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Abstract 

Background:  High-throughput sequencing has increased the number of available 
microbial genomes recovered from isolates, single cells, and metagenomes. Accord‑
ingly, fast and comprehensive functional gene annotation pipelines are needed to 
analyze and compare these genomes. Although several approaches exist for genome 
annotation, these are typically not designed for easy incorporation into analysis pipe‑
lines, do not combine results from different annotation databases or offer easy-to-use 
summaries of metabolic reconstructions, and typically require large amounts of com‑
puting power for high-throughput analysis not available to the average user.

Results:  Here, we introduce MicrobeAnnotator, a fully automated, easy-to-use pipe‑
line for the comprehensive functional annotation of microbial genomes that combines 
results from several reference protein databases and returns the matching annotations 
together with key metadata such as the interlinked identifiers of matching reference 
proteins from multiple databases [KEGG Orthology (KO), Enzyme Commission (E.C.), 
Gene Ontology (GO), Pfam, and InterPro]. Further, the functional annotations are sum‑
marized into Kyoto Encyclopedia of Genes and Genomes (KEGG) modules as part of a 
graphical output (heatmap) that allows the user to quickly detect differences among 
(multiple) query genomes and cluster the genomes based on their metabolic similarity. 
MicrobeAnnotator is implemented in Python 3 and is freely available under an open-
source Artistic License 2.0 from https​://githu​b.com/cruiz​perez​/Micro​beAnn​otato​r.

Conclusions:  We demonstrated the capabilities of MicrobeAnnotator by annotating 
100 Escherichia coli and 78 environmental Candidate Phyla Radiation (CPR) bacterial 
genomes and comparing the results to those of other popular tools. We showed that 
the use of multiple annotation databases allows MicrobeAnnotator to recover more 
annotations per genome compared to faster tools that use reduced databases and is 
computationally efficient for use in personal computers. The output of MicrobeAnnota‑
tor can be easily incorporated into other analysis pipelines while the results of other 
annotation tools can be seemingly incorporated into MicrobeAnnotator to generate 
summary plots.
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Background
The recovery of microbial genomes from different environmental, clinical, and indus-
trial samples has exponentially increased over the last decade thanks to high-throughput 
sequencing, with > 100,000 genomes currently available [1]. These complete or par-
tial genomes, in the form of isolate genomes, single-cell amplified genomes (SAGs), or 
metagenome-assembled genomes (MAGs), can provide not only taxonomic information 
about the composition of the microbial community but can also offer valuable informa-
tion about the metabolic roles that members of the community potentially play [2–4]. 
A crucial step in assessing the metabolic role of community members is the functional 
gene prediction and metabolic reconstruction [5]. The functional gene data can also be 
used to infer the metabolic differences with close relatives, characterize novel poten-
tial metabolisms, or detect the presence of antibiotic resistance genes or toxins, among 
other genes of interest [6, 7].

The functional annotation starts with gene identification or gene calling (structural 
annotation), which can be automatically performed using several tools, including (Meta)
Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm), (Meta)Gen-
eMark, and MetaGeneAnnotator, among others [8–10]. The next annotation step relies 
on the use of reference protein databases to assign functions to query (unknown) protein 
sequences based on homology or orthology searches (functional annotation) [11–13]. 
Some of the databases used are comprehensive, including protein sequences derived 
from complete and partial genomes and are usually updated periodically; widely used 
examples include the Universal Protein Resource (UniProt) [14] and Reference Sequence 
Database (RefSeq) [15], Integrative Protein Signature Database (InterPro) [16], Pro-
tein Families Database (Pfam) [17] and the database and infrastructure for compara-
tive genomics (SEED) [18] databases. On the other hand, specialized databases aim at 
curating the entries to include only protein sequences belonging to specific functions 
or protein families of interest, e.g., The Comprehensive Antibiotic Resistance Database 
(CARD) for antibiotic resistance proteins [19]. The methods used to search query pro-
tein sequences against these databases vary in complexity, comprehensiveness, speed, 
scalability, and results. For example, the National Center for Biotechnology Informa-
tion (NCBI) Prokaryotic Genome Annotation Pipeline (PGAP, [20]), Prokka (prokary-
otic annotation) [21], RAST (Rapid Annotations using Subsystem Technology) [22], and 
DRAM (Distilled and Refined Annotation of Metabolism) [23] start from genomes and 
predict genes and proteins, tRNAs, rRNAs, and perform functional annotation of the 
predicted proteins. Others such as InterProScan [12] and EggNOG-Mapper (the evo-
lutionary genealogy of genes: Non-supervised Orthologous Groups) [11] start from 
already predicted protein sequences and perform functional annotations using mostly 
Blast (Basic Local Alignment Search Tool) [24], Diamond (double index alignment of 
next-generation sequencing data) [25], or HMMER [26] as search tools.

Besides the initial input data, annotation tools may also differ in the reference data-
bases used, the extent (level) of annotation provided (e.g., individual gene vs. pathway 
level), and result outputs. For instance, tools such as Prokka and RAST that are fast often 
rely on smaller, curated databases to speed-up searching times while maintaining high-
quality annotations. Although these tools offer fast run times and high-quality annota-
tions, they can leave several proteins unannotated, especially in more divergent or novel 
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genomes. On the other hand, more complex genome annotation tools such as DRAM 
use several databases to return comprehensive annotations at the expense of increased 
computational resources and time. In any case, one unifying theme among most anno-
tation tools is that the text-based outputs they return to the user have to be parsed to 
make further sense of the data. While web-based tools such as the KEGG Mapper tools 
[27] and MAPLE (Metabolic And Physiological potentiaL Evaluator, now GenoMAPLE) 
[28] provide graphical outputs that are user-friendly and easy to parse, they lack in scal-
ability, especially when dealing with more than a couple of genomes.

