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ABSTRACT

Objective: We explored how judgements provided by physicians can be used to learn relevance models that

enhance the quality of patient cohorts retrieved from Electronic Health Records (EHRs) collections.
Methods: A very large number of features were extracted from patient cohort descriptions as well as EHR collec-

tions. The features were used to investigate retrieving (1) neurology-specific patient cohorts from the de-

identified Temple University Hospital electroencephalography (EEG) Corpus as well as (2) the more general

cohorts evaluated in the TREC Medical Records Track (TRECMed) from the de-identified hospital records provided

by the University of Pittsburgh Medical Center. The features informed a learning relevance model (LRM) that took

advantage of relevance judgements provided by physicians. The LRM implements a pairwise learning-to-rank

framework, which enables our learning patient cohort retrieval (L-PCR) system to learn from physicians’ feedback.
Results and Discussion: We evaluated the L-PCR system against state-of-the-art traditional patient cohort re-

trieval systems, and observed a 27% improvement when operating on EEGs and a 53% improvement when op-

erating on TRECMed EHRs, showing the promise of the L-PCR system. We also performed extensive feature

analyses to reveal the most effective strategies for representing cohort descriptions as queries, encoding EHRs,

and measuring cohort relevance.
Conclusion: The L-PCR system has significant promise for reliably retrieving patient cohorts from EHRs in multi-

ple settings when trained with relevance judgments. When provided with additional cohort descriptions, the

L-PCR system will continue to learn, thus offering a potential solution to the performance barriers of current co-

hort retrieval systems.
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OBJECTIVE

Electroencephalography (EEG) records the electrical activity along

the scalp and measures spontaneous electrical activity of the brain,

which makes it a primary tool for diagnosis of brain-related ill-

nesses.1,2 But, as noted in Beniczky et al.,3 the EEG signal is

complex, and moreover, when EEG reports are created, the inter-

observer agreement in EEG interpretation is known to be moderate.

Both these problems can be addressed by providing clinical experts

with the ability to automatically retrieve similar EEG signals and

EEG reports through a patient cohort retrieval (PCR) system

operating on an Electronic Health Record (EHR). A multi-modal

EEG PCR system called MERCuRY was presented in Goodwin and

Harabagiu,4 which leverages the heterogeneous nature of EEG data

by processing both the clinical narratives from EEG reports as well

as the raw electrode potentials derived from the recorded EEG signal

data. Because the patient cohort criteria are expressed in natural lan-

guage, the MERCuRY system is driven by its ability to rank relevant

patients based on the narratives available from the EEG reports.

However, as reported in Edinger et al.5 the current state-of-the-art

methods are not yet satisfactory for retrieving relevant patients from

clinical narratives.
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The primary objective of our study is the design, implementation

and validation of a novel PCR system that learns how to optimally

rank patients based on relevance judgements, providing improve-

ments to current state-of-the-art methods. We demonstrate that by

using a learning-to-rank framework informed by (1) features auto-

matically extracted from the cohort description and from the clinical

narratives and (2) physician feedback, we enhance the relevance of

patients in cohorts by 27–53% above state-of-the-art. Moreover,

our system for learning to rank patient cohorts is easily portable

across EHR collections. Thus, our approach provides a framework

for improving a PCR system when relevance judgements become

available.

BACKGROUND AND SIGNIFICANCE

The automatic identification of patient cohorts satisfying a wide

range of criteria—including clinical, demographic, and social

information—has numerous applications,6 e.g. (1) clinical trial re-

cruitment; (2) outcome prediction; and (3) survival analysis. Because

patient cohort identification relies on the processing of EHRs, many

systems use statistical techniques or machine learning methods in-

formed by natural language processing of the clinical narratives.

