] variant databases. Their pathogenicity
was predicted in-silico by CADD v1.6 [17]. Potential aberrant splic-
ing events of the pre-mRNA were predicted by four different splice
site algorithms, Human Splicing Finder 3.1 [18], MaxEnt [19], Trap-
score [20], and SpliceAI [21]. Gene expression profiles of KDM6A in
LUSC were retrieved as FPKM-UQ expression values from TCGA
using the R (https://www.r-project.org) Bioconductor’s TCGAbi-
olinks module [22].
2.2. System preparation

The model of the entire human KDM6A protein (UniProt ID:
O15550) was retrieved from the AlphaFold Protein Structure
Database [23]. Per-residue confidence scores (pLDDT) showed that
both the TPR-region (residues 50–450) and the C-terminal domain
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(residues 880–1401) were modeled by an accuracy ranging from
‘‘well” to ‘‘very high.” Conversely, the first 50 residues, the 1058–
1076 loop, and the entire intrinsically disordered region (IDR, resi-
dues 450–880) weremodeledwith very low accuracy (pLDDT < 50).
Noteworthy, two of our selected variants, Glu745Asp and
Gly795Arg, fall in the latter regions and, therefore, were excluded
from any further analysis.

The interaction with the histone H3 was recreated using the X-
ray structure of the KDM6A C-terminal fragment in its bound-form
with histone H3K27me3 peptide (PDB ID: 3avr) as a template and
extracting the atomic coordinates of the peptide (residues 17–38).
Moreover, the Zn and Fe ions, together with the cofactor 2-
oxoglutarate (2OG), were added to their respective binding sites.
The final complex was refined using MODELLER v9.16 [24]. Finally,
the wild-type structure was mutated in-silico using ChimeraX [25]
to introduce the variants above, obtaining nine mutant complexes.

According to standard MD guidelines, each candidate system
was subjected to multiple preparatory steps [26]. The Leap module
of AmberTool21 [27] was employed to embed both wild-type and
mutant complexes into a simulation box filled with TIP3P water.
Na+ and Cl- counter ions were added to neutralize the overall
charge of the models. The distance between the solute surface
and the box was set to 12 Å. We used the Amber ff14SB force field
to parametrize the amino acids, while the Zinc AMBER force field
(ZAFF) [28] was employed for the Zn(II) ion. Each system was first
energy-minimized using the steepest descent method, followed by
the conjugate gradient method, and, thus, gradually heated and
equilibrated for approximately five ns using a time-step of 1 fs.
Electrostatic interactions were computed using the particle-mesh
Ewald (PME) method, while a cutoff of 10 Å was used for non-
bonded short-range interactions. Temperature and pressure were
set at 300 K and 101.3 kPa, respectively, using the Langevin dynam-
ics and Piston methods. Finally, additional constraints were applied
to the IDR regions during both equilibration and production steps
to avoid large system fluctuations during the simulations.

2.3. Gaussian accelerated molecular dynamics simulation

We implemented an enhanced MD simulation protocol similar
to the one described in our previous paper [7]. GaMD [29] is an
accelerated MD technique that works by adding a harmonic boost
to smooth the system potential energy, reducing system energy
barriers and, thus, enhancing the conformational sampling. This
boost potential can be applied in a single or dual-boost scheme,
so GaMD does not require any predetermined reaction coordinates
or collective variables (CV). Hence, it is optimal for studying the
dynamics of complex biological systems.

Here, both dihedral and total potential boost were used. Maxi-
mum, minimum, average, and standard deviation values of the sys-
tem potential were obtained from an initial � 10 ns simulation
with no boost potential applied. Each GaMD simulation proceeded
for � 40 ns, in which the boost potential was updated every 1.6 ns,
thus reaching equilibrium values. Finally, �200 ns of GaMD pro-
duction was carried out by applying the dual boost scheme
through the AMBER parameter ‘‘igamd = 3” and setting a time-
step of 2 fs. Atomic positions were recorded every 500 steps
(1.0 ps) for subsequent analysis. Each system was simulated three
times using the GPU version (pmemd.cuda) of AMBER 20 on 3 NVI-
DIA RTX 2080Ti graphic cards [30].