Given the strengths and weaknesses of existing tools, it is evident that there is a need 
for an annotation tool that is easy to use, comprehensive, high throughput while using 
less computational resources than complex tools and providing summaries of annotation 
results that users with little programming experience can take advantage of. To fill this 
gap, we present MicrobeAnnotator, a python-based command-line tool that employs 
multiple reference databases for the automated functional annotation, summarization, 
and comparison of microbial genomes. MicrobeAnnotator can use multiple process-
ing cores to annotate several genomes simultaneously or speed up individual genome 
annotation.

Implementation and outputs
MicrobeAnnotator database building

There are two main running modes for MicrobeAnnotator, standard and light. The 
standard mode uses the KOfam [29], UniProt’s Swissprot and trEMBL [30], and NCBI’s 
RefSeq [31] databases, while the light mode uses only the first two. Before running 
MicrobeAnnotator, the databases used by the program must be downloaded and format-
ted. To do this, the user has to execute the microbeannotator_db_builder script, which 
allows the selection of output folders for the databases, the program intended for search-
ing, i.e., Blast [24], Diamond [25], or Sword (Smith–Waterman on Reduced Database) 
[32], and the number of threads to use. This script runs in five main steps: (1) Down-
load the databases (protein sequences and metadata); (2) Parse annotation metadata 
associated with the downloaded protein sequences; (3) Build the SQLite databases with 
annotation data, including accessions to other databases (e.g. KO, E.C., GO, Pfam, and 
InterPro); (4) Build databases for the interconversion between KO–E.C. and InterPro–
E.C. identifiers; and finally, (5) Build the databases or files required for the homology 
search method selected by the user. If the program fails at any of these stages for any 
reason, the users can resume the script by selecting the step they want to restart.

MicrobeAnnotator functional annotation process

Figure 1 shows a graphical representation of the MicrobeAnnotator functional annota-
tion pipeline. Considering the variety of tools and parameters available for gene predic-
tion [8–10], MicrobeAnnotator does not predict proteins from contings or genomes but 
instead expects predicted protein sequences in FASTA format as input. The user can 
provide one or multiple files (for multiple genomes) that are serially or simultaneously 
annotated depending on the number of cores available. The functional annotation pipe-
line consists of four main steps for each file of protein sequences provided (Fig. 1). The 
first three involve searches against the databases, extraction of best matches, and linking 



Page 4 of 16Ruiz‑Perez et al. BMC Bioinformatics           (2021) 22:11 

best matches to annotations in MicrobeAnnotator’s custom SQLite database, while the 
final step compiles all the information extracted and summarizes the data. Given the 
large size of the databases used by MicrobeAnnotator, we have implemented an itera-
tive annotation pipeline that takes advantage of each database curation level and size to 
speed up the process while providing the most reliable annotations. The detailed steps of 
the pipeline are:

1.	 All proteins are searched against the curated KEGG Ortholog (KO) database using 
KOfamscan [29, 33]; best matches are selected according to Kofamscan’s adaptive 
score threshold. The annotation and KO identifier for each match are saved.

2.	 Proteins without KO identifiers (or matches) are extracted and searched against 
Swissprot (using the selected search tool). Filtering parameters for a match can be 
modified; otherwise, the defaults are used (i.e., 40% amino-acid identity, bitscore 80, 
and alignment length 70%). The annotation and KO identifiers for each match are 
saved.

3.	 Proteins without a KO identifier (or match in Swissprot) are extracted and searched 
against the curated RefSeq database. Annotation and KO identifiers for each match 
are saved. This means that if the tool finds a match without a KO identifier in Swis-
sprot, the protein is still searched against RefSeq.

4.	 Proteins without a KO identifier (or match in RefSeq) are extracted and searched 
against the non-curated trEMBL database. Annotation and KO identifiers for each 
match are saved.

5.	 All protein annotations are compiled in a single table per genome, which includes 
all metadata associated with each best match. This table may contain more than 
one annotation per protein, depending on the assignment of a KO identifier asso-
ciated with the protein during steps 1 through 4 above. The KO identifiers associ-
ated with all proteins in each genome (or set of proteins) are extracted, and KEGG 
module completeness is calculated based on the total steps in a module, the proteins 
(KOs) required for each step, and the KOs present in each genome. KEGG modules 
are defined as functional gene units that are linked to higher metabolic capabilities 
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Fig. 1  Graphical summary of the MicrobeAnnotator pipeline. Starting from a set of protein sequences, 
MicrobeAnnotator iteratively searches against 2 or 4 databases depending on the mode used (standard 
or light). Proteins without a KO identifier or match are searched against the next database. Otherwise, its 
metadata (best match, product, KO identifier, the taxonomy of best hit, GO numbers, and Pfam and InterPro 
accessions) are stored. Finally, KO identifiers are extracted, and module completeness is calculated using the 
custom MicrobeAnnotator database. The results are compiled in a single matrix-like module completeness 
table and summary plots for all genomes combined
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(pathways), structural complexes, and phenotypic characteristics. For example, mod-
ule M00001 (Glycolysis, Embden-Meyerhof pathway; glucose =  > pyruvate) is part of 
the Glycolysis/Gluconeogenesis pathway (00010). Module completeness is then sum-
marized in a matrix with all genomes included in the analysis.

