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Pancreatic ductal adenocarcinoma (PDAC) is generally incurable due to the late
diagnosis and absence of markers that are concordant with expression in several
sample sources (i.e., tissue, blood, plasma) and platforms (i.e., Microarray, sequencing).
We optimized meta-analysis of 19 PDAC (tissue and blood) transcriptome studies from
multiple platforms. The key biomarkers for PDAC diagnosis with secretory potential were
identified and validated in different cohorts. Machine learning approach i.e., support
vector machine supported by leave-one-out cross-validation was used to build and
test the classifier. We identified a 9-gene panel (IFI27, ITGB5, CTSD, EFNA4, GGH,
PLBD1, HTATIP2, IL1R2, CTSA) that achieved ∼0.92 average sensitivity and ∼0.90
average specificity in distinguishing PDAC from healthy samples in five training sets
using cross-validation. These markers were also validated in proteomics and single-cell
transcriptomics studies suggesting their prognostic role in the diagnosis of PDAC. Our
9-gene classifier can not only clearly discriminate between better and poor survivors
but can also precisely discriminate PDAC from chronic pancreatitis (AUC = 0.95), early
stages of progression [Stage I and II (AUC = 0.82), IPMA and IPMN (AUC = 1), and
IPMC (AUC = 0.81)]. The 9-gene marker outperformed the previously known markers in
blood studies particularly (AUC = 0.84). The discrimination of PDAC from early precursor
lesions in non-malignant tissue (AUC > 0.81) and peripheral blood (AUC > 0.80) may
assist in an early diagnosis of PDAC in blood samples and thus will also facilitate risk
stratification upon validation in clinical trials.

Keywords: biomarker, pancreatic cancer, secretory, transcriptome, validation

Abbreviations: AUC, area under the curve; CA 19-9, carbohydrate antigen 19-9; CDF, chip definition file; CP, chronic
pancreatitis; DE, differentially expressed; GEO, gene expression omnibus; GGH, γ-glutamyl hydrolase; FDR, false
discovery rate; HPA, human protein atlas; IPMA, intraductal papillary-mucinous adenoma; IPMC, intraductal papillary-
mucinous carcinoma; IPMN, intraductal papillary mucinous neoplasm; LOOCV, leave-one-out cross-validation; noTM,
no transmembrane segments; PanIN, pancreatic intraepithelial neoplasia; PC, pancreatic cancer; PDAC, pancreatic ductal
adenocarcinoma; ROC, receiver operating characteristic; SVM, support vector machines; TCGA, tissue cancer genome atlas.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the most common
type of pancreatic cancer (PC), which is one of the fatal cancers
in the world with 5-year survival rate of <5% due to the
lack of early diagnosis (Fesinmeyer et al., 2005). One of the
challenges associated with an early diagnosis is distinguishing
PDAC from other non-malignant benign gastrointestinal diseases
such as chronic pancreatitis (CP) due to the histopathological
and imaging limitations (Brand and Matamoros, 1998). Although
imaging techniques such as endoscopic ultrasound and FDG-
PET have improved the sensitivity of PDAC detection but have
failed to distinguish PC from focal mass-forming pancreatitis in
>50% cases. Dismal prognosis of PC yields from asymptomatic
early stages, speedy metastatic progression, lack of effective
treatment protocols, early loco regional recurrence, and absence
of clinically useful biomarker(s) that can detect PC in its
precursor form(s) (Ballehaninna and Chamberlain, 2012).
Studies have indicated a promising 70% 5-year survival for
cases where incidental detections happened for stage I pancreatic
tumors that were still confined to pancreas (Frena, 2001;
Schneider and Schulze, 2003). Therefore, it only seems rational
to aggressively screen for early detection of PDAC. CA19-9 is
the most common and the only FDA approved blood-based
biomarker for diagnosis, prognosis, and management of PC but it
has several limitations such as poor specificity, lack of expression
in the Lewis negative phenotype, and higher false positive
elevation in the presence of obstructive jaundice (Ballehaninna
and Chamberlain, 2012). A large number of carbohydrate
antigens, cytokeratin, glycoprotein, and Mucinic markers and
hepatocarcinoma–intestine–pancreas protein, and PC-associated
protein markers have been discovered as a putative biomarkers
for management of PC (Ballehaninna and Chamberlain, 2013).
However, none of these have demonstrated superiority to CA19-
9 in the validation cohorts. Previously, our group discovered
a novel five-genes-based tissue biomarker for the diagnosis of
PDAC using innovative meta-analysis approach on multiple
transcriptome studies. This biomarker panel could distinguish
PDAC from healthy controls with 94% sensitivity and 89%
specificity and was also able to distinguish PDAC from CP, other
cancers, and non-tumor from PDAC precursors at tissue level
(Bhasin et al., 2016). The relevance of tissue-based diagnostic
markers remains unclear owing to the limitations of obtaining
biopsy samples. Additionally, most current studies are based
on small sample sizes with limited power to identify robust
biomarkers. Provided the erratic nature of PC, the major unmet
requirement is to have reliable blood-based biomarkers for early
diagnosis of PDAC.

The crucial requisite for better PDAC diagnosis has driven
a large number of genome-level studies defining the molecular
landscape of PDAC to identify early diagnosis biomarkers and
potential therapeutic targets. Despite many genomics studies,
we do not have a reliable biomarker that is able to surpass the
sensitivity and specificity of CA19-9. The independent studies
suffer from inherent statistical limitations where the datasets
derived from different batches, techniques and platforms and
analytic methods result in the lack of concordance (Ramasamy

et al., 2008). The published gene signatures of individual
microarray studies are not concordant with comparative analysis
and meta-analysis studies when standard approaches are used
due to variability in analytical strategies (Ramasamy et al., 2008).

In our work, we have included all the available gene expression
datasets for PDAC versus healthy subjects from GEO1 and
ArrayExpress database2 measured via microarray or sequencing
platforms. We have included the datasets derived from blood and
tissue sources excluding cell lines in our analysis, which was not
included previously. The cell lines were excluded for they do not
depict normal cell morphology and do not maintain markers and
functions seen in vivo.