However, these systems cannot rank the identified patients based on

the relevance to the cohort criteria. Relevance is at the core of infor-

mation retrieval (IR) systems.7 Thus, viewing the problem of patient

cohort identification as an IR problem, i.e. considering the problem

of PCR, enables not only the identification of patients from a cohort,

but to also the ranking of patients based on relevance to the inclu-

sion and exclusion criteria used in the cohort description. Without

considering patients’ relevance, patient cohort identification systems

produce only a binary decision: the patient either belongs or does

not belong to the cohort. Ranking of the patients in the cohort was

essential in the usability studies performed with the MERCuRY sys-

tem,4 as it enabled neurologist researchers to rapidly identify effec-

tive interventions for epilepsy accompanied by mental health

comorbidities. However, not all the patients from the cohorts dis-

covered by MERCuRY were relevant to the cohort criteria. Rele-

vance judgements produced by neurologists indicated limitations of

the system, but also provided important lessons that can be used for

learning how to rank patients. Similarly, the analysis reported in

Edinger et al.5 indicates the limitations of PCR systems developed

for the TREC Medical Records (TRECMed) track8 in the annual

Text REtrieval Conference (TREC) hosted by the National Institute

for Standards and Technology (NIST). In the 2011 TRECMed eval-

uation, 24 PCR systems were tested against the same medical

records and the same cohort descriptions, and their results were

evaluated by 25 physicians.9 The relevance judgements produced

during the TRECMed evaluations could also be used for learning

how to rank patients.

The MERCuRY system and most of the PCR systems participat-

ing in TRECMed had architectures similar to the one illustrated in

Figure 1, providing a unifying framework for applying learning-to-

rank. Learning-to-rank is a framework for using machine learning

techniques for generating ranking models in IR.10 In the architecture

illustrated in Figure 1, the cohort description was processed with the

goal of generating a machine-readable query (an essential compo-

nent of any IR system). Many PCR systems generated a query by re-

lying on MetaMap11,12 to discern concepts from the Unified

Medical Language System13 (UMLS) from the cohort description14;

while some systems also used NegEx15 for detecting negated con-

cepts.12 In addition, there were systems that (1) mapped the cohort

description to ICD-9 codes16 or (2) simply considered bags of

words.17 After the queries were constructed, systems expanded the

query by introducing new terms (e.g. synonyms, related words, etc.)

using different techniques, including (1) pseudo-relevance feedback

(PRF)18; (2) applying Personalized PageRank19 to the UMLS Meta-

thesaurus20; (3) using semantic vectors provided by Random Index-

ing.21,22 Thus, each cohort description di was transformed in a

query qc; e
i through a query construction method c and a query ex-

pansion method e. Moreover, as illustrated in Figure 1, the EHR col-

lection was indexed using Apache Lucene,23 Indri,24 or Terrier.25

The resultant index informed a variety of relevance models that pro-

duced an ordered list of medical records, r1; r2; � � � ; rj

� �
. Because

TRECMed focused on ranking hospital visits—groups of medical

records generated during a patient’s stay—rather than individual

medical records, teams considered methods to aggregate the rele-

vance scores or rankings of retrieved medical records to produce a

ranking of hospital visits, v1; v2; � � � ; vK½ �, informed by a report-to-

visit mapping provided to TRECMed participants. The resulting

visit ranking was, in some cases, filtered to account for specific co-

hort criteria such as age or gender,26 and/or re-ranked27 to produce

the final ranking of visits, v1; v2; � � � ; vL½ �. The learning PCR sys-

tem presented in this paper allows the various techniques used in the

components of the TRECMed systems to be unified within a single

architecture, enabling the exploration of the impact of each tech-

nique on the optimal ranking of patients.

MATERIALS AND METHODS

Datasets and experimental settings
In this work, we explored the design of learning PCR systems in 2

settings: (1) a neurology-specific setting focusing on cohorts identi-

fied from a large archive of EEG reports and (2) a general setting

allowing the recognition of cohorts from multiple forms of hospital
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Figure 1. Architecture of a typical patient cohort retrieval system evaluated in TRECMed.

266 JAMIA Open, 2018, Vol. 1, No. 2



records. Approval was obtained for both EHR collections from the

Institutional Review Board (IRB) at the University of Texas at Dal-

las (UTD).