To provide greater flexibility to the user, MicrobeAnnotator supports the use of 
three different popular search tools, i.e., Blast, Diamond, and Sword. The user can 
also modify the filtering thresholds used to select the best match found in the data-
bases (i.e., percent identity, bitscore, e-value, or percent alignment across the match-
ing reference protein sequence) and to select whether clustering for the graphical 
output should be performed or not. Finally, multiprocessing is also supported with 
the -t (threads) and -p (processes) options. The processes option determines the 
number of input files (genomes) that are simultaneously processed, while the threads 
option determines the number of computing cores used per file being processed. For 
instance, if the user has two genomes and selects -p 2 and -t 4, MicrobeAnnotator 
will use 8 cores in total for the annotation, 4 for each genome that will be processed 
simultaneously.

MicrobeAnnotator output

MicrobeAnnotator produces a single main output folder per run; if the run contains 
multiple genomes, all the information for each genome will be saved within the main 
output folder. This folder, designated by the user, includes an “annotation_results” 
folder that contains the compiled annotations and search results for each genome, 
as shown in Table 1. The folder includes a file with the annotations and metadata for 
each protein and a file with only the KO identifiers recovered per genome. Individual 
folders with the raw and filtered best matches per database are also created, i.e., one 
folder with KOfamscan, Swissprot, RefSeq, and trEMBL results. Finally, the summa-
rized results include a matrix file with KEGG module completeness for all genomes, a 
heatmap summarizing the completeness of modules that are above 50% completes in 
at least one genome, and a bar plot showing the number of modules above 80% com-
pleteness grouped by the pathway that the modules are linked to. All these files are 
explained in greater detail in the supplementary online material.

Table 1  Folders and files produced by MicrobeAnnotator

Result (type) Description of contents

Annotation_results (folder) Annotations and KO numbers per genome

Kofamscan_results (folder) Raw and filtered KOfamscan results

Swissprot_results (folder) Raw and filtered Swissprot results

Refseq_results (folder) Raw and filtered RefSeq results

Trembl_results (folder) Raw and filtered trEMBL results

[prefix].tab (file) Global table with annotations

[prefix]_heatmap.pdf (file) Module completeness heatmap

[prefix]_barplot.pdf (file) Barplot of modules above 80% complete
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Results
Computing Requirements of MicrobeAnnotator compared to other tools

We compared MicrobeAnnotator to other popular genome annotation pipelines, includ-
ing Prokka v1.14.6 [8], RAST [7], EggNOG-mapper v2.0.1b-4-g4c2b55e, InterProScan 
v5.47-82.0 and DRAM. The first comparison was in terms of database entries used 
by each tool. As previously suggested [23], we counted the number of FASTA protein 
entries, HMM models, or website database size reports (for RAST and InterProScan), 
depending on the tool. Figure 2a shows that MicrobeAnnotator and DRAM have orders 
of magnitude more entries than the other tools, and MicrobeAnnotator (~ 350 mil-
lion) has almost three times the number of entries compared to DRAM (~ 121 million). 
This difference is mostly driven by the inclusion of NCBI’s RefSeq database and Uni-
Prot trEMBL compared to the UniRef90 used in DRAM. While most of the additional 
sequences used by MicrobeAnnotator are redundant among themselves and/or with 
sequences in UniRef90, a few are not redundant (e.g., recently published/determined 
annotations); thus, they represent a more comprehensive database for annotation. Fur-
ther, the additional (redundant) sequences may be important for more precise taxo-
nomic identification of the best match, representing useful information for many users.

More important than the number of entries per tool, we compared each tool’s anno-
tation performance in terms of speed, memory usage, proteins annotated, and level 
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Fig. 2  Annotation tool comparison using E. coli genomes. The number of entries in the databases (a) used 
by the different annotation tools showed that MicrobeAnnotator has the highest number of database entries 
compared to other tools. The annotation of 100 E. coli genomes showed that MicrobeAnnotator and DRAM, 
being the most comprehensive tools, required more than 2 h to annotate each genome using 10 threads 
(b). Faster tools such as Prokka compared with the light version of MicrobeAnnotator, requiring only minutes 
to perform the annotations. The more extensive databases used by MicrobeAnnotator resulted in higher 
RAM usage in par to that required by DRAM (c). Finally, the percentage of proteins classified as annotated 
(A), hypothetical (H), and unannotated (U) showed that MicrobeAnnotator could annotate more than 90% of 
proteins for well-represented genomes. In comparison, the light version still annotates ~ 80% of the proteins, 
suggesting it is an efficient annotation option for microorganisms with good representation in the databases 
(d). MA MicrobeAnnotator, MAL MicrobeAnnotator Light, EGG EggNOG-Mapper, IPS InterProScan, PROK Prokka
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of consistency between tools. For this, we annotated 100 E. coli genomes selected, 
at random, from the latest NCBI RefSeq genome release (Additional file 2: Table S1). 
For this analysis, we included both modes of MicrobeAnnotator (standard and light). 
Likewise, considering the high RAM requirements of DRAM, we performed two 
annotations with [DRAM full] and without [DRAM light] the UniRef90 database. 
Given that MicrobeAnnotator offers flexibility in searching tools, we first determined 
the optimal search options to annotate these genomes. Based on the results shown 
in the Supplementary online section and Additional file 1: Figures S2 and S3, Sword 
gave the best compromise between speed and sensitivity; thus, we used Sword for the 
remaining analyses. Finally, given that not all tools allow the annotation of multiple 
genomes in a single run, each genome was annotated independently using 10 threads 
per run.