The approach of combining multiple studies has previously
been stated to reveal biological insight by increasing the
reproducibility and sensitivity which is generally not evident
in the independent original datasets (Wang et al., 2004). Using
the uniform pre-processing, normalization and batch correction
approaches in the meta-analysis can assist in eliminating
false-positive results. Therefore, we used multiple datasets in
combinations and further divided them in training, testing and
validation sets to identify and validate the markers with secretory
signal peptides. We hypothesize that proteins with secretory
potential will be secreted out of the tissue into the blood and these
markers can be used as prognostic markers in a non-invasive
manner. There were no previous studies on identification of
marker genes that could be used with least-invasive methods.
Also, a set of multiple genes targeting different pathways and
biological processes are more reliable and sensitive than single
gene-based marker for complex diseases like cancer (Ramasamy
et al., 2008). We also corroborated the protein expression of our
markers in proteomics datasets obtained from human protein
atlas (HPA)3.

MATERIALS AND METHODS

Dataset Identification
The publicly available microarray repositories i.e., ArrayExpress
(see text footnote 2) and GEO (see text footnote 1) were searched
for gene expression studies of human pancreatic specimens.
The selected datasets were divided into five training sets and
fourteen independent validation sets for initial development and
validation of biomarkers. To avoid the representation of the
datasets only from tissues the few blood studies available were
divided across all training and validation phase of this study.

Each training dataset (GSE18670, E-MEXP-950, GSE32676,
GSE74629, and GSE49641) included a minimum of four samples
of normal pancreas and a minimum of four samples of PDAC.
In training set we included minimum two datasets with source
pancreatic tissue and peripheral blood. This was done to identify
a predictor based on genes that are detectable in both pancreatic
tissue and blood. Datasets GSE18670 (Set1: 6 normal, 5 PDAC),
GSE32676 (Set6: 6 normal, 24 PDAC) and E-MEXP-950 (Set3: 10
normal, 12 PDAC) was derived from pancreatic tissue, whereas

1https://www.ncbi.nlm.nih.gov/geo/
2https://www.ebi.ac.uk/arrayexpress/
3https://www.proteinatlas.org/
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GSE74629 (Set4: 14 normal, 32 PDAC) and GSE49641 (Set5: 18
normal, 18 PDAC) contain transcriptome profile of peripheral
blood PDAC patients.

Further, 14 validation sets were also divided into three groups,
one “Test sets” (Table 1A); second “Validation Sets” (Table 1A)
and third “Prospective Validation Sets” (Table 1B). Five Tissue
studies were included: one from microdissected tissue samples
(Set6: 6 normal, 6 PDAC) and four from whole tissues (Set7: 45
normal, 40 PDAC; Set8: 6 normal, 6 PDAC; Set9: 8 normal and
12 PDAC and Set10: 15 normal, 33 PDAC). One blood study from
peripheral blood was also validated using the biomarker (E-Set11:
14 normal, 12 PDAC).

For Phase I Validation we selected five datasets from different
platforms from whole tissues and blood platelets, including
comparison of normal versus PDAC samples similar to training
and test sets. Four whole tissue datasets (V1: 61 normal, 69 PDAC;
V2: 20 normal, 36 PDAC; V3: 9 normal, 45 PDAC; and V4: 12
normal, 118 tumor) and one dataset from blood with samples
from blood platelets (V5: 50 normal, 33 PDAC) were included.

In Prospective Validation, the performance of the developed
PDAC biomarker panel was tested on four additional
independent datasets i.e.,: (i) PDAC versus normal (pancreatic)
tissue from TCGA database (PV1: 4 normal, 150 PDAC), (ii)
PDAC versus normal pancreatic tissues in early stages [PV2:
61 normal, 69 PDAC (Stage I and II)], (iii) PDAC versus
CP (PV3: 9 pancreatitis, 9 PDAC), and (iv) PDAC precursor
lesions (IPMA, IPMC, and IPMN) with associated invasive
carcinoma [PV4: 6 normal, 15 PDAC precursors (5 IPMA, 5
IPMC, 5 IPMN)] versus normal pancreas tissues (Table 1B).
Three datasets utilized oligonucleotide- based microarray
platforms (two versions of Affymetrix GeneChips and Gene
St 1.0 microarrays in one dataset) whereas the cancer genome
atlas (TCGA) data is the sequencing data obtained using
RNA-sequencing technology.

Quality Control and Outlier Analysis
Stringent quality control and outlier analysis was performed on
all datasets used for training and validation to remove low quality
arrays from the analysis. The technical quality of arrays was
determined on the basis of background values, percent present
calls and scaling factors using various bioconductor packages
(Wilson and Miller, 2005; Kauffmann et al., 2009). The arrays
with high quality were subjected to outlier analysis using array
intensity distribution, principal component analysis, array-to-
array correlation and unsupervised clustering. The samples that
were identified to be of low quality or identified as outliers were
eliminated from the analysis.

Mapping of Platform Specific Identifiers
to Universal Identifier
To facilitate the collation of the differentially expressed (DE)
genes identified by analysis of individual datasets, the platform
specific identifiers associated with each dataset were annotated to
corresponding universal gene symbol identifiers. Gene symbols
were used in subsequent analyses including comparative analysis
of different datasets as well as predictor development. Briefly

Affymetrix data was annotated using the custom CDF from
brainarray4. Affymetrix probe set IDs that could not be mapped
to an Entrez gene identifiers were removed from the gene lists.
For Agilent- 028004, HumanHT-12 V4.0 and Gene St 1.0 studies
the raw matrix was directly retrieved from the GEO interactive
web tool, GEO2R5, which were further processed and normalized.
The normalized and annotated genes for TCGA was obtained
from Broad GDAC Firehose database6. We have removed 29 non-
PDAC samples from TCGA during validation as our classifier was
trained using PDAC samples (Peran et al., 2018).

Pre-processing and Normalization of
Microarray Datasets
Potential bias introduced by the range of methodologies used in
the original microarray studies, including various experimental
platforms and analytic methods, was controlled by applying
a uniform normalization, preprocessing and statistical analysis
strategy to each dataset. Raw microarray dataset were normalized
using vooma (Law, 2013) algorithm which estimates the mean-
variance relationship and use the relationship to compute
appropriate gene expression level weights. Similarly, RNA-
sequencing datasets were normalized using voom algorithm (Law
et al., 2014). The normalized datasets were used for performing
meta-analysis as well as predictor development.