2.4. Analysis of the trajectories

The obtained trajectories were analyzed from a geometric and
energetic point of view, excluding the initial simulated 50 ns. In
more detail, MDAnalysis [31] was used to calculate the Root Mean
Squared Deviation (RMSD) profiles. We have aligned each frame of
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the trajectories to the starting reference structure and then inves-
tigated the relative movements of the backbone atoms of the entire
protein and specific domains. We then measured their average dis-
tances to the reference structure.

We relied on Principal Component Analysis (PCA) to probe con-
formational changes occurring in our systems during the simula-
tion. We inferred large-scale collective fluctuations of atoms and
then predicted low-dimensional subspaces where essential protein
motions were expected to take place. Hence, the covariance matrix
was generated using the gmx_covar function implemented in GRO-
MACS v2018, which captures the degree of collinearity of the
atomic motions of each pair of atoms. The conformational changes
of the systems caused by the variants under investigation were
explored by resorting to the Dynamic Cross-Correlation Maps
(DCCMs). These were plotted by a custom Python script that takes
covariance matrices as input and generates the correlation matri-
ces. DCCMs allowed us to study the long-range interactions
between all pairs of atoms and highlight any correlated and anti-
correlated motion.

PyReweighting, a toolkit of Python scripts, was used to reweight
the GaMD simulations and detect the original free energy. The
Potential of Mean Force (PMF) profiles were obtained by 2D-
projecting each trajectory on eigenvectors and by setting different
bin sizes until convergence. The cutoff for the number of simula-
tion frames in one bin was 500. The DBSCAN algorithm imple-
mented in AmberTools21 was employed to find the
representative structures of the MD simulations and the clusters
characterized by similar molecular density values, which, in turn,
included the frames belonging to the same minimum points in
the PMF profiles. The GetContacts [32] package was utilized to
rapidly compute and compare the atomic interactions occurring
in the frames composing each cluster. Then, the get_contact_fre-
quencies.py script was used to calculate the frequency of each inter-
action. Finally, cluster-specific binding energy profiles were
obtained using the MM/GBSA method, as implemented in the
MMPBSA.py script from the AmberTools21 suite; it was run with
default settings and sampling one frame every 100 ps of simula-
tion. 3D figures and motions were generated using the UCSF Chi-
meraX software package.
3. Results

We report the analysis of the simulated trajectories of the
human wild-type KDM6A protein in complex with the known
interacting portion of the H3 histone. Comparatively, we assessed
the conformational transitions that occurred during the simulation
of a set of KDM6A mutants found in a LUSC cohort. The considered
missense mutations spanned the whole protein-coding region of
the gene: Gly174Val, Val195Phe, Tyr217Ala, and Ala337Ser map
on the KDM6A TPR domain, while Arg901Lys, Glu1049Asp,
Asp1163Glu, Ala1246Pro, and Ile1318Leu hit its catalytic domain
(Fig. 1). Finally, Glu745Asp and Gly795Arg are located in the IDR
region and, therefore, were excluded from this study.
Fig. 1. Schematic representation of the KDM6A protein domains. Variants potentially aff
of the references to colour in this figure legend, the reader is referred to the web versio
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3.1. Wild-type RMSD and DCCMs

The observed structural rearrangements during simulations
were assessed by computing the RMSD values of the alpha carbons
(Ca) of the systems under investigation compared with those of the
reference starting structure. Fig. 2A shows how the simulation of
the wild-type system reached stable backbone RMSD values, rang-
ing from 3 to 4 Å, after 100 ns. We also report the RMSD profiles
subdivided for each domain. In detail, the Jumonji and Linker
domains were the most flexible regions, with the former reaching
a stable state after 100 ns around 5 Å and the latter at � 3.5–4.5 Å
after 150 ns. Finally, the Zinc domain remained stable during the
entire simulation time.