Of the tools tested, InterProScan and Prokka were the fastest, taking on average 2.7 
and 2.5 min per genome, respectively (Fig. 2b). These were closely followed by the light 
version of MicrobeAnnotator that took on average 6.4 min to annotate a typical E. coli 
genome. The standard mode of MicrobeAnnotator required significantly less time to 
fully annotate a genome (3,7 h) compared to DRAM when using the UniRef90 database 
(~ 5.1 h; Fig. 2b), even though MicrobeAnnotator has three times the number of entries 
compared to DRAM (discussed above). If a faster annotation is desired, MicrobeAnno-
tator (standard mode) using Diamond as the search tool can annotate a single genome 
in approximately 26 min, with a minor loss in sensitivity related to distant matches in 
the databases (Additional file  1: Figure S2). Accordingly, the use of the light mode in 
MicrobeAnnotator with Diamond takes even less time, being closer to the fastest tool, 
Prokka. We also tested the annotate_genes mode of DRAM that uses proteins as input 
and only performs functional annotation and obtained similar results in terms of anno-
tation times (data not shown). Finally, in our tests and depending on the server load, the 
web version of RASTtk can take up to 120 min (this includes queuing and processing 
time) while the local version takes approximately 20 min per genome. Considering the 
large memory requirements of DRAM, which could make it impractical for individual 
computers [23], we also compared the RAM usage by each tool (Fig.  2c). In this test, 
Prokka had the lowest RAM requirement with ~ 204  MB per genome. Not surpris-
ingly, MicrobeAnnotator (standard mode) and DRAM (full) required on average 19.4 
and 22.1 GB of RAM per genome; this difference in RAM requirements was statistically 
significant (Mann–Whitney p-adj < 0.05). Finally, the light version of MicrobeAnnotator 
had a RAM usage of 4.7 GB on average, close to DRAM without the use of UniRef90 
(4.2 GB), indicating that both “modes” of the tools are suitable for more resource-limited 
computing environments. In addition to the RAM required at runtime, DRAM requires 
large amounts of RAM to build the necessary databases; according to the README file, 
it requires 512 GB of RAM to build all databases if the UniRef90 is included, and at least 
64 GB if it is skipped. It is important to recognize, however, that DRAM was designed 
for high-performance computing clusters with considerable computing resources, 
whereas MicrobeAnnotator is intended for a more general-purpose usage under more 
limited computational resources.
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Annotation quality of MicrobeAnnotator compared to other tools

We compared the annotation results for all 100 E. coli genomes obtained with Microbe-
Annotator and the other tools in terms of proteins annotated, how consistent or similar 
these annotations were to one another, and the summarization capabilities of each tool. 
In this regard, we followed DRAM’s classification scheme [23], where the annotation 
classification of each protein was slightly different for each tool. For MicrobeAnnotator, 
a protein was classified as annotated if it had at least one match in KOfamscan, Swis-
sprot, RefSeq, or trEMBL, and the annotation did not contain ‘hypothetical,’ ‘uncharac-
terized,’ ‘domain of unknown function,’ or ‘protein of unknown function.’ A hypothetical 
classification was assigned when the protein had a match, but it contained any of the 
above terms. An unannotated protein was assigned when no match against any data-
base was found (identified with ‘No match found’ in MicrobeAnnotator’s output). This 
classification scheme was the same for DRAM and InterProScan. In the case of egg-
NOG-mapper, Prokka, and RAST, the classification was slightly different. A protein was 
annotated when a match was found, and the annotation did not contain any hypothetical 
terms. For eggNOG-mapper, a hypothetical protein had an annotation with any of the 
terms above (or no protein description), while an unannotated protein did not appear 
in the output. In the case of RAST and Prokka, it is difficult to discriminate between 
conserved hypothetical proteins and no matches found in the database in the output. 
Thus, for RAST, a hypothetical protein had an annotation containing any of the terms 
above, and if the annotation contained “hypothetical protein,” it should be accompanied 
by additional information such as one FIGFAM entry associated to be considered hypo-
thetical; otherwise, it was considered unannotated. For Prokka, where the differentiation 
between hypothetical and unannotated was impossible, we followed the classification 
established in [23], where all hypothetical proteins were considered unannotated.

In general, most tools could annotate 80% or more proteins of the E. coli genomes, 
except for Prokka and RAST, which annotated ~ 75% and ~ 79.7%, on average (Fig. 2d). 
Prokka had the highest percentage of unannotated proteins (~ 24.6%), while RAST had 
the highest percentage of hypothetical proteins (~ 24.7%). Overall, MicrobeAnnotator, 
DRAM (using UniRef90), and InterProScan annotated the most proteins compared to all 
other tools (~ 92.5%, ~ 92.06%, and ~ 91,3%, respectively). Like DRAM, MicrobeAnno-
tator had the lowest number of unannotated proteins (~ 0.08%), indicating that the use 
of several comprehensive databases allows for the discovery of conserved hypothetical 
proteins (or other functions) that could have potential biological importance [34, 35]. 
Therefore, even if MicrobeAnnotator run times are longer than those for EggNOG-Map-
per, InterProScan, and Prokka, the resulting annotations have more annotated proteins 
(Fig.  2). Moreover, if the Diamond option in MicrobeAnnotator is used, the runtimes 
can be reduced from hours to minutes, without a noticeable loss in annotation perfor-
mance, revealing that this option is a more competitive annotation compared to DRAM.