The Temple University electroencephalogram corpus

For the neurology-specific setting, we relied on the publicly-

available collection of EEG reports from the Temple University Hos-

pital (TUH) EEG Corpus.28,29 It contains EEG reports collected

over 25 000 sessions for 15 000 patients over 12 years. While the

TUH EEG corpus contains EEG signal information as well as EEG

reports, we considered only the EEG reports.

The University of Pittsburgh

PCR systems participating in the TRECMed challenges had access

to a large repository of 95 702 de-identified narratives from medical

reports provided by the University of Pittsburgh Medical Center.

This EHR repository consisted of 1 month of reports from multiple

hospitals. Each medical report was associated with exactly 1 hospi-

tal visit (an individual patient’s single stay at a hospital). The data

set contained 93 551 medical reports mapped into 17 264 visits.

Cohort descriptions

Patient cohorts were recognized from each of the EHR collections

based on descriptions provided by practicing clinicians. When using

the TUH EEG corpus, 30 cohort descriptions were generated by 4

practicing neurologists. For TRECMed, we used the official cohort

descriptions released by the task organizers. Thirty-four cohort

descriptions were evaluated in 20119 and 47 additional descriptions

were evaluated in 2012.30 Examples of cohort descriptions used to

train and evaluate the learning patient cohort retrieval (L-PCR) sys-

tem are shown in Table 1.

Relevance judgments

To train and evaluate the retrieval performance of our system, we

used visit-level relevance judgments produced by neurologists and

clinicians for each cohort description described above. In both col-

lections, physicians were asked to judge visits retrieved for each co-

hort as being RELEVANT, PARTIALLY RELEVANT, or NOT RELEVANT to the

cohort. Supplementary Material Appendix H provides details on

how the judgments were obtained for each collection.

The learning patient cohort retrieval system
In this study, we focused on the design of a L-PCR system. Unlike

traditional PCR systems, such as MERCuRY4 or those developed

for TRECMed,9,30 the L-PCR system uses a learning-to-rank ap-

proach for identifying patient cohorts that takes advantage of physi-

cian feedback. The learning-to-rank paradigm allows the L-PCR

system to consider relevance judgments performed by clinicians to

learn an improved patient relevance model used for retrieving and

ranking patients for any given cohort descriptions.10 The L-PCR sys-

tem illustrated in Figure 2 includes 5 main components:

• a query processing component processes a given cohort descrip-

tion di to produce a machine-readable query, qc;e
i ;

• an EHR processing component produces an index of the narra-

tives from the EHR collection;
• a visit retrieval component retrieves a sub-set of “candidate” vis-

its from the EHR collection, v1; � � � ; vM½ �, to be ranked by the

learning relevance model (LRM);
• a feature extraction component extracts features vectors ½xi

1; � � � ;xi
M�

corresponding to each candidate visit the relationship between the

visit and the cohort description; and
• the learning relevance model uses a random forest (RF) classifier

to infer the relevance scores si
1; � � � ; si

M

� �
for each candidate

Table 1. Examples of cohort descriptions used to train and evaluate the learning cohort retrieval system

EEG reports TRECMed 2011 TRECMed 2012

Patients experiencing seizures and general-

ized shaking

Patients with complicated GERD who re-

ceive endoscopy

Adult patients with Alzheimer’s disease ad-

mitted from nursing homes with pressure

ulcers

Multiple sclerosis and seizure Women with osteopenia Elderly patients with subdural hematoma