A DCCM was computed starting from a pre-calculated covari-
ance matrix with the aim of studying the role of long-range inter-
actions between all pairs of atoms and, thus, describing the
correlated and anticorrelated movements of each domain. We
observed that the first 100 residues of the TPR domain moved in
an anticorrelated way with the flaking portion of the catalytic
domain (residues 810–900, represented by the red box in
Fig. 2B). Additionally, the Linker and Jumonji domains (residues
920 to 1250) exhibited anticorrelated movements with a part of
the TPR region (residues 220 to 420, blue box) and with the Zinc
domain (residues 1300 to 1390, green box). It is worth noticing
that, in all our analyses, we did not report any results regarding
the region spanning residues 450–850 (gray box) due to con-
straints imposed on this region that could influence their
reliability.

3.2. Potential of Mean force and cluster analysis

The first (PC1) and second (PC2) principal component projec-
tions were used as reaction coordinates to assess the system
free-energy landscape, i.e., the PMF. Then, the frames were clus-
tered into the most representative conformations using the
density-based clustering approach provided by DBSCAN. The aim
was to identify the most representative 3D structures correspond-
ing to low-energy, long-lived conformations among all. In detail,
three low energy conformational states could be identified, corre-
sponding to the following absolute coordinates (-8, 2), (2, -4),
and (4, 3) in Fig. 2C. As detailed in Fig. 2D, two of these minima cor-
respond to highly populated clusters of frames, while the third
aggregates multiple scarcely populated clusters. In detail, the red
cluster represents 41% of the trajectory (henceforth cluster0), while
the blue cluster represents 23% (cluster1). They are likely to repre-
sent two well-defined states of a conformational transition.

The average structures of the two main clusters were reported
in Fig. 2E, where we mapped the differential interaction network.
The contacts between all the amino acids in the average structures
relative to these two clusters are available in Supplementary
Table 2. Fig. 2E also zooms on the most flexible regions, as sug-
gested by the RMSD and DCCM profiles and described in [7]. These
regions play a fundamental role in the interaction with the
H3K27me3 peptide. During the transition from cluster0 to cluster1,
ecting the pre-mRNA splicing mechanism are highlighted in red. (For interpretation
n of this article.)
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the Linker domain showed, in fact, an increase of the interaction
frequency between Arg922 with Glu1171 (from 0.213 to 0.853)
and with Glu1254 (from 0.230 to 0.977) and His957 with
Ser1400 (from 0.059 to 0.615). Similarly, the histone exhibited an
increase in the affinity of H3K27me3 for Asn1149 (from 0.101 to
0.765) but a decrease in its interaction with Asn1087 (from 0.532
to 0.046) and Ser1154 (from 0.505 to 0.239).

3.3. Arg901Lys

Arg901Lys was absent in gnomAD and associated with LUSC
and large intestinal adenocarcinoma in COSMIC. Considering that
the 901 codon overlaps an exon-exon junction, we suggest a differ-
ent pathogenic mechanism. It may, in fact, affect exon splicing, as
consistently confirmed by all calculated in-silico functional scores,
which predicted a highly deleterious impact of the variant on the
splicing mechanism (Supplementary Table 1). Gene expression
analysis disclosed a significantly lower abundance of KDM6A tran-
script carrying this variant, thus confirming a potential effect on
splicing or transcript stability. A similar hypothesis could hold
for Ala1246Pro also (Fig. 3). However, we cannot ensure the two
mutant proteins are expressed, especially considering that
Arg901Lys and Ala1246Pro occur distantly, the latter much closer
to the 30 end of the protein than the former.