Differential Gene Expression Analysis for
Generating Meta-Signature
To generate PDAC meta-signature, we performed differential
expression analysis on individual datasets from training sets
by comparing normal versus cancer samples. To identify DE
genes, a linear model was implemented using the linear model
microarray analysis software package (LIMMA) (Ritchie et al.,
2015). LIMMA estimates the differences between normal and
cancer samples by fitting a linear model and using an empirical
Bayes method to moderate standard errors of the estimated
log-fold changes for expression values from each probe set. In
LIMMA, all genes were ranked by t-statistics using a pooled
variance, a technique particularly suited to small numbers of
samples per phenotype. The DE probes were identified on the
basis of absolute fold change and Benjamini and Hochberg
corrected P-value (Benjamini and Hochberg, 1995). The genes
with multiple test corrected P-value < 0.05 were considered as
DE. Comparative analyses were performed to identify those genes
that are significantly DE across multiple PDAC datasets. Genes
that are concordantly over or under expressed in three PDAC
datasets (two tissues and one blood study) were included in
PDAC meta-signature.

Secretory Gene Set Identification
To identify a non-invasive predictor based on genes with
secretory potential, we selected genes that had signal peptide for
secretory proteins with no transmembrane segments (noTM).

4http://brainarray.mbni.med.umich.edu
5www.ncbi.nlm.nih.gov/geo/geo2r/
6http://gdac.broadinstitute.org
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The Biomart package in R (Durinck et al., 2005) with quering
the gene symbols to SignalP database facilitated the analysis.
The Ensembl Biomart database enables users to retrieve a vast
diversity of annotation data for specific organisms. After loading
the library, one can connect to either public BioMart databases
(Ensembl, COSMIC, Uniprot, HGNC, Gramene, Wormbase and
dbSNP mapped to Ensembl) or local installations of these. One
set of functions can be used to annotate identifiers such as
Affymetrix, RefSeq and Entrez-Gene, with information such
as gene symbol, chromosomal coordinates, OMIM and Gene
Ontology or vice-versa.

Training and Independent Validation of
PDAC Classifier Using Support Vector
Machine
The upregulated secretory genes DE from PDAC meta-signature
was used for training of PDAC classifier. Classifier was generated
by implementing the random forest (RF) using caret{R} and
support vector machines (SVM) approach using e1071{R}.
Polynomial kernel was used to develop the classifier. RF and
SVM was first tuned using 10-fold cross-validation at different
costs and the best cost and gamma functions were later used to
perform classification on testing and validation sets. Classifiers
were trained using normalized, preprocessed gene expression
values from each of the five training datasets independently. To
independently validate our model in each dataset, performance
of classifiers in the training sets was evaluated using internal

LOOCV. We assessed the classifier of five to ten genes selected
from the set of upregulated genes to identify the biomarker
panel that works best in both tissue and blood-based studies.
The complete sets of possible combinations of five to ten genes
were drawn from the upregulated genes and the accuracy of
each classifier was assessed. The performance of classifiers was
measured using threshold-dependent (e.g., sensitivity, specificity,
accuracy) and threshold-independent ROC analysis. In ROC
analysis, the AUC provides a single measure of overall prediction
accuracy. The biomarker panel with the highest performance
in the training sets (both tissue and blood-based studies) was
chosen for assessment of predictive power in six independent
test datasets using threshold-dependent and -independent
measures i.e., AUC. SVM outperformed the RF models in the
training datasets.

Survival Analysis
To determine the association of key genes with survival in
PC, we performed survival analysis using the TCGA database7.
The survival analysis was performed on PDAC mRNA of
150 patients [excluding samples related to normal tissues and
non-PDAC tissues (Peran et al., 2018)]. Survival analysis was
performed on the basis of individual mRNA expression using
the Kaplan-Meier (K-M) approach (Kaplan and Meier, 1958).
The normalized expression data for each gene was divided
into high and low median groups. The survival analysis was

7https://cancergenome.nih.gov/

TABLE 1A | Datasets used for development and validation of secretory genes based PDAC classifier.

Groups Dataset Normal Tumor Sample type Platform Accession

Training Sets Set 1 6 5 Enriched U133 Plus 2.0 E-GEOD-18670

Set 2 6 24 Whole Tissue U133 Plus 2.0 E-GEOD-32676

Set 3 10 12 Microdissected U133A E-MEXP-950

Set 4 14 32 Peripheral Blood HumanHT-12 V4.0 GSE74629

Set 5 18 18 Peripheral Blood Gene St 1.0 GSE49641

Test sets Set 6 6 6 Microdissected U133A E-MEXP-1121

Set 7 45 40 Whole Tissue Gene St 1.0 GSE28735

Set 8 6 6 Whole Tissue Gene St 1.0 GSE41368

Set 9 8 12 Whole Tissue U133 Plus 2.0 E-GEOD-71989

Set 10 15 33 Whole Tissue U133 Plus 2.0 E-GEOD-16515

Set 11 14 12 Peripheral Blood U133 Plus 2.0 E-GEOD-15932

Validation Sets V1 61 69 Whole Tissue Gene St 1.0 E-GEOD-62452

V2 20 36 Whole Tissue U133 Plus 2.0 E-GEOD-15471

V3 9 45 Whole Tissue Agilent-028004 GSE60979

V4 12 118 Whole Tissue U219 GSE62165

V5 50 33 Blood Platelet HiSeq-2500 GSE68086

TABLE 1B | Datasets used for prospective validation of secretory genes based PDAC classifier.

Group Dataset Group Pancreatic tumor Sample type Platform Accession

Prospective Validation Sets PV1 4 Normal 150 PDAC Tissue RNA-Seq TCGA

PV2 61 Normal 69 PDAC (Stage I and II) Whole Tissue Gene St 1.0 E-GEOD-62452

PV3 9 (Pancreatitis) 9 (PDAC) Whole Tissue U95Av2 E-EMBL-6

PV4 7 (Normal) 15 (IPMA, IPMC, IPMN) Microdissected U133 Plus 2.0 GSE19650

Frontiers in Genetics | www.frontiersin.org 4 September 2020 | Volume 11 | Article 572284

https://cancergenome.nih.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-572284 September 8, 2020 Time: 18:23 # 5

Khatri and Bhasin Secretory Biomarker Panel for PDAC

performed using K-M analysis from survival package in R.
The results of the survival analysis were visualized using
K-M survival curves with log rank testing. The results were
considered significant if the P-values from the log rank test
were below 0.05. The effects of mRNA on the event were
calculated using univariate Cox proportional hazard model
without any adjustments.