Patients under 18-year-old with absence

seizures

Female patient with breast cancer with mas-

tectomies during admission

Patients admitted with Hepatitis C and IV

drug use

Patients over age 18 with history of develop-

mental delay and EEG with electrographic

seizures

Adult patients who are admitted with

asthma exacerbation

Patients treated for post-partum problems

including depression, hypercoagulability,

or cardiomyopathy

Patients evaluated for seizures vs stroke Patients with CAD who presented to the

Emergency Department with Acute Coro-

nary Syndrome and were given Plavix

Patients with inflammatory disorders receiv-

ing TNF-inhibitor treatment

Brain tumor and sharp waves, spike/poly-

spike, and wave or spikes

Children admitted with cerebral palsy who

received physical therapy

Adults under age 60 undergoing alcohol

withdrawal

EEG showing triphasic waves Patients co-infected with hepatitis C and

HIV

Patients with AIDS who develop pancy-

topenia

Patients with anoxic brain injury and EEG

reports denoting brain death

Adult patients who presented to the emer-

gency room with anion gap acidosis sec-

ondary to insulin dependent diabetes

Patients with hypertension on anti-hyperten-

sive medication

EEGs without sharp waves, spikes, or spike/

polyspike and wave activity in patient’s

diagnosed with epilepsy

Patients with dementia Patients taking atypical antipsychotics with-

out a diagnosis schizophrenia or bipolar

depression

EEG showing generalized periodic epilepti-

form discharges

Cancer patients with liver metastasis treated

in the hospital who underwent a

procedure

Patients who develop thrombocytopenia in

pregnancy
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visit vi
1; � � � ; vi

M

� �
based on their associated feature vectors

xi
1; � � � ; xi

N

� �
; the RF is trained using the relevance judgments

yi
1; � � � ; yi

M

� �
provided by physicians.

An overview of each of these components is provided below,

with additional details provided in Supplementary Material Appen-

dices A–F.

Query processing

As with the typical PCR system illustrated in Figure 1, each cohort

description is first processed by a query construction step followed

by query expansion.

Query construction. The L-PCR system incorporates 8 query

construction methods, illustrated in Figure 3(a). Methods C1, C2,

and C3 represent the cohort description as a set of medical concepts

detected by MetaMap,11 classified by a support vector machine

(SVM),31,32 or corresponding to the titles of Wikipedia articles,26,27

respectively. By contrast, method C4 represents the cohort

description as a set (i.e. “bag”) of words. To account for the possi-

bility of exclusion criteria in cohort descriptions (e.g. “without a di-

agnosis [of] schizophrenia”), we introduced a second version of C1-

C4 in which the negation of any query component was detected us-

ing NegEx,15 an SVM,27,33 or LingScope,34 respectively. Further

details, rationale, and examples are provided in Supplementary Ma-

terial Appendix A.

Query expansion. Figure 3(b) lists the 5 query expansion methods

implemented within the L-PCR system. The first 4 query expansion

methods incorporate synonyms from UMLS,13 related concepts from

SNOMED CT,35 synonyms and misspellings from Wikipedia,26 and in-

dividual words from related patient visits using PRF7. The fifth query

expansion method is the combination of E1-E4. Further details and

examples are provided in Supplementary Material Appendix B.

Note: in addition to query construction and expansion, we

extracted any age or gender criteria from the cohort description us-

ing a grammar and lexicon previously described in Goodwin et al.26

and described in Supplementary Material Appendix C.
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Figure 3. Overview of the different approaches for (a) query construction and (b) query expansion used for feature extraction in the learning patient cohort re-

trieval system.
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Electronic health record processing

Stream processing. We unified indexing, searching, and feature ex-

traction across both EHR collections, by representing each EHR as

a set of multiple, abstract streams36 of unstructured information.

Each stream corresponds to one or more sections in the EHR collec-

tion. Conceptually, each stream acts as a “lens” that determines

which sections of the EHR are considered during feature extraction

and retrieval. The stream representation allows the L-PCR system to

automatically account for the semantics of each stream, without the

semantics being explicitly encoded. Figure 4 illustrates the streams

used for each EHR collection, while Supplementary Material Ap-

pendix D provides additional information about the content of each

stream.