3.4. KDM6A missense variants in LUSC

All the considered KDM6A missense variants were absent from
gnomAD, most of them with highly predicted deleterious effects
(CADD > 20). Instead, they were reported in COSMIC as single cases
of LUSC (Supplementary Table 1). For these reasons, the same ana-
lytical protocol was applied to the mutant trajectories. In Fig. 4, we
report their domain-specific RMSD profiles. In detail, Gly174Val,
Glu1049Asp, Asp1163Glu, Ala1246Pro, and Ile1318Leu showed
lower RMSD values for the Jumonji domain compared to the
wild-type, while Ala337Ser reached � 3.5 Å for the same domain
only during the final 50 ns. Furthermore, Gly174Val (only in the
final simulation steps), Tyr217Ala, Ala337Ser, and Glu1049Asp dis-
played a remarkably increased flexibility of the Zinc domain, while
Asp1163Glu reached stable RMSD profiles for all the domains dur-
ing the entire simulation time. Finally, Val195Phe showed an
RMSD profile comparable to the wild-type for all domains.

3.5. Mutant clustering and local interaction network analysis

In this section, we report the results of a cluster analysis applied
to the mutant trajectories and document the contacts that exhibit
at least a moderate alteration in frequency, i.e., �0.3 to wild-type.
This analysis focused on the interactions occurring in the proximity
of the variants or within the H3K27me3 binding pocket. We iden-
tified only one cluster for Val195Phe, Tyr217Ala, and Asp1163Glu
3

Fig. 2. MD analysis of the wild-type protein. A. RMSD profiles of the heavy atoms (yellow
the KDM6A protein. B. DCCM: perfect correlations are highlighted in red (direct) or violet
the first 100 residues of the TPR domain and the flaking portion of the catalytic domain (r
domains (residues 920 to 1250) with part of TPR (residues 220 to 420); green, anticorre
with the Zinc domain (residues 1300 to 1390); the gray box surrounds the IDR region. C.
on the X and Y-axes, respectively. Colors represent PMF levels, from the absolute min
projection plane. The gray dots represent all unclustered frames. E. 3D structures of the
bottom-left). The TPR domain is colored in gray, the Linker (910–932) in blue, Jumonji (9
1379–1395) in orange. H3 is colored in dark gray. Cluster-exclusive contacts are colored
and cluster1 are colored in orange. The region where the interaction between the cat
fundamental interactions for the cluster0-cluster1 transition are highlighted. (For interpr
web version of this article.)
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and two differently populated intermediate configurations for
Gly174Val, Ala337Ser, Glu1049Asp, Ala1246Pro, and Ile1318Leu
(Fig. 5). We considered only the clusters that included the local
minimum values.

Locally, Val195Phe mainly affected the interaction with Leu192,
which caused increased stability of the mutant protein compared
to the wild-type, where the interaction frequency between the
two residues decreased during the transition between cluster0
and cluster1 (Table 1). Tyr217Ala lost its interaction with Lys178
causing the impairment of crucial movements needed to make
the transition between the two conformations occur, as reported
in Supplementary Table 2. Furthermore, Tyr217Ala decreased its
interaction frequency with Tyr183 compared to both wild-type
clusters. Asp1163Glu lost its interaction with Pro1214 and
Gln472 residues, which were highly frequent in both wild-type
clusters, and compensated by two novel interactions with the
Cys1234 and Gln475 residues. Gly174Val increased its interaction
frequency with Phe177 and decreased with His189. Similarly,
Ala337Ser increased its interaction with Gly325 compared to the
wild-type clusters. Cluster1 of the Glu1049Asp mutant and wild-
type proteins displayed comparable interaction frequencies with
the residues Glu1045 and Lys1053; however, a new high-
frequency interaction was established with Lys1080. Moreover,
the interaction with its neighbor residue, Arg1048, decreased in
cluster0 and was lost in cluster1 of the mutant. The resulting local
interaction network caused the loss of crucial movements that
were observed in the two wild-type conformations, determining
the rotation of a specific residue fragment (residues 1047–1050).
Ala1246Pro caused the increase in the interaction frequency with
Asp1285 compared to the wild-type. Finally, the interaction fre-
quency rates with Ile1318Leu were similar to wild-type in cluster1
and reduced in cluster0.