Pathways Analysis
The biological pathways for the genes was performed using
ToppFun software of ToppGene suite (Chen et al., 2009).
ToppGene is a one-stop portal for gene list enrichment
analysis and candidate gene prioritization based on functional
annotations and protein interactions network. ToppFun
detects functional enrichment of the provided gene list
based on transcriptome, proteome, regulome (TFBS and
miRNA), ontologies (GO, Pathway), phenotype (human
disease and mouse phenotype), pharmacome (Drug-Gene
associations), literature co-citation, and other features.
The biological pathways with FDR < 0.05 were considered
significantly affected.

RESULTS

PDAC Differential Expression Analysis
and Meta-Signature Development
To develop a gene based minimally invasive biomarker for
differentiating PDAC from normal/pancreatitis, we identified
19 microarray and RNA sequencing studies containing PDAC
and normal samples. These datasets based on their origin i.e.,
blood or tissue were divided into training sets, independent test
sets, validation sets and prospective validation sets (Figure 1;
Overview of meta-analysis strategy). For classifier training,
we performed meta-analysis on 3-tissue and 2-blood-based
PDAC studies to identify meta-signature that are DE in blood
and tissue during PC. To account for the differences in
microarray/sequencing platform used in studies, we processed
and normalized studies according to their platforms and selected
the genes that are common across multiple studies. The number
of DE secretory genes ranged from 480 to 810 genes, totaling
2,010 significantly DE genes in the five training datasets. We
identified 74 genes (35 downregulated and 39 upregulated) with
concordant directionality in at least two of the three tissue
datasets and one of the two blood datasets (Figure 2A, shown in
red color and Supplementary Table S1).

The 74 genes showed consistent expression across the PDAC
samples in the selected five datasets (3 tissue and 2 blood
datasets) as compared to the normal pancreas (Figure 2B),
with the extent of over-expression or under-expression denoted
by red or green shading, respectively. Pathway analysis of
these 74 common PDAC genes depicted significant enrichment
(P-value < 0.05) in multiple extracellular matrix-associated
pathways (e.g., Ensemble of genes encoding extracellular matrix
and extracellular matrix-associated proteins, remodeling of the
extracellular matrix, structural ECM glycoproteins, Cell adhesion
molecules) (Supplementary Figure S1). These pathways play

important roles in the adhesion of cells that is a key process in
progression of PDAC.

Variables Selection and Class Prediction
Analysis in Training Sets
The 39 upregulated genes from the 74 common genes
were selected for predictor development. We have specifically
targeted upregulated genes for their therapeutics and diagnostic
applications. We plotted boxplots of these 39 genes across all
the five training sets and removed the genes with opposite
direction in any of these five sets. The 27 concordantly
upregulated genes (Supplementary Table S2) were selected
after the boxplot analysis. These combined gene set clearly
discriminated between PDAC and normal pancreas samples in
all the datasets of training set, as depicted in the heatmap
for 27 genes (Supplementary Figure S2A) and principal
component analysis (PCA) plots (Supplementary Figure S2B).
The predictors based on 5 to 10 genes were developed and
assessed by LOOCV implementing with a polynomial kernel
based SVM classifier. All the possible combination of five to
ten genes were tested from 27 upregulated genes. The classifiers
containing the selected 9 genes i.e., IFI27, ITGB5, CTSD, EFNA4,
GGH, PLBD1, HTATIP2, IL1R2, and CTSA performed with
highest accuracy. These 9 genes were upregulated in PDAC
as compared to the normal pancreas in all the five training
sets (Figures 2C,D).

We performed LOOCV cross-validation analysis of the
9-gene PDAC classifier across the five training datasets to
determine its predictive performance. For each of the five
training datasets individually, sensitivity ranged from 0.83 to 1.0
and specificity 0.71 to 1.00 for the predictor (Supplementary
Figure S3A, Table 2). Comparison of the 9-gene PDAC
classifier performance in tissues (Set1-Set3) and blood datasets
(Set 4 and Set 5) showed approximately 0.94 sensitivity
and 0.97 specificity for the tissue datasets, in contrast to
0.88 sensitivity and 0.80 specificity for the blood datasets
(Supplementary Figure S3B, Table 2). AUC for the three
tissue datasets ranged from 0.89 to 1.00 with median = 0.96
(Supplementary Figure S3B) and for two blood datasets from
0.92 to 0.96 with median = 0.94 (Table 2, Supplementary
Figure S3C and Figure 2E), demonstrated threshold independent
performance). The average gene expression plots with all the
samples combined from the five training sets (Supplementary
Figure S4A) and the PCA plots of training sets (Supplementary
Figure S4B) from 9 genes supported the discriminatory
power of the marker combinations in identification of PDAC
subjects from normal.

Biological Significance of Selected
Genes
CTSA and CTSD are involved in extracellular matrix associated
proteins; IFI27 and IL1R2 in cytokine signaling in immune
system; ITGB5 and HTATIP2 in apoptotic pathway and
EFNA4, GGH and PLBD1 are involved in Ephrin signaling,
fluoropyrimidine activity and glycerophospholipid biosynthesis,
respectively. The genes selected based on the presence of signal
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FIGURE 1 | Overview of the meta-analysis approach for development and validation of PDAC biomarker panel. Predictor was developed using the data from
Set1-Set5 (S1-S5 in Step 4) and was further tested on Set5-Set10 and validated on V1-V5 and PV1-PV4 datasets.

peptide for secretion are supposed to be secretory; however,
the signal peptide is also present in several membrane proteins
(Uhlen et al., 2015). In the selected classifier genes, CTSD,
EFNA4 and IL1R2 are predicted to be secretory proteins
whereas CTSA, GGH, PLBD1, IFI27, ITGB5 and HTATIP2 are
predicted to be intracellular or membrane bound proteins in
HPA. Furthermore, CTSA and PLBD1 are also localized in
Lysosomes and GGH is secretory protein as per UniProtKB8

predictions. Since our 9 gene markers could be detected with
a detectable expression in both tissues and blood samples from

8www.uniprot.org

PDAC patients, we further validated the performance of these
genes for PDAC Diagnosis.