Stream indexing. To expedite feature extraction from the EHRs

associated with each hospital visit, we separately indexed the con-

tent of each EHR collection using Apache Lucene.23 We used a

tiered indexing approach in which each stream was indexed inde-

pendently, allowing individual streams of each EHR to be retrieved

during feature extraction and retrieval. No pre-processing was ap-

plied beyond tokenization with Lucene’s English Analyzer.23

Visit retrieval

To reduce complexity and improve scalability of the L-PCR system,

rather than extracting features from every EHR in the collection, we

rely on a basic retrieval step to identify a high-recall set of

“candidate” visits likely to be relevant to the cohort description.

These candidate visits are obtained by constructing a query with

Bag-of-Words (C1), expanding by all expansions (E5), and identify-

ing the top M ranked EHRs by the All Text stream (S4/S5) with the

BM25 ranking function (in our experiments we used M ¼ 2; 000).

This allowed the set of “candidate” visits to be obtained by mapping

the retrieved EHRs to their corresponding patient visits.

Feature extraction

Determining whether a “candidate” patient visit vj is relevant to (i.e.

satisfies the criteria from) a given cohort description di requires ac-

cess to a rich set of features derived from (1) the cohort description

di, (2) the patient visit vj, and (3) the interactions between di and vj.

To account for the variation between cohort descriptions, we con-

sidered multiple strategies for transforming di into queries. Let qc;e
i

represent the query obtained when using query construction method

c and query expansion method e. Likewise, we considered multiple

strategies for representing the information encoded in each visit vj.

Hence, we considered rs
k the textual content provided by stream s of

the electronic health record rk, and define vs
j ¼ rs

1; rs
2; � � � ; rs

Nj
g

n

as the content of stream s from each report associated with visit vj.

We produced a single feature vector xi
j encoding information about

di and vj by extracting the 14 high-level multivalued features listed

in Table 2.

As shown, 10 of the 14 features illustrated in Table 2 are multi-

valued, i.e. consist of distinct values for each possible query repre-

sentation qc;e
i of di and each stream s of vs

j (where applicable). Each

of these values corresponds to a single entry in the resultant feature

vector, i.e. F1 corresponds to 5 entries in the generated feature vec-

tor. Moreover, features F3, F6 and F10-F14 capture the distribution

of feature values extracted for each component of the query (F1) or

for each report associated with the hospital visit (F6, F10-F14) using

5 aggregation methods (described below). Of note are features F10-

F14, which incorporate standard relevance models from IR to mea-

sure the relevance between the criteria in qc;e
i and each stream of visit

vs
j .

Aggregation methods. To capture the distribution of feature val-

ues obtained using different streams or for each report associated

with a candidate visit, we considered 5 aggregating statics

A ¼ mean; minimum; maximum; variance; sumgf .

The learning relevance model

The role of the LRM is to infer a relevance score si
j between every

candidate visit vj and the cohort description di using the feature vec-

tor xi
j extracted above. This is accomplished by using the pairwise

strategy of learning-to-rank.10 Given (1) feature vectors

xi
1; � � � ; xi

N

� �
associated with candidate visits v1; � � � ; vN½ � and (2)

“gold-standard” relevance judgments yi
1; � � � ; yi

N

� �
indicating the

relevance of each candidate visit to di, the RF is trained to infer the

scores si
1; � � � ; si

N

� �
; which result in the optimal ordering of hospi-

tal visits as indicated by yi
1; � � � ; yi

N

� �
. Additional information

about the pairwise learning-to-rank strategy, the RF, and model

parameters is provided in Supplementary Material Appendix F. Af-

ter training, the LRM uses the RF to produce the final ranked list of

hospital visits by (1) inferring the relevance score si
j for each candi-

date visit vj retrieved for di and (2) returning the L highest scoring

visits (in our experiments we used L ¼ 1 000).

RESULTS

We evaluated the performance of the L-PCR system when automati-

cally identifying patient cohorts in 2 settings: (1) a neurology-

specific setting operating exclusively on EEG reports and (2) a
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general hospital setting associated with a variety of EHR types. In

both settings, we measured the performance of our approach using 5

measures commonly used to evaluate IR systems39: (1) the Mean Av-

erage Precision7 (MAP), (2) the Normalized Discounted Cumulative

Gain7 (NDCG), (3) the Binary Preference40 (BPref), (4) the R-Pre-

cision7 (rPrec), and (5) the Precision within the first 10 returned vis-

its9 (P@10); details and discussion of these metrics are provided in

Supplementary Material Appendix G.