3.6. Mutants’ DCCMs

In all mutant DCCMs (Fig. 6), we observed a loss of anticorrelated
motions featuring the wild-type simulation between the Zinc and
Jumonji domains (green box, Fig. 2B), with the only exception of
Tyr217Ala,where it was partially preserved. Similarly, in Ala337Ser,
Glu1049Asp, and Ile1318Leu, the correlation between TPR and
Jumonji domains (blue box, Fig. 2B) was entirely lost. In Gly174Val,
Ala1246Pro, Asp1163Glu and Val195Phe, the Jumonji domain
moved in an anticorrelatedway toward thefirst part of theTPR (resi-
dues 1 to 200). Furthermore, in Tyr217Ala, the same anticorrelated
motions observed in the wild-type were partly replaced by a corre-
lated movement of part of the TPR domain (residues 350 to 450).
Finally, Ala337Ser, Tyr217Ala, Val195Phe, and Ile1318Leu entirely
lost the anticorrelated motions between the flanking regions of
the catalytic domain and part of the TPR domain (red box, Fig. 2B).
Such anticorrelated dynamics were only partially preserved in
Gly174Val, Glu1049Asp, Asp1246Pro, and Asp1163Glu.
) and domains (Jumonji in green, Linker in blue, TPR in gray, and Zinc in magenta) of
(inverse). The boxes in the DCCM highlight: red, anticorrelated movements between
esidues 810–900); blue, anticorrelated movements between the Linker and Jumonji
lated movements between the Linker and Jumonji domains (residues 920 to 1250)
PMF. The first (PC1) and second (PC2) principal component projections are reported
imum (dark blue) to the maximum (yellow). D. Clusters identification in the PCA
KDM6A-H3 complex of the most representative clusters (cluster0 top-left, cluster1

33–1268) in green, Zinc (1315–1378) in magenta, and helical (886–902/1269–1314/
in red; contacts that change residue partners during the transition between cluster0
alytic domain and the histone H3 is displayed on the right. Residues involved in
etation of the references to colour in this figure legend, the reader is referred to the



Fig. 3. KDM6A expression profiles of TCGA samples grouped by sex and tissue type.
Expression analysis of patients carrying Single Nucleotide Variants (SNVs) causing
Arg901Lys and Ala1246Pro disclosed the lowest transcript abundance compared to
sex-matched mutant cases.

Fig. 4. RMSD profiles of the heavy atoms of the KDM6A protein (yellow) and its doma
simulated mutants. (For interpretation of the references to colour in this figure legend,
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3.7. The roles of H3 and H3K27me3

The binding energy of the KDM6A protein with the ligand H3
was calculated for the average structures of the considered clusters
using the MM/GBSA method. In the wild-type complex, cluster1
showed a reduced binding affinity for H3 than cluster0 (-82 to
-103 kcal/mol). Moreover, in Ala1246Pro and Ile1318Leu, we
observed two different binding configurations, showing higher
binding energy values than the wild-type (-102 to -106 kcal/mol
and -106 to -127 kcal/mol, respectively). Similarly, in Ala337Ser
and Gly174Val, we obtained two different conformations featured
by lower binding energy values (-49 to -68 kcal/mol and -86 to
-95 kcal/mol, respectively). In Glu1049Asp and Val195Phe, we
identified two conformations exhibiting proximal binding energy
values (-111 kcal/mol and -96 kcal/mol, respectively). Finally, for
Tyr217Ala and Asp1163Glu, we obtained only one cluster, with a
binding energy of -74 kcal/mol and -102 kcal/mol, respectively.

Such alterations of the binding affinity also influenced the ori-
entation of H3K27me3 within its binding pocket. For this reason,
we evaluated the H3K27me3 interaction network for each protein
system (Supplementary Table 4) and reported whether fundamen-
ins (Jumonji in green, Linker in blue, TPR in gray, and Zinc in magenta) for all the
the reader is referred to the web version of this article.)