To test how comprehensive and consistent the annotations of each tool are, we evalu-
ated the presence/absence of identifiers in the output, such as E.C. numbers. Out of all 
the tools tested, RAST had the lowest number of identifiers, including FigFam identifiers 
in ~ 2.1% of the annotations and E.C. numbers in ~ 25.8% of the annotations. Prokka 
annotations, on the other hand, included E.C. numbers in ~ 34.1% of the annotations and 
Cluster of Orthologous Groups (COG) identifiers in ~ 60.1% of the cases. The remaining 
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tools (MicrobeAnnotator, InterProScan, EggNOG-Mapper, and DRAM) consistently 
included several additional identifiers from multiple databases to complement the text-
based annotation descriptions. The most prevalent of these identifiers were KEGG KO 
identifiers, which MicrobeAnnotator and DRAM use to summarize metabolic potential 
into pathways and modules. Therefore, to compare each tool’s breadth of annotations, 
we extracted all KO identifiers from each output and used them as input to MicrobeAn-
notator to create summary statistics. This was possible thanks to the additional scripts 
available as part of the MicrobeAnnotator pipeline that allow users to import KO iden-
tifiers and create summaries. For tools that included E.C. numbers in their output, we 
also developed an additional script to translate KO identifiers to E.C. numbers and vice 
versa; this script is also available as part of MicrobeAnnotator’s pipeline. Unfortunately, 
although InterProScan provides several protein identifiers from other databases, e.g., 
The Institute for Genomic Research’s database of protein families (TIGRFAM), and pro-
tein analysis through evolutionary relationships database (PANTHER), it does not pro-
vide any KO or E.C. identifiers for comparisons.

The summary of this analysis for each tool can be found in Additional file 2: Tables 
S3–S9; a graphical representation of the annotation summary from MicrobeAnnota-
tor is also available in Additional file 1: Figure S4. As expected, the metabolic potential 
recovered from all tools and summarized for all E. coli genomes showed  similarities in 
carbon, vitamin, amino acid, and fatty acids metabolism functions, possibly reflecting 
that these functions are part of the E. coli core genome [14]. However, several key differ-
ences in aromatics metabolism and degradation of secondary metabolism compounds 
can be easily identified among the genomes from the heatmap based on all tools. For 
instance, the E. coli genomes could be separated and clustered together in groups that 
reflect the presence of pathogenicity signals (toxins and secretion systems) (Additional 
file 1: Figure S6), consistent with previous classification schemes [15]. The total number 
of modules per pathway shown in the bar plots generated by MicrobeAnnotator can also 
serve to identify incomplete genomes or missing complete pathways. This information, 
combined with protein marker completeness estimations, can give the user information 
about pathways truly missing from the genome vs. being assembly artifacts or sequenc-
ing gaps.

To compare how similar the resulting annotation matrices from different tools are to 
one another, we computed the Frobenius norm of the difference between a pair of matri-
ces as follows:

where A and B are the two matrices to be compared, m and n are the number of rows 
and columns in the matrices, a is an element in the ith and jth position in matrix A, and 
b is an element in the ith and jth position in matrix B. For this calculation, the matrices 
must have the same order. Two E. coli genomes were not annotated by RAST, and thus, 
were removed from all matrices to maintain the same dimensions.

The MDS ordination of the values obtained using the Frobenius norm showed that 
both modes of MicrobeAnnotator (standard and light) were similar and adjacent to the 

d2(A,B) =

√

√

√

√

m
∑

i=1

n
∑

j=1

(

aij − bij
)2



Page 10 of 16Ruiz‑Perez et al. BMC Bioinformatics           (2021) 22:11 

two DRAM modes (Additional file 1: Figure S7). This indicated that the light mode of 
MicrobeAnnotator can recover similar metabolic reconstructions to those obtained 
using MicrobeAnnotator’s standard mode and DRAM’s full mode. Considering the dif-
ferences in run times between the standard and light versions of MicrobeAnnotator 
(Fig.  2) and depending on the query genome and the representation of close relatives 
on the databases, the light mode of MicrobeAnnotator can provide robust, compre-
hensive annotations for microbial genomes. In the case of E. coli, 99,5% of the mod-
ules were identified with the same completeness level using both MicrobeAnnotator 
modes. Moreover, the EggNOG-Mapper annotations were closer to MicrobeAnnotator 
and DRAM annotations, while RAST and Prokka were the most distinct. Upon closer 
inspection, this result is due to differences in identifying proteins involved in several 
metabolic pathways (Additional file 2: Table S10). For instance, out of 394 modules sum-
marized, MicrobeAnnotator (and DRAM) detected 26 and 23 modules that were at least 
20% more complete than those summarized using Prokka and RAST, respectively. These 
modules mostly belonged to carbohydrate metabolism pathways, ATP synthesis, and 
drug resistance. In contrast, Prokka detected 101 modules that were at least 20% more 
complete than those detected by MicrobeAnnotator and DRAM, while RAST detected 
75 such modules. These modules were linked with varied metabolism types, including 
aromatics degradation, biosynthesis of secondary metabolites, drug resistance, glycan, 
and lipid metabolism. Nonetheless, ~ 47% of these modules were below 50% complete, 
suggesting that the annotation matches may not be strong (e.g., distant matches), and 
probably require closer inspection. Moreover, it is important to note that a single E.C. 
identifier may be linked to multiple KO identifiers indicating that the original protein 
might not be a real functional ortholog of the original KO record. For instance, E.C. 
2.7.7.-, which was present in almost all RAST and Prokka annotations, includes a group 
of ~ 100 types of adenylyl transferases and has links with 17 KO identifiers. These one-
to-many links exhibited by E.C. numbers accounted for the seemingly better recovery of 
metabolic modules found for Prokka and RAST, the only two tools that required transla-
tion of E.C. to KO identifiers. A quick test using the original MicrobeAnnotator sum-
maries complemented with translated E.C. identifiers (also extracted from the original 
MicrobeAnnotator annotations) showed a similar pattern to that observed for Prokka 
and RAST (Additional file 2: Tables S10–S11). In this case, the “complemented” version 
of the original MicrobeAnnotator summary found 37 modules that were 20% more com-
plete than the original summary. This result urges caution when importing identifiers 
from other annotation tools, and therefore we recommend the use of this feature within 
MicrobeAnnotator only for manually verifying results and exploratory purposes.