Patient cohort retrieval from EEG reports
We measured the performance of L-PCR system for neurology-

focused cohorts by considering EEG reports from the TUH EEG

Corpus28 using the relevance judgments described in Datasets and Ex-

perimental Settings. Table 3(a) presents the performance of the L-PCR

system compared to (1) a BM25 baseline and (2) a text-only variant

of MERCuRY4 (a multi-modal retrieval system incorporating polarity

information and the BM25 ranking function) using cross validation at

the cohort description level (e.g. we evaluated on each set of 3 cohort

descriptions when training on the remaining 27). Note: the cohort

descriptions used to evaluate MERCuRY in this study are different

and more complex than those used in Goodwin and Harabagiu.4

Patient cohort retrieval from hospital EHRs
We evaluated the performance of our approach in a general hospital

setting using the patient cohort descriptions produced for

TRECMed during 2011 and 2012 (described in Datasets and Exper-

imental Settings). We evaluated the performance of the L-PCR sys-

tem using the cohort descriptions produced during both years of the

evaluation with 10-fold cross validation (using the same strategy de-

scribed above), as well as when training on the cohort descriptions

Table 3. Patient cohort retrieval performance on (a) EEG reports and (b) TRECMed

Setting MAP NDCG BPref rPrec P@10

(a) Retrieval performance when retrieving patient cohorts from EEG reports

BM25 baseline: 10-fold CV 0.4996 0.6144 0.4064 0.5213 0.6

L-PCR: 10-fold CV 0.6634 0.7171 0.5900 0.6088 0.6

MERCuRY (text-only): 10-fold CV 0.5220 0.5441 0.4483 0.5081 0.5

(b) Retrieval performance when retrieving the patient cohorts using in TRECMed from Hospital Records.

BM25 baseline: evaluated on 2011 0.4052 0.5202 0.5082 0.4112 0.600

BM25 baseline: evaluated on 2012 0.2930 0.3462 0.3462 0.3135 0.464

L-PCR: 10-fold CV on 2011 0.6316 0.8816 0.5788 0.5859 0.706

L-PCR: 10-Fold CV on 2012 0.5100 0.8194 0.4703 0.5028 0.589

L-PCR: trained on 2012 and evaluated on 2011 0.6127 0.8675 0.5638 0.5763 0.674

L-PCR: trained on 2011 and evaluated on 2012 0.5145 0.8167 0.4735 0.5072 0.596

Best submitted to TRECMed 2011 — — 0.5502 0.4400 0.656

Best submitted to TRECMed 2012 0.2860 0.5780 — — 0.592

Table 2. Features extracted for a cohort description di and hospital visit vj

Feature description Domain of values

Features encoding information about the cohort description dið Þ
F1 Number of criteria detected in cohort description di with each construction method c N

Cj j

F2 Number of terms in qc;e
i for each c 2 C, and each expansion method e 2 E N

Cj j� Ej jð Þ

F3 Statistics of the normalized inverse document frequency (IDF) of qc;e
i in each stream s 2 S for each c; e. R

Aj j� Cj j� Ej j� Sj jð Þ

Features encoding information about the candidate visit vj

� �
F4 Number of reports associated with vj N

F5 Distribution of report types associated with vj R
Tj j

F6 Statistics of the number of words in each rs 2 vs
j for every s N

Aj j� Sj jð Þ

Features encoding the relationship between the cohort description di and candidate visit vj