Fig. 5. The first and second principal components projections subdivided by clusters for each mutant system.
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tal interactions in the wild-type protein were partially or severely
altered in the mutants. We found that Ala337Ser lacks the three
bonds with H3K27me3 characterizing the wild-type protein and
described above, i.e., with Asn1149, Asn1087, and Ser1154; this
causes the complete disorganization of the binding site interaction
network. Similarly, Gly174Val, Val195Phe, Tyr217Ala, Ala1246Pro,
and Ile1318Leu lost their bonds with Ser1154. Ala1246Pro and
Ile1318Leu replaced this bond with two high-frequency bonds
with Asn1087 and Asn1149, which were partially conserved in
Val195Phe and Asp1163Glu (both characterized by only one clus-
ter); Tyr217Ala also lost many other essential interactions. Fur-
thermore, Glu1049Asp has partially lost the interaction with
Ser1154 and increased that with Glu1148 in one of the two sam-
pled conformations. On the contrary, the interaction with
Glu1148 was never established in Gly174Val. Finally, Ala1246Pro
showed a novel bond between H3K27me3 and Leu1127 (Supple-
mentary Table 3).

4. Discussion

MD simulation represents one of the most potent computa-
tional strategies to study the dynamical features of macro-
molecules, such as, for example, the conformational transitions in
atomistic detail. Using an enhanced MD simulation technique, we
were able to identify a key conformational transition occurring in
3157
the wild-type KDM6A protein. The RMSD and DCCM profiles,
which describe the motility of protein domains during an MD sim-
ulation, remarked the great flexibility of the Linker and Jumonji
domains and the clear anticorrelated motions of the Jumonji and
part of the TPR and the Zinc domains. Such high motility can be
mainly ascribed to the differential interaction network resulting
from the transition between the two main clusters, cluster0 and
cluster1. Here, the torsion of the Linker domain, consequent to
the anticorrelated motion between the other catalytic subdomains,
resulted in increased interaction between the Arg922 residue and
the Jumonji domain and a decreased affinity for the H3 in cluster1,
as pointed out by the analysis of the binding energy. Notably, this
latter conformation is characterized by a significant rewiring of the
H3K27me3 interaction network compared to cluster0, signaling the
orientation change of the trimethylated lysine into its binding
pocket.

This extensive characterization allowed us to finely describe
alternative conformations corresponding to well-defined and
highly populated low energy states in nine KDM6A, LUSC-related
mutants, i.e., Gly174Val, Val195Phe, Tyr217Ala, Ala337Ser,
Arg901Lys, Glu1049Asp, Asp1163Glu, Ala1246Pro, and Ile1318Leu,
and hypothesize their mechanistic roles. Interestingly, all of them
but Arg901Lys were found to have a structural impact, affecting
the overall protein dynamics at different levels. As the SNV causing
Arg901Lys substitution localizes on the last nucleotide of the



Table 1
Perturbations in local interaction networks caused by KDM6A variants. Missing clusters are indicated with ‘‘//”.

Residue 1 Residue 2 Wild-type
cluster0

Wild-type
cluster1

Mutant
cluster0

Mutant
cluster1

Ala1246Pro 1246 Asp1285 0.229 0.230 0.626 0.711
Gly174Val 174 Phe177 0.517 0.598 0.925 0.910

174 His189 0.904 0.806 0.579 0.320
Ala337Ser 337 Gly325 0.675 0.690 0.998 0.998
Thr217Ala 217 Tyr183 0.821 0.901 0.497 //

217 Lys178 0.249 0.356 0 //
Glu1049Asp 1049 Glu1045 0.464 0.839 0.912 0.859

1049 Lys1053 0.600 0.944 0.948 0.979
1049 Arg1048 0.414 0.297 0.146 0
1049 Lys1080 0 0 0.964 0.855

Asp1163Glu 1163 Pro1214 0.418 0.561 0.118 //
1163 Cys1234 0.101 0 0.468 //
1163 Gln472 0.887 0.694 0 //
1163 Gln475 0 0 0.657 //