Annotation of poorly represented (or studied) genomes

We demonstrated above that MicrobeAnnotator could annotate most proteins in E. coli 
genomes and recover similar summaries compared to more complex and computation-
ally demanding tools such as DRAM, while having better annotation calls compared to 
less demanding tools such as Prokka and RAST. Nonetheless, the E. coli genomes are 
amongst the most widely studied, sequenced, and reported genomes, making them 
relatively easy to annotate for any tool. To evaluate MicrobeAnnotator against higher 
genomic novelty, we decided to annotate a group of 78 genomes from the Candidate 
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Phyla Radiation (CPR) group. These genomes were recently described and have unusual 
metabolic capacity with an increased number of hypothetical or poorly characterized 
proteins compared to E. coli [36, 37]. One additional unifying feature of these genomes 
is that most of them were recovered from SAGs or MAGs, providing a useful test data-
set in terms of genome completeness. Our comparisons showed that there is a simi-
lar pattern in terms of computing time with the E. coli dataset mentioned above, with 
MicrobeAnnotator and DRAM (with UniRef90) requiring longer times to complete the 
annotations (~ 1.8 h and ~ 3.2 h per genome, respectively), followed by EggNOG-Map-
per (~ 1.1 h; Fig. 3a). The remaining tools were quite fast at annotating these genomes, 
requiring less than 10 min in all cases. All annotation times were lower compared to the 
E. coli annotations, mainly due to the smaller number of proteins to be annotated, i.e., an 
average of 794 in CPR vs. 4,600 proteins in E. coli genomes.

Regarding the percentage of proteins annotated, the tool with the highest percentage 
of annotated proteins was InterProScan with an average of 75.5%, followed by DRAM 
(using UniRef90) with ~ 67.6% and MicrobeAnnotator with ~ 62.9% (Fig.  3). On aver-
age, 34% of the proteins that were not annotated by MicrobeAnnotator but were anno-
tated by InterProScan contained the word “domain” or “consensus disorder prediction;” 
that is, they represented only general function predictions. Based on our definition of 
annotated, hypothetical, and unannotated proteins, these instances would be classified 
as annotated, but it is difficult to derive function from domains and profile predictions, 
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which often occur in InterProScan. Therefore, we expect that the differences between 
the percentage of proteins annotated with specific functions using MicrobeAnnotator 
(and DRAM) and InterProScan to be smaller than the above numbers indicated. Inter-
estingly, although InterProScan annotated a higher percentage, it also had a higher 
percentage of proteins that remain unannotated (~ 23.1%), compared with MicrobeAn-
notator (~ 3.1%) and DRAM (~ 2.6%). These unannotated proteins from InterProScan 
were classified as hypothetical in most cases by MicrobeAnnotator (more than 80% of 
cases). Therefore, although no annotation was recovered from MicrobeAnnotator, there 
is value in knowing the protein was found in the databases (in other genomes) as a hypo-
thetical conserved protein.

The metabolic summary of CPR genomes obtained using MicrobeAnnotator revealed 
substantial differences compared to the E. coli genomes. The first evident characteristic 
is the large fraction of largely incomplete or absent metabolic modules in CPR genomes 
(Additional file 1: Figure S8). While most CPR genomes showed the metabolic poten-
tial for primary metabolism, with the capacity to carry out nucleotide biosynthesis, 
glycolysis, the Calvin cycle, and the pentose phosphate cycle (Additional file 1: Figure 
S8, bottom), a reduced number encode the capacity to perform isoprenoid biosynthe-
sis (mevalonate and non-mevalonate pathways), which has been previously reported for 
members of the CPR [38]. Further, the high level of incompleteness of these genomes 
prevented several modules from being identified at a larger scale using any tool; hence, 
the gene-by-gene annotations obtained by MicrobeAnnotator and other tools become 
essential to curate and identify potential metabolic capabilities manually. In this regard, 
the summary matrix distance of all tools showed similar patterns to those obtained 
previously for the E. coli dataset. First, consistent with previous results, both modes of 
MicrobeAnnotator were closer together, where 100% of the modules found were within 
10% difference in completeness. Both modes of DRAM were also closer to MicrobeAn-
notator results (Fig. 4). This was expected because most of the KO identifiers come from 
the KEGG database that both tools use, with the (small) differences observed likely orig-
inated from the use of RefSeq/UniProt and UniRef90 for MicrobeAnnotator and DRAM, 
respectively. Consistent with previous results, Prokka appeared as the most different tool 
(Fig. 4), with the interesting finding of additional antibiotic resistance modules, includ-
ing cationic antimicrobial and imipenem resistance (Additional file 2: Tables S12–S13). 
Again, the use of additional identifiers from other databases could be useful and comple-
mentary but should be inspected carefully to avoid false positives.