Independent Performance of Classifier in
Differentiating PDAC From Normal
The biomarker set designed above was further tested in six
independent sets with five tissue and one blood based PDAC
studies. The classifier genes depicted an upregulation pattern in
most of independent validation sets Supplementary Figure S5.
The boxplot revealed higher expression of all the 9 genes,
averaged over test sets, in the tumor samples as compared to the
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FIGURE 2 | Meta-signature of genes that are consistently DE in multiple datasets and candidate PDAC diagnostic biomarker panel. (A) Venn diagram of the five
training datasets for the DE genes. 74 genes (marked in red) with concordant directionality are common to at least 2 of the 3 tissue datasets (Set 1 to Set 3) and one
of the 2 blood datasets (Set 4 and Set 5). (B) Heatmap of the 74 meta-signature genes DE in PDAC from five training datasets. Red = upregulated,
Green = downregulated. (C) Heatmap of the 9-upregulated marker genes in training sets for PDAC biomarker panel. (D) Description of the genes from the 9-gene
based PDAC biomarker panels. (E) AUC plot [CI: 95%] for 9-gene PDAC classifier across the five training sets using leave one out cross-validation (LOOCV). Set1
and Set 2 are matched normal samples i.e., obtained from same individual. Set 3 normal samples are not matched, Normal samples are obtained from the patients
undergoing surgery with other pancreatic diseases. Set 4 and Set 5 are blood sourced studies therefore the normal subjects were matched for gender, age and
habits.

healthy (Figure 3A). For each of the six datasets individually,
sensitivity ranged from 0.75 to 1.00 and specificity from 0.71
to 1.00 for the predictor (Figure 3B, Table 2). Comparison of
the 9-gene PDAC classifier performance in tissue and blood
showed an average 0.94 sensitivity and 0.97 specificity for the
tissue datasets, in contrast to 0.75 sensitivity and 0.71 specificity
for the blood dataset. AUC for the five tissue datasets ranged
from 0.94 to 1.00 and for one blood datasets AUC was 0.80
(Figure 3C, Table 2).

High Accuracy of Our 9-Gene PDAC
Classifier in Predicting PDAC in 5
Independent Validation Sets
In five validation sets, the 9-gene PDAC classifier accurately
predicted the class of PDAC compared to normal with maximum
AUC of 1.00 in the independent validation tissue (V2) set
that contained 20 normal and 36 PDAC samples. More than
0.95 AUC was observed in three independent validation tissue
sets (V2, V3 and V4) that contained 36, 45 and 118 PDAC

Frontiers in Genetics | www.frontiersin.org 7 September 2020 | Volume 11 | Article 572284

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-572284 September 8, 2020 Time: 18:23 # 8

Khatri and Bhasin Secretory Biomarker Panel for PDAC

TABLE 2 | The performance matrix of the 9-gene PDAC classifier on the training, testing, validation and prospective validation sets.

Groups Datasets Accuracy Sensitivity Specificity AUC

Training Sets Set 1 1.00 1.00 1.00 1.00

Set 2 1.00 1.00 1.00 1.00

Set 3 0.87 0.83 0.90 0.89

Set 4 0.82 0.93 0.71 0.93

Set 5 0.86 0.83 0.89 0.97

Test Sets Set 6 1.00 1.00 1.00 1.00

Set 7 0.92 0.90 0.93 0.94

Set 8 1.00 1.00 1.00 1.00

Set 9 0.95 0.91 1.00 1.00

Set 10 0.96 0.93 1.00 0.94

Set 11 0.73 0.75 0.71 0.80

Validation Sets V1 0.79 0.76 0.83 0.83

V2 0.98 0.97 1.00 1.00

V3 0.94 1.00 0.89 0.98

V4 0.95 1.00 0.91 0.99

V5 0.83 0.84 0.82 0.89

Prospective Validation Sets PV1 0.82 0.94 0.72 0.93

PV2 0.74 0.74 0.75 0.82

PV3 0.83 0.78 0.89 0.95

PV4-IPMA 1.00 1.00 1.00 1.00

PV4-IPMC 0.84 0.83 0.86 0.81

PV4-IPMN 1.00 1.00 1.00 1.00

and 20, 9 and 12 normal pancreas samples, respectively,
(Figure 4A and Table 1B). The boxplot revealed higher
expression of all the 9 genes, averaged over validation sets,
in the tumor samples as compared to the healthy samples
(Figure 4B). In a tissue dataset (V1) containing 61 normal and
69 tumor samples a specificity of 0.83 and sensitivity of 0.76
was determined. In 50 normal and 33 PDAC blood platelet
sample (V5) 0.84 sensitivity, 0.82 specificity and 0.88 AUC was
achieved. The prediction of the PDAC class in comparison
to normal was accurate with a sensitivity ranging 0.76–1.00
and specificity ranging between 0.82 and 1.00 (Figure 4C
panel II, Table 2). Supplementary Figure S6 presents the
heatmap of the nine genes in individual validation datasets
and the PCA plots depicting the discrimination of PDAC
from normal samples.

Cross-Platform Performance of
Classifier on TCGA Pancreatic Samples
We further estimated the cross-platform performance of
classifiers on the most widely used PC sample resource namely
TCGA. TCGA dataset contains 150 PDAC samples and 4
normal samples and gene expression pattern analysis is not in
consistence with other studies (Supplementary Figure S7C).
The cross-platform validation of classifier on TCGA data also
achieved high sensitivity (0.94) and specificity (0.72) indicating
the stability of the classifier in handling the cross-platform
variation in absolute gene expression signal (Figure 5 PV1).
The classifier achieved an excellent AUC of 0.93 (Table 2). The
lower specificity of TCGA datasets might be due to the limited
number of normal samples in the dataset. Heatmap of the 9

genes and PCA plots depicts the discrimination of two classes
with the nine genes in the TCGA samples (Supplementary
Figure S7 PV1).

The markers did not show concordance in the TCGA
dataset; however, the significance of these genes in the
survival analysis can be very well established using the
TCGA database. The samples were partitioned at median for
selected nine-genes and survival analysis was performed on two
clusters (Supplementary Figure S8). The results showed the
combined survival of genes was able to clearly discriminate
between better and poor survivors (P-value significance of
0.05 and hazard Ratio of 0.85), indicating their prognostic
role in PDAC. High CTSD, EFNA4, HTATIP2, IFI27, ITGB5
and PLBD1 expression is associated with shortened survival
time. Also, the survival analysis of these genes with a
hazard ratio of >1 at significant P-value indicates their
prognostic importance.