Val195Phe 195 Leu192 0.819 0.585 0.864 //
Ile1318Leu 1318 His1320 0.508 0.480 0.266 0.412

Fig. 6. DCCMs of mutant KDM6A proteins; perfect correlations are highlighted in red (direct) or violet (inverse). Altered motions with respect to the wild-type protein can be
recognized by direct comparisonwith colored boxes in Fig. 2B. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version of this
article.)
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coding exon 17 (ENST00000377967.9), a plausible explanation is
that a functional effect on splicing or transcript stability could be
envisaged as the pathogenic mechanism. In-silico predictions and
gene expression analysis confirmed this hypothesis. This could also
apply to Ala1246Pro as the residue 1246 overlaps an exon-exon
junction. In-silico predictions confirmed a potential functional
effect on the splicing mechanism; considering the gene expression
values, a functional effect of this variant on both transcript
splicing/stability and protein activity could not, therefore, be
excluded.

The RMSD profiles showed how the majority of the alterations
to the protein dynamics regarded the Jumonji domain, with
Gly174Val, Glu1049Asp, Asp1163Glu, Ala1246Pro, and Ile1318Leu
displaying a decrease in the motility of this catalytic domain. In
contrast, Gly174Val, Tyr217Ala, Ala337Ser, and Glu1049Asp
dynamics were characterized by a disordered movement of the
Zinc domain.

Analyzing the perturbations caused by the mutants locally, we
were able to identify several interactions whose alterations
resulted in the loss of fundamental motions needed for the correct
conformational transition of the protein. Val195Phe determined an
increase of the local stability, which, in turn, caused an altered
motion correlation between the TPR and the Jumonji domains.
Similarly, in Ala337Ser, we verified enhanced rigidity in the variant
site’s neighborhood, with the consequential loss of fundamental
anticorrelated motions present in the wild-type protein. Notably,
this resulted in the interaction impairment between H3 and the
catalytic domain. On the contrary, Tyr217Ala and Glu1049Asp
altered several interactions described as fundamental for the
native conformational transition, with a lack of correlation and
anticorrelation motions between different domains, especially for
Glu1049Asp. Alterations of the interaction frequencies were found
in the surrounding Gly174Val and Asp1163Glu regions and the
establishment of novel interactions. Globally, this caused anticor-
related movements of the Jumonji domain towards part of the
TPR domain and a loss of correlation with the Zinc domain. Finally,
Ala1246Pro and Ile1318Leu showed slight but evident differences
in the interaction frequency compared to the wild-type, with the
complete lack of motion correlation between Jumonji and the Zinc
and TPR domains.

The analysis of the binding energy between H3 and KDM6A and
the H3K27me3-specific interaction network further supported
these conclusions. An evident decrease in the H3-KDM6A affinity
was observed in Tyr217Ala and Ala337Ser. At the same time,
Val195Phe, Glu1049Asp, and Ala1246Pro displayed similar binding
energy values for different conformations, a sign of the overall pro-
tein rigidity. Finally, Gly174Val and Ile1318Leu did not show dra-
matic differences in binding energy but an alteration of the
H3K27me3 orientation caused by the Ser1154 binding loss and
the increased affinity for Asn1087 (both) and Asn1149 (Ile1318Leu
only).

To summarize, this research suggests that LUSC-associated
missense mutations in KDM6A affect the physiological transition
between two wild-type alternative conformations, which in turn
affects the H3 interaction. Compared with our previous descrip-
tion of Kabuki-associated mutations, this finding expanded our
understanding of the demethylase mechanism, emphasizing the
importance of the correct orientation of H3K27me3. This funda-
mental aspect, perceivable but not observable due to the overall
rigidity of the Kabuki mutant KDM6A-H3 complexes, was clearly
described by the interaction rewiring occurring in the simulated
mutants. As a result, while the lack of quantitative data on the
mutant systems’ putatively altered demethylase activity limits
this study, it can serve as a starting point for a therapeutic
approach aimed at restoring the physiological activity in patients
with KDM6A mutations.
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