Conclusions
Annotating and comparing microbial genomes is currently performed using differ-
ent bioinformatics tools and approaches with different advantages and requirements. 
On several occasions, however, these tools require users to manually parse through 
text-based results to obtain meaningful information. Further, most users lack the com-
putational capabilities to compare multiple genomes at the same time. In addition, fast 
annotation tools often use smaller databases, resulting in less comprehensive annota-
tions, especially for underrepresented organisms in the databases. MicrobeAnnotator 
effectively addressed these limitations by using multiple databases in an iterative fash-
ion, which allows it to balance the tradeoffs of using large databases while providing the 
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user with comprehensive annotations and easy-to-understand results that can be used 
to guide the next, more detailed analyses. Compared to more complex annotation tools, 
MicrobeAnnotator has lower computational demands and, depending on the options 
used, can be competitive with faster tools that use smaller databases. The examples high-
lighted above underscore the capabilities of MicrobeAnnotator for quickly annotating 
and comparing groups of genomes of well-studied or not-well-studied microbial taxa. 
While MicrobeAnnotator is a standalone program, its results can be seemingly incorpo-
rated into other analysis pipelines. The results obtained here also highlighted the impor-
tance of using different annotation approaches that offer complementary results. In this 
regard, MicrobeAnnotator allows users to import results from other annotation pipe-
lines to create combined summaries and provide the translation of identifiers from other 
databases to the ones used in MicrobeAnnotator, increasing its flexibility and probable 
use case. Hence, we anticipate that MicrobeAnnotator will find many applications in 
microbiome and genome research across clinical or environmental settings.
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Project home page https​://githu​b.com/cruiz​perez​/Micro​beAnn​otato​r
Operating system(s) Platform independent
Programming language Python
Other requirements IBM Aspera Connect

−500 0 500 1000

MDS1

−1500

−1000

−500

0

500

M
D

S
2

MicrobeAnnotator

MicrobeAnnotator
Light

DRAM Full

DRAM Light

Prokka

EggNOG-Mapper

Stress: 0.085
Fig. 4  Multi-dimensional scaling ordination of annotation matrix distances. The distance between 
annotation summary matrices for CPR genomes showed that both modes of MicrobeAnnotator recover 
similar KO-based summaries that, at the same time, are similar to those obtained using DRAM. Prokka and 
EggNOG-Mapper recovered different modules highlighting the advantage of using multiple annotation tools 
and incorporating their results into MicrobeAnnotator

https://github.com/cruizperez/MicrobeAnnotator


Page 14 of 16Ruiz‑Perez et al. BMC Bioinformatics           (2021) 22:11 

License Artistic License 2.0
Any restrictions to use by non-academics Those stated in Artistic License 2.0

Supplementary Information
The online version contains supplementary material available at https​://doi.org/10.1186/s1285​9-020-03940​-5.

Additional file 1. Supplementary results and figures.

Additional file 2. Tables with genomes used in this study and annotation result summaries for each tool tested.

Abbreviations
Blast: Basic Local Alignment Search Tool; CARD: The Comprehensive Antibiotic Resistance Database; COG: Cluster of 
Orthologous Groups; CPR: Candidate Phyla Radiation; Diamond: Double index alignment of next-generation sequenc‑
ing data; DRAM: Distilled and Refined Annotation of Metabolism; E.C.: Enzyme Commission; EggNOG: Evolutionary 
genealogy of genes: Non-supervised Orthologous Groups; GO: Gene Ontology; HMM: Hidden Markov Models; InterPro: 
Integrative Protein Signature Database; KEGG: Kyoto Encyclopedia of Genes and Genomes; KO: KEGG Orthology; MAG: 
Metagenome-assembled genome; MAPLE: Metabolic and Physiological potentiaL Evaluator; NCBI: National Center 
for Biotechnology Information; PANTHER: Protein analysis through evolutionary relationships; Pfam: Protein Families 
Database; PGAP: Prokaryotic Genome Annotation Pipeline; Prodigal: PROkaryotic DYnamic programming Gene-finding 
ALgorithm; Prokka: Prokaryotic annotation; RAM: Random-access Memory; RAST: Server for Rapid Annotations using 
Subsystem Technology; RefSeq: Reference Sequence Database; rRNA: Ribosomal ribonucleic acid; SAG: Single cell ampli‑
fied genome; SEED: The database and infrastructure for comparative genomics; Sword: Smith–Waterman on Reduced 
Database; TIGRFAM: The Institute for Genomic Research’s database of protein families; tRNA: Transfer ribonucleic acid; 
UniProt: Universal Protein Resource.

Acknowledgements
The authors thank Luis Miguel Rodriguez for their comments and suggestions on functionality and documentation of 
MicrobeAnnotator.

Authors’ contributions
CR designed the tool, wrote the code, performed the analyses, and wrote the manuscript, RC designed the tool, KTK 
designed the tool and wrote the manuscript. All authors read and approved the final manuscript.

Funding
This work was funded by the U.S. National Science Foundation (Award No. 1759831). The funding body did not play any 
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
Data generated or analyzed during this study are included in this published article or as supplemental material. Addi‑
tional data can be obtained from the authors upon request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
None.

Author details
1 School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. 2 Ocean Science and Engineer‑
ing, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. 3 School of Civil and Environ‑
mental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. 4 Center for Bioinformatics and Computa‑
tional Genomics, Georgia Institute of Technology, Atlanta, GA 30332, USA. 

Received: 2 September 2020   Accepted: 15 December 2020

References
	1.	 RefSeq Growth Statistics. https​://www.ncbi.nlm.nih.gov/refse​q/stati​stics​/.
	2.	 Xue Y, Jonassen I, Ovreas L, Tas N. Metagenome-assembled genome distribution and key functionality highlight impor‑

tance of aerobic metabolism in Svalbard permafrost. FEMS Microbiol Ecol. 2020;96(5):fiaa057.
	3.	 Wilkinson T, Korir D, Ogugo M, Stewart RD, Watson M, Paxton E, Goopy J, Robert C. 1200 high-quality metagenome-

assembled genomes from the rumen of African cattle and their relevance in the context of sub-optimal feeding. 
Genome Biol. 2020;21(1):229.