Performance of Classifier in Identifying
Early Stage PDAC
As it is well established in literature that lack of established
strategies for early detection of PDAC result in poor
prognosis and mortality, we therefore tested performance
of our classifiers on stage I and II PDAC. The predictor
could distinguish stage I and II PDACs from normals
with 0.74 sensitivity and 0.75 specificity and an AUC 0.82
(Figure 5 PV2, Table 2). Heatmap of the nine genes and
PCA plots depicts the discrimination of two classes with the
nine genes in early stages PDAC samples (Supplementary
Figure S7 PV2).
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FIGURE 3 | Performance of 9-gene PDAC Classifier on test sets using leave one out cross-validation (LOOCV). (A) The boxplot of the averaged expression of the
genes across all the six test datasets. The P-values as calculated by t-test between the groups are on the individual genes. (B) Diagnostic performance of the
9-gene PDAC classifier on the six test sets of PDAC vs. normal pancreas. Sensitivity (Sens.) and specificity (Spec.) indicated besides each set. (C) AUC plot for
9-gene [CI: 0.95–0.99] PDAC classifier across the six test datasets.

Performance of Classifier in
Discriminating PDAC From Pancreatitis
Identification of CP and discriminating it from PDAC is a key
challenge. As our 9-gene PDAC classifier accurately established
the differences between PDAC and CP, it is important to include
further validation steps for the biomarker panel. The array
U95Av2 have the recorded signal intensity values for all the genes
except PLBD1, hence only 8 genes were tested as a classifier for
the discrimination of CP from PDAC. We tested the biomarker
on the PV3 dataset wherein there were nine samples each for
CP and PDAC. The classifier genes on PV3 dataset depicted
significantly altered expression pattern between PDAC from
CP (Supplementary Figure S7 PV3). The classifier achieved a

specificity of 0.89 and sensitivity of 0.78 with an overall accuracy
of 0.83 and an AUC of 0.95 in discriminating PDAC from CP
(Figure 5 PV3, Table 2).

Classifier Discriminated Pre-cancerous
Lesions From Normal Pancreas With
Good Accuracy
To estimate the ability of the biomarker panel in discriminating
precancerous lesions from a normal pancreas, we tested its
performance on independent dataset containing normal main
pancreatic duct epithelial cells microdissected by lasers and
neoplastic epithelial cells from potential PDAC precursor
lesions i.e., IPMA, IPMC and IPMN [15]. Classifier genes
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FIGURE 4 | Performance of 9-gene PDAC Classifier on validation sets using leave one out cross-validation (LOOCV). (A) The boxplot of the averaged expression of
the genes across all the five validation datasets. The P-values as calculated by t-test between the groups are mentioned on the individual genes. (B) Diagnostic
performance of the 9-gene PDAC classifier on the five validation sets of PDAC vs. normal pancreas. Sensitivity (Sens.) and specificity (Spec.) indicated besides each
set. (C) AUC plot [CI: 0.95–0.99] for 9-gene PDAC classifier across the five validation datasets.

were consistently overexpressed in the PDAC samples,
GGH was under-expressed in IPMA samples whereas it
was overexpressed across the other PDAC precursors, IPMC
and IPMN (Supplementary Figure S9). The 9-gene PDAC
classifier separated all potential PDAC precursor (IPMA,
IPMC, IPMN) samples from the normal pancreatic duct
samples except for one normal sample and one IPMC sample
(Figure 5 PV4). The biomarker panel differed IPMA and
IPMN from normal pancreas with 1.00 sensitivity and
1.00 specificity, achieving an AUC of 1.00 (Figure 5 PV4).
The predictor separated IPMC from healthy pancreas with

0.83 sensitivity and 0.86 specificity, achieving an AUC of
0.81 (Table 2).

Classifier Performed Better Than
Previously Known Markers
To estimate the performance of our current marker as
compared to the previously established markers we compared
the performance of our marker with each study [Bhasin
et al. (2016), Balasenthil et al. (2017), Kisiel et al. (2015),
and Immunovia (Mellby et al., 2018)]. We used polynomial
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FIGURE 5 | Performance of 9-gene PDAC Classifier on prospective validation sets using leave one out cross-validation (LOOCV). AUC plot [CI: 0.95–0.99] for
9-gene PDAC classifier and the diagnostic performance of (A) the classifier for PV1 dataset, (B) the classifier for PV2 dataset. (C) The classifier for IPMA, IPMC and
IPMN subjects in PV4 dataset and (D) the classifier for PV3 dataset.

kernel for each set of markers and selected best model to
record the performance on all the training, test and validation
datasets (Supplementary Figure S10 and Supplementary
Table S3). We found that all the methods performed well
in tissue biopsies samples whereas when applied to the
blood studies the performance of our marker set is the
best (Figure 6). Our set of markers has performed well
in tissues as well as blood studies and will be an ideal
minimally invasive biomarker for studying in future studies and
clinical trials.

Validation of the Markers in Single-Cell
Transcriptomics Studies
Furthermore, as the markers are derived from bulk sequencing
protocols it is important to know if the markers discovery is
not influenced by different cell-types in normal and cancerous
pancreas. Therefore, we used single-cell RNA-sequencing data
published by Peng et al. (2019) suggesting heterogeneity in
PDAC tumor to plot expression of our markers on different cell-
types. Using standard Seurat single-cell analysis methodology
(Butler et al., 2018; Stuart et al., 2019), we identified that our
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FIGURE 6 | Comparative performance of 9-gene PDAC Classifier with different previously established biomarkers. AUC plot [CI: 0.95–0.99] for 9-gene PDAC
classifier across the three tissue and three blood datasets. The boxes colored in mustard color have greater than 0.80 AUC.

markers are not associated with any cell-types and are expressed
across major cell types in pancreatic cancer (Supplementary
Figure S11). All our markers depicted upregulation in various
tumor microenvironment cells including immune cells and
endothelial cells.