� �
F7 Whether the age (if any) specified in cohort description i matches the age in any stream of any report rs 2 vj 0; 1gf
F8 Whether the gender (if any) specified in cohort description i matches the most frequently-mentioned gender in

any stream of any report rs 2 vj

0; 1gf

F9 Whether the hospital status in cohort description i matches the hospital status in any stream of any report

rs 2 vj

0; 1gf

F10 Statistics of the Dirichlet-smoothed language model similarity37 (LM: Dir) between qc;e
i and each rs 2 vj for

every c; e; s

R
Aj j� Cj j� Ej j� Sj jð Þ

F11 Statistics of the Jelinek-Mercer-smoothed language model similarity37 (LM: JM) between qc;e
i and each rs 2 vj

for every c; e; s

R
Aj j� Cj j� Ej j� Sj jð Þ

F12 Statistics of the BM25 similarity38 between qc;e
i and each rs 2 vj for every c; e; s R

Aj j� Cj j� Ej j� Sj jð Þ

F13 Statistics of the TF-IDF similarity7 between qc;e
i and each rs 2 vj for every c; e; s R

Aj j� Cj j� Ej j� Sj jð Þ

F14 Statistics of the term frequency (TF) between qc;e
i and each rs 2 vj for every c; e; s R

Aj j� Cj j� Ej j� Sj jð Þ

Additional details for each feature are provided in Supplementary Material Appendix E. N represents the natural numbers, R represents the real numbers, and

the exponent (if provided) indicates the dimensionality, or number of values produced by that feature in the resultant feature vector).

270 JAMIA Open, 2018, Vol. 1, No. 2

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooy010#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooy010#supplementary-data


produced during 2011 and testing on the cohort descriptions pro-

duced in 2012 (and vice versa). Table 3(b) presents these results, as

well as performance of (1) a BM25 baseline system and (2) the best

submitted systems reported by NIST for each year, which to the best

of our knowledge are still state-of-the-art. An overview of these sys-

tems is provided in Supplementary Material Appendix J.

Measuring feature importance
To analyze the impact of the different techniques and features used

by the L-PCR system, we measured the Gini importance41 of each

entry in all feature vectors extracted from the training data. Figure 5

illustrates the normalized average Gini importance of different

(1) query construction methods, (2) query expansion methods,

(3) features, (4) aggregating statistics, or (5/6) streams for each col-

lection of EHRs. Supplementary Material Appendix I provides the

most important features for each experiment.

DISCUSSION

In this article, we presented a learning PCR system which incorpo-

rates machine learning operating on features encoding thousands of

different strategies for representing queries, EHRs, and their interac-

tions to learn how to rank patient cohorts based on clinicians’ feed-

back. As shown by Table 3, the L-PCR surpassed previously

published state-of-the-art NDCG score by 27.1% on EEGs and by
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Figure 5. Average feature importance as measured using EEG reports and TRECMed hospital records. EEG: electroencephalography.
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52.5% on TRECMed 2011. It is interesting to note that for both

years of TRECMed, there was no statistically significant change in

performance when trained using cross validation, or using the co-

hort descriptions from the previous/following year (P < :001).

It is clear from Figure 5(a) that bag-of-words obtained the best

performance compared to other query construction methods when

processing cohorts from EEGs. By contrast, for general EHRs, Wiki-

pedia titles provided higher performance. This reinforces our obser-

vations that many neurological phenomena (e.g. “spike and wave”)

are not associated with entities in structured knowledge bases. More-

over, the fact that, for EEGs, Wikipedia redirects of individual words

in the cohort description provided the most informative expansions

suggests that when structured information is available, it greatly

improves performance. This is clearly demonstrated by the TRECMed

cohorts, where the most impactful query expansion method was based

on UMLS, followed closely by PRF. Interestingly, the impact of each

individual features, as shown in Figure 5(c), varied between all 3

experiments, suggesting that the choice of relevance model is less im-

portant than the choice of query composition and expansion strate-

gies. Overall, we found that query expansion resulted in a 6.0%

(relative) increase in performance compared to no query expansion

for TRECMed, and an 8.7% increase for EEG reports.