	4.	 Nascimento Lemos L, Manoharan L, William Mendes L, Monteiro Venturini A, Satler Pylro V, Tsai SM. Metagenome 
assembled-genomes reveal similar functional profiles of CPR/Patescibacteria phyla in soils. Environ Microbiol Rep. 
2020;12:651–5.

https://doi.org/10.1186/s12859-020-03940-5
https://www.ncbi.nlm.nih.gov/refseq/statistics/


Page 15 of 16Ruiz‑Perez et al. BMC Bioinformatics           (2021) 22:11 	

	5.	 Christoffels A, van Heusden P. Genome annotation: perspective from bacterial genomes. In: Ranganathan S, Gribskov 
M, Nakai K, Schönbach C, editors. Encyclopedia of bioinformatics and computational biology. Oxford: Academic Press; 
2019. p. 152–6.

	6.	 Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez RL, Burns AS, Ranjan P, Sarode N, Malmstrom RR, Padilla CC, et al. SAR11 
bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536(7615):179–83.

	7.	 Youngblut ND, de la Cuesta-Zuluaga J, Reischer GH, Dauser S, Schuster N, Walzer C, Stalder G, Farnleitner AH, Ley RE. 
Large-scale metagenome assembly reveals novel animal-associated microbial genomes, biosynthetic gene clusters, and 
other genetic diversity. Systems. 2020. https​://doi.org/10.1128/mSyst​ems.01045​-20.

	8.	 Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 
2010;38(12):e132.

	9.	 Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation 
initiation site identification. BMC Bioinform. 2010;11:119.

	10.	 Noguchi H, Taniguchi T, Itoh T. MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for 
precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res. 2008;15(6):387–96.

	11.	 Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P. Fast genome-wide functional 
annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34(8):2115–22.

	12.	 Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. InterProScan: protein domains identifier. 
Nucleic Acids Res. 2005;33(Web Server issue):W116–20.

	13.	 Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annota‑
tion. Nucleic Acids Res. 2016;44(D1):D457-462.

	14.	 The UniProt Center. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–69.
	15.	 Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O’Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, et al. 

RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res. 2018;46(D1):D851–60.
	16.	 Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI, et al. 

InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 
2019;47(D1):D351–60.

	17.	 El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, et al. The 
Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–32.

	18.	 Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, et al. 
The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids 
Res. 2005;33(17):5691–702.

	19.	 McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L, et al. The 
comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57(7):3348–57.

	20.	 Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell 
J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44(14):6614–24.

	21.	 Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.
	22.	 Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, et al. The 

SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 
2014;42(15):D206–14.

	23.	 Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, Liu P, Narrowe AB, Rodriguez-Ramos J, Bolduc B, 
et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 
2020;48(16):8883–900.

	24.	 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. 
BMC Bioinform. 2009;10:421.

	25.	 Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
	26.	 Prakash A, Jeffryes M, Bateman A, Finn RD. The HMMER web server for protein sequence similarity search. Curr Protoc 

Bioinform. 2017;60:3.15.1-3.15.23.
	27.	 Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29(1):28–35.
	28.	 Arai W, Taniguchi T, Goto S, Moriya Y, Uehara H, Takemoto K, Ogata H, Takami H. MAPLE 230: an improved system for 

evaluating the functionomes of genomes and metagenomes. Biosci Biotechnol Biochem. 2018;82(9):1515–7.
	29.	 Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H. KofamKOALA: KEGG Ortholog assignment 

based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36(7):2251–2.
	30.	 UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–15.
	31.	 O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, 

et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. 
Nucleic Acids Res. 2016;44(D1):D733-745.

	32.	 Vaser R, Pavlovic D, Sikic M. SWORD-a highly efficient protein database search. Bioinformatics. 2016;32(17):i680–4.
	33.	 Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51.
	34.	 D’Amico K, Filiatrault MJ. The conserved hypothetical protein PSPTO_3957 is essential for virulence in the plant patho‑

gen Pseudomonas syringae pv. tomato DC3000. FEMS Microbiol Lett. 2017;364(8):fnx004.
	35.	 Jose L, Ramachandran R, Bhagavat R, Gomez RL, Chandran A, Raghunandanan S, Omkumar RV, Chandra N, Munday‑

oor S, Kumar RA. Hypothetical protein Rv3423.1 of Mycobacterium tuberculosis is a histone acetyltransferase. FEBS J. 
2016;283(2):265–81.

	36.	 Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Wilkins MJ, Wrighton KC, Williams KH, Banfield JF. Unusual 
biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523(7559):208–11.

	37.	 Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. Biosynthetic capacity, metabolic variety and 
unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol. 2018;16(10):629–45.

	38.	 Anantharaman K, Brown CT, Burstein D, Castelle CJ, Probst AJ, Thomas BC, Williams KH, Banfield JF. Analysis of five com‑
plete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial 
phylum. PeerJ. 2016;4:e1607.

https://doi.org/10.1128/mSystems.01045-20


Page 16 of 16Ruiz‑Perez et al. BMC Bioinformatics           (2021) 22:11 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	MicrobeAnnotator: a user-friendly, comprehensive functional annotation pipeline for microbial genomes
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Implementation and outputs
	MicrobeAnnotator database building
	MicrobeAnnotator functional annotation process
	MicrobeAnnotator output

	Results
	Computing Requirements of MicrobeAnnotator compared to other tools
	Annotation quality of MicrobeAnnotator compared to other tools
	Annotation of poorly represented (or studied) genomes

	Conclusions
	Availability and requirements
	Acknowledgements
	References


