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Artificial intelligence for the diagnosis of heart failure
Dong-Ju Choi 1,3✉, Jin Joo Park 1,3, Taqdir Ali2 and Sungyoung Lee 2✉

The diagnosis of heart failure can be difficult, even for heart failure specialists. Artificial Intelligence-Clinical Decision Support
System (AI-CDSS) has the potential to assist physicians in heart failure diagnosis. The aim of this work was to evaluate the diagnostic
accuracy of an AI-CDSS for heart failure. AI-CDSS for cardiology was developed with a hybrid (expert-driven and machine-learning-
driven) approach of knowledge acquisition to evolve the knowledge base with heart failure diagnosis. A retrospective cohort of
1198 patients with and without heart failure was used for the development of AI-CDSS (training dataset, n= 600) and to test the
performance (test dataset, n= 598). A prospective clinical pilot study of 97 patients with dyspnea was used to assess the diagnostic
accuracy of AI-CDSS compared with that of non-heart failure specialists. The concordance rate between AI-CDSS and heart failure
specialists was evaluated. In retrospective cohort, the concordance rate was 98.3% in the test dataset. The concordance rate for
patients with heart failure with reduced ejection fraction, heart failure with mid-range ejection fraction, heart failure with preserved
ejection fraction, and no heart failure was 100%, 100%, 99.6%, and 91.7%, respectively. In a prospective pilot study of 97 patients
presenting with dyspnea to the outpatient clinic, 44% had heart failure. The concordance rate between AI-CDSS and heart failure
specialists was 98%, whereas that between non-heart failure specialists and heart failure specialists was 76%. In conclusion, AI-CDSS
showed a high diagnostic accuracy for heart failure. Therefore, AI-CDSS may be useful for the diagnosis of heart failure, especially
when heart failure specialists are not available.
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INTRODUCTION
The prevalence of heart failure (HF) has been increasing1,2. HF is
associated with high morbidity and mortality3. Because HF is a
complex syndrome that can result from structural and functional
cardiac disorder, rather than a single disease entity, its correct
diagnosis can be challenging even for HF specialists. Currently, HF
is classified according to ejection fraction, i.e., HF with reduced
ejection fraction (HFrEF), HF with mid-range ejection fraction
(HFmrEF), and HF with preserved ejection fraction (HFpEF)4. A
correct diagnosis is mandatory before proper treatment can be
initiated4,5. Furthermore, present-day physicians are challenged by
rapidly changing scientific evidences, new drugs, and the
complexity of guidelines for HF management, especially in
outpatient clinic. With enormous advancements in information
and communication technologies, such as easy storage, acquisi-
tion, and recovery of big data and knowledge, artificial
intelligence (AI) has been gaining an important role in cardiology6.
Two types of AI decision systems are available: a white-box-

based and a black-box-based one. A white-box AI-based decision
system involves correlations and transparency among rules for the
analysis of accumulated data, and is mainly constructed using
supervised algorithms such as decision tree algorithm7. On the
contrary, a black-box-based AI has opaque algorithms and its
process and reasoning applied in providing the respective
conclusions are difficult to clarify. IBM Watson for Oncology
(WFO) is black-box AI-based decision systems. WFO demonstrated
a concordance rate of 93% for the treatment recommendation in
breast cancer. However, WFO cannot disclose the recommenda-
tion processes for the final clinical decision8.
Clinical Decision Support System (CDSS) is a health information

technology that assists physicians in clinical decision making. The
concept of computer-based clinical decision has been developed
for informatics six decades ago9. In spite of the enthusiasm for

evolving CDSS which is assisted with the potential of AI, the
realities and complexities of real clinical practice limit the rapid
evolution of CDSS. An effective CDSS requires CDSS to match the
individual patient’s characteristics to the clinical knowledge base,
provides patient-centric assessments and recommendations, and
finally presents recommendations in white-box manner to the
physicians for their final decision8.
We conducted a study assessing the level of agreement with

respect to the HF diagnosis to identify the three types of HF, i.e.
HFrEF, HFmrEF, and HFpEF, between HF specialists and AI-CDSS at
a tertiary center in Korea. First, we created an AI-CDSS using a
hybrid approach of expert-driven knowledge acquisition and ML-
driven rule generation. Second, we evaluated the diagnosis
concordance (degree of agreement) of AI-CDSS in a test set of
patients with and without HF as a pilot clinical study. Third, we
prospectively tested the diagnostic performance of AI-CDSS in
consecutive patients presenting with dyspnea to the outpatient
clinic.

RESULTS
Development of cardiovascular AI-CDSS
Using the training dataset of 600 patients with and without HF,
the AI-CDSS was created using predefined steps including expert-
driven knowledge acquisition, machine learning (ML)-driven rule
generation, and hybridization of both types of knowledge.