Validation of Markers in Blood-Based
Proteomics Study
The nine-gene markers in the classifier were discovered and
validated from the transcriptomics studies, hence the validation

of their expression at the protein level is necessary. Therefore,
we confirmed the expression of the nine genes at the protein
level in publicly available proteomics studies and HPA. The
immunolabeling of the proteins of the respective genes in HPA
(Supplementary Figure S12) suggest higher staining of the
proteins in tumors as compared to the normal samples except
IFI27 where the expression of the protein cannot be detected.
To further validate the protein expression of our markers we
searched for the corresponding proteins in multiple pancreatic
cancer proteomics studies (Chen et al., 2005; Crnogorac-Jurcevic
et al., 2005; Cui et al., 2009; McKinney et al., 2011; Kosanam et al.,
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2013; Wang et al., 2013; Iuga et al., 2014). CTSD, a cathepsin
family protein, and Ephrin and Interferon gamma family markers
are found to be highly expressed in multiple proteomics studies
(Chen et al., 2005; Cui et al., 2009; McKinney et al., 2011).

DISCUSSION

We applied a data mining approach to a large number of publicly
available transcriptome datasets derived from pancreatic cancer
and healthy blood and tissues, followed by class prediction
analysis using machine learning and validation of the classifier in
the independent datasets to discover candidate PDAC biomarkers
(Harsha et al., 2009; Ranganathan et al., 2009). We explored
the genes with secretory peptide DE in the PDAC as compared
to normal pancreas/blood, for the first time to investigate
an accurate secretory/non-invasive biomarker panel for the
PDAC diagnosis. We report here a 9-gene PDAC classifier that
differentiates PDAC as well as the precursor lesions from the
normal with high accuracy. This 9-gene PDAC classifier was
validated independently in 12 different blood and tissue studies.
The 9-gene PDAC classifier encodes proteins with secretory
potential in pancreas and few other tissues.

Approximately 2500 candidate biomarkers have been
associated with PDAC previously while some of these biomarkers
are in various evaluation stages only CA19-9 is approved
by FDA (Koprowski et al., 1979, 1981; Hyöty et al., 1992).
However, accuracy of CA19-9 is not accurate enough for
screening, especially for an early detection of PDAC. Presently,
the extensive validation of diagnostic or predictive gene/protein
expression biomarkers for accurate discrimination between
healthy patients, benign, premalignant and malignant disease are
still lacking. Therefore, we aimed to identify a biomarker panel
with greater sensitivity and specificity and identified a 9-gene
marker panel that performs with high accuracy in discriminating
PDAC with normal pancreas across multiple platforms, using
either whole/microdissected tissue or peripheral blood.

To determine whether the genes in our classifier reflect key
pathophysiological pathways associated with the development of
PDAC, we reviewed available information for the role of these
genes. Most of our 9-gene classifier genes have been linked to
tumorigenesis, indicating a causal role in the development and
progression of PDAC. HTATIP2 is involved in apoptosis function
in liver metastasis related genes (Shi et al., 2009), gastric cancer
(Xu et al., 2010) and pancreatic cancer (Ouyang et al., 2014).
IFI27, functioning in immune system, has been suggested as a
marker of epithelial proliferation and cancer (Grutzmann et al.,
2003; López-Casas and López-Fernández, 2010). ITGB5 involved
in integrin signaling have been found to be upregulated in several
analysis studies (Van den Broeck et al., 2012). The Integrin and
ephrin pathways have been proposed to play a crucial role in
pancreatic carcinogenesis and progression, including ITGB1, a
paralog of ITGB5, and EPHA2 as most important regulators
(Van den Broeck et al., 2012). EPHA2 belongs to ephrin receptor
subfamily and is involved in developmental events, especially in
the nervous system and in erythropoiesis. To this family belongs
one of our genes EFNA4 which activates another ephrin receptor

EPHA5. IL1R2 was identified as possible candidate gene in
PDAC that can lead to defects of the apoptosis pathway (Rückert
et al., 2010). Moreover, Il1, the ligand of IL1R2, is secreted by
the pancreatic cells (Arlt et al., 2002) and has an important
function in inflammation and proliferation that can also trigger
the apoptosis (Dupraz et al., 2000; Ruckdeschel et al., 2002;
Yoshida et al., 2004). CTSD have been shown to be upregulated
in the PDAC cancer (Iacobuzio-Donahue et al., 2003). AGR2,
a surface antigen, has been shown to promote the progression
of PDAC cells through regulation of Cathepsins B and D genes
(Dumartin et al., 2011). CTSA was identified as one of the 76
deregulated genes in a study aiming for the development of early
diagnostic markers as well as potential novel therapeutic targets
for both familial and sporadic PDAC (Crnogorac-Jurcevic et al.,
2013). PLBD1 has been found to be upregulated in various studies
with five-fold increase in cell lines (Makawita et al., 2011) and
in study where the effect of pancreatic β-cells inducing immune-
mediated diabetes was studied (Salem et al., 2014). Metabolism-
related GGH has been found to be relevant and upregulated in
gallbladder carcinomas (Washiro et al., 2008).

Most of the genes in the 9-gene classifier (ITGB1, EPHA2,
IL1R2) are involved in the migration, immune pathways,
adhesion and metastasis of PDAC or other cancers, that
are specifically associated with the developmental events and
signaling in the progression of cancer. To corroborate the
involvement of these genes in PDAC progression and early stages
of PDAC development, we evaluated the expression levels of these
genes in the early lesions of PDAC precursors i.e., LIGD-IPMN,
HGD-IPMN and InvCa-IPMN (Figure 5) [15]. Eight genes
except GGH are upregulated in IPMA, IPMN, and IPMC as well
as in PanINs, as compared to a normal pancreas, demonstrating
their enhanced expression is linked with the progression of
PDAC that occurs early during development of malignancy.
The outcomes of our study clearly show that our 9-gene
classifier reflect drivers of early defects during progression and
development of PDAC. This argument is further strengthened by
the survival analysis of the genes where five of the nine genes
(CTSA, CTSD, EFNA4, IFI27 and IL1R2) are strongly related to
discriminating better and poor survivors.