One key difference between automatic PCR systems and tradi-

tional IR systems is that each patient may be associated with multi-

ple medical records. When analyzing different methods of

aggregating features from report- to visit-level, the importance of

the variance statistic, especially when contrasted with the sum statis-

tic, suggests that the reports associated with a visit often have un-

equal impacts on the relevance of the visit. Moreover, as the sum

measure closely resembles the effect of merging all reports associated

with a visit into a single document (a common strategy employed by

TRECMed participants), our results show that treating reports sepa-

rately can be advantageous. In terms of streams, as shown in

Figure 5(e–f), the ALL TEXT stream provided the most information to

the model, suggesting that differentiating between streams added lit-

tle value to the L-PCR system.

Error analysis
We analyzed errors made by the L-PCR system for both EHRs col-

lection. In the TUH EEG collection, we observed several common

phenomena. The first was that many of the cohort criteria were not

found in existing ontologies and were often incorrectly parsed. For

example, “PLED” indicates “periodic lateralized epileptiform dis-

charges”, but was not present in UMLS, SNOMED, Wikipedia, or

even the Epilepsy and Seizure Ontology (EpSO).42 A more signifi-

cant source of errors was accounting for the fact that EEG cohorts

are typically characterized by the attributes of waveform activity,

rather than their presence or absence. In the previous example the

“lateral” attribute highlights a major phenomenon in EEG reports—

the role of spatiotemporal information. In EEG reports, the term

“lateral” may not be mentioned; instead, activity is often described

as occurring in specific lobes of the brain or at specific channels/

nodes in the EEG. Moreover, consider that for a visit to be relevant

to the criteria “generalized periodic epileptiform discharges”, it is

not sufficient for “epileptiform discharges” to be described. The dis-

charges must be generalized and periodic. Each of these attributes

can be described in multiple ways, for example, both “non-local-

ized”, “diffuse” indicate generalized activity.

We also observed in both collections that the performance of the

L-PCR (and each baseline system) varied significantly between

cohort descriptions. We found that cohort descriptions which quali-

fied their criteria with anatomical (e.g. “lower extremity”) or tem-

poral (“history of”) attributes were harder to retrieve. Moreover, we

observed that the most difficult cohort descriptions were those that

described relations between concepts: i.e. “inflammatory disorders

receiving TNF-inhibitor treatment” or “cancer patients with liver

metastasis treated in the hospital who underwent a procedure”. For

an in-depth analysis of errors encountered by participants of the

TRECMed evaluation, we refer the reader to Edinger et al.5

Limitations
This study has several limitations. First, only 111 cohort descrip-

tions were evaluated. While every effort was made to produce and

evaluate realistic patient cohort descriptions, the time and cost asso-

ciated with producing relevance judgments limited the number of

cohorts that could be evaluated. Consequently, the performance

results reported in Table 3 represent results of a pilot study only on

2 sets of EHR collections and may not be reflective of performance

on other EHR collections. Second, many of the features extracted in

our study rely on individual streams in the EEG/hospital reports

which vary between hospitals and EHR collections. Fortunately, in

our experiments, the top-performing features all relied on the ALL

TEXT stream, which can be easily generalized across EHR collec-

tions. Finally, because the TRECMed collection is no longer avail-

able, we were unable to consider some promising features, such as

word embeddings43 or convolutional neural network features. In fu-

ture work, we shall investigate the impact of concept embeddings on

the performance of the L-PCR system.

CONCLUSION

Learning-to-rank can be successfully applied for retrieving patient

cohorts from EHR when (1) judgments of relevance are available;

and (2) a rich set of features is considered. In this paper, we present

L-PCR system, and our experimental results on 2 EHR collections

demonstrate that the L-PCR system obtains results 27–53% above

state-of-the-art PCR systems when retrieving the same cohorts from

the same EHR collections. Moreover, by analyzing the performance

of the L-PCR system, we were able to measure the impact of a vari-

ety of PCR techniques. Overall, our results indicate the promise of

the L-PCR system, but also reveal potent avenues for further im-

provement.
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