Expert-driven knowledge acquisition. In the knowledge modeling
phase, the clinical recommendations of diagnosis were first
transformed into mind maps and then transformed to a decision
tree. The decision tree was evaluated and modified by the
physicians until a consensus was achieved. The final decision tree
was termed as R-CKM (Supplementary Fig. 1) and included 14

1Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea. 2Department of Computer Science and
Engineering, Kyung Hee University, Yongin, Republic of Korea. 3These authors contributed equally: Dong-Ju Choi, Jin Joo Park. ✉email: djchoi@snubh.org; sylee@oslab.khu.ac.kr

www.nature.com/npjdigitalmed

Scripps Research Translational Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-020-0261-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-020-0261-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-020-0261-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-020-0261-3&domain=pdf
http://orcid.org/0000-0003-0146-2189
http://orcid.org/0000-0003-0146-2189
http://orcid.org/0000-0003-0146-2189
http://orcid.org/0000-0003-0146-2189
http://orcid.org/0000-0003-0146-2189
http://orcid.org/0000-0001-9611-1490
http://orcid.org/0000-0001-9611-1490
http://orcid.org/0000-0001-9611-1490
http://orcid.org/0000-0001-9611-1490
http://orcid.org/0000-0001-9611-1490
http://orcid.org/0000-0002-5962-1587
http://orcid.org/0000-0002-5962-1587
http://orcid.org/0000-0002-5962-1587
http://orcid.org/0000-0002-5962-1587
http://orcid.org/0000-0002-5962-1587
https://doi.org/10.1038/s41746-020-0261-3
mailto:djchoi@snubh.org
mailto:sylee@oslab.khu.ac.kr
www.nature.com/npjdigitalmed


contributing factors (Supplementary Table 1) and 4 possible
outcomes: HFrEF, HFmrEF, HFpEF, and no-HF.

ML-driven rule generation. We used five machine learning
algorithms i.e. Decision Tree (DT), Random Forest, Chi-squared
Automatic Interaction Detection (CHAID), J48, and Classification
and Regression Tree (CART). All algorithms selected only few
features such as left ventricular ejection fraction (LVEF), left atrial
volume index (LAVI), and left ventricular mass index (LVMI) as
highly contributing factors (Supplementary Table 2). To boost the
model performance, the auto-feature selection method was used
and LVEF, electrocardiography, LVMI, and LAVI were selected as
the most significant features (Supplementary Fig. 2).
The five algorithms showed different accuracy (Supplemen-

tary Table 3). We also calculated the rank of each algorithm
based on the accuracy, number of rules extracted, and number
of attributes involved, using the rank formula developed in our
previous work10. Finally, CART algorithm was selected to create
ML-driven knowledge, because it showed the highest accuracy
and rank of 88.5 and 0.5736, respectively. The CART algorithm
mainly focused on features of LVEF, LAVI, and tricuspid
regurgitation velocity (Supplementary Fig. 3). The algorithm
correctly predicted HFmrEF and HFrEF with 100% accuracy,
whereas HFpEF and no-HF were predicted with 78.9% and 80.5%
accuracy, respectively.

Hybrid knowledge. The merging of the CKM from the expert-
driven knowledge and the PM from the ML-driven knowledge
approach led to the final hybrid knowledge in form of R-CKM (Fig.
1, Supplementary Materials). Sometimes, physician may miss some
of the attributes or path of attributes during development of CKM,
and the ML generated PM finds the missing attributes or paths.
For instance, the CKM is starting with the “Sign & Symptoms” as
shown in (Supplementary Fig. 3), while the PM starts checking
from “LVEF” as shown in (Supplementary Fig. 4). Therefore, the
hybridization algorithm recognizes that the CKM is missing a path
of “Not Available” values between “Sign & Symptoms” and “LVEF”
attributes. When we added this new path into CKM, the number of
knowledge base rules increased drastically. The addition of new

path into R-CKM increases the coverage of patient cases to
generate right recommendations and increase the accuracy.

Validation of AI-CDSS
Study population. The test dataset included 598 patients (490
patients with HF, 108 patients without HF). Patients with HF were
older (73.1 ± 13.8 years vs. 64.8 ± 13.8 years, P < 0.001), more likely
to be male (52% vs. 37%, P= 0.005), and had higher N-terminal
pro-brain natriuretic peptide levels (10,075 ± 11,778 pg/L vs. 82 ±
68 pg/L, P < 0.001). Concerning the echocardiographic parameters,
patients with HF had lower LVEF (45.5 ± 17.4% vs. 64.1 ± 6.5%, P <
0.001), higher LAVI (53.9 ± 21.1 ml/m2 vs. 31.2 ± 8.5 ml/m2, P <
0.001), and higher E/e′ (18.