Since individuals with CP are at increased risk of developing
PDAC and pathological discrimination is challenging between
CP and PDAC which makes it important for a classifier to
discriminate between these two disease stages. While other
studies have performed meta-analysis of transcriptome data
for PDAC to identify the genes that are overexpressed in
PDAC (Iacobuzio-Donahue et al., 2003; López-Casas and López-
Fernández, 2010; Munding et al., 2012), they are irrelevant in
identifying the markers for prognosis of PDAC. Our 9-gene
biomarker classifier accurately distinguished premalignant and
malignant pancreatic lesions such as PanIN, IPMA, IPMN and
IPMC from healthy pancreas. As all 9 genes of our classifier are
upregulated in PanIN (as compare to normal pancreas) already,
it indicates that these 9 genes are dysregulated in early lesions
during the process of PDAC development and therefore could
assist in an early detection of PDAC.

Further, to analyze the potential of the 9-gene biomarker in
accurate classification of PDAC subjects versus healthy subjects
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we compared our biomarker combination with previously known
and established biomarkers. Our analysis also indicates that the
9-gene biomarker panel including multiple genes, rather than
a single biomarker, is more powerful and had possibility to
improve the specificity and selectivity for an accurate detection of
PDAC. The idea behind generation of biomarker panel with the
better identification in blood sample, in corroboration with the
tissue studies, is fulfilled here. The previously established markers
worked well in the tissue studies but could not show their similar
potential in blood studies.

Further, the protein expression of selected biomarker genes
was also examined to determine their association with PDAC
at protein levels. The analysis depicted that multiple gene
product/proteins corresponding to biomarkers genes depicted
higher expression in pancreatic cancer tissues. Interestingly
some marker (e.g., EFNA4, GGH) also depicted over-expression
in other cancers indicating their association with tumor
development and progression related hallmark processes. In
recent years, multiple proteomics studies were performed to
understand the proteome landscape of the PDAC but still
lack in generating comprehensive picture due to technological
limitations. Most of the proteomics technique can measure the
expression of 2,000-3,000 proteins that is far from generating
the global overview of proteome. High expression of Cathepsin
family proteins specifically CTSD is noted in several proteomics
studies which was also the case for Ephrin and Interferon
gamma family markers (Chen et al., 2005; Cui et al., 2009;
McKinney et al., 2011). Also, the expression of these genes is
not found to be related to a particular cell-type in pancreatic
cancer cell lineage. However, the fact that the overall study
is based on bulk sequencing data cannot be overlooked and
these cells may comprise of multiple cell-types which may
or may not influence the overall methodology of marker
selection. Overall, the protein-expression of the selected genes
and their expression in multiple cell-types of pancreatic cancer
is established. However, the aforementioned limitations have to
be challenged before designing the diagnostic panel. The 9-gene
markers identified here still needs validation in a bigger cohort
for its potential in identifying accurately the early stages but
this marker combination potentially has shown its discriminatory
power across various blood and tissue datasets obtained from
different sources and different platforms.
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FIGURE S1 | Pathway enrichment analysis of the 74 PDAC-specific
secretory genes.

FIGURE S2 | Upregulated Secretory genes in training datasets. (A) Heatmap of
27 upregulated secretory genes in PDAC for two of the three tissues and one of
the two blood datasets. (B) PCA plots for each training datasets using 27
upregulated secretory genes.

FIGURE S3 | Performance of 9-gene PDAC classifier on training sets using leave
one out cross-validation (LOOCV). (A) Diagnostic performance of the 9-gene
PDAC classifier on the five training sets. Sensitivity (Sens) and Specificity (Spec)
are indicated for each dataset. (B) AUC plot for 9-gene PDAC classifier on the
three tissue training datasets. (C) AUC plot for 9-gene PDAC classifier on the two
blood training datasets.

FIGURE S4 | The metrics for training datasets using the 9-biomarker panel genes.
(A) Boxplot of the averaged expression of the genes across all the five training
datasets. (B) PCA plots for each training datasets using the 9-biomarker panel
genes.

FIGURE S5 | The assessment metrics for testing datasets using the 9-biomarker
panel genes. (A) Heatmap of the 9 PDAC-upregulated marker genes. (B) PCA
plots in six independent testing datasets.

FIGURE S6 | The assessment metrics for validation datasets using the
9-biomarker panel genes. Heatmaps (A) and PCA plots (B) based on biomarker
panel genes in validation sets.

FIGURE S7 | The assessment metrics for PV1-3 dataset using the 9-biomarker
panel genes. (A) PCA plots of three different prospective validation datasets. (B)
Heatmaps of the 9-marker genes panel. (C) Boxplots of the expression of the
genes.

FIGURE S8 | Survival curve of 9-gene-based PDAC classifier and combined
genes.

FIGURE S9 | The assessment metrics for PV4 dataset using the 9-biomarker
panel genes. (A) PCA plots for precursor lesions in three stages IPMA, IPMN and
IPMC. (B) Heatmaps of the 9-marker genes panel. (C) Boxplots of the expression
of the genes in precursor lesions.

FIGURE S10 | Comparative performance of 9-gene-based PDAC classifier with
different previously established biomarkers. AUC plot for 9-gene-based PDAC
classifier across the training and validation datasets. The measures of
performances e.g., accuracy, sensitivity, specificity and AUC are mentioned in
Supplementary Table S3.

FIGURE S11 | Expression of 9-gene markers in different pancreas cell-types in
both healthy and tumor states. The expression of these genes is high in tumor
state (CTSA, CTSD, EFNA4, GGH, HTATIP2, IFI27, and ITGB5) or they are not
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expressed at all in healthy state (IL1R2 and PLBD1). This is also consistent with
protein expression of the genes as measured by antibody staining
experiments by HPA.

FIGURE S12 | Immunolabeling of protein expression of nine genes selected for
the classifier in pancreatic cancer. Light blue is low staining; blue is moderate
staining and brown is high.

TABLE S1 | Log2 fold change of the significantly DE genes identified from different
training datasets.

TABLE S2 | Direction of differentially upregulated genes validated via boxplot
analysis. Upregulated are shown with green background and ones with opposite
direction are colored black.

TABLE S3 | Comparative performance of 9-gene PDAC Classifier with different
previously established biomarkers in training, test and validation datasets. Sets
with green background are datasets derived from blood. All mustard colored cells
have AUC > 0.80 whereas light blue cells indicate low specificity or sensitivity
despite of high AUC. For black shaded cells all the genes corresponding to the
mentioned studies cannot be identified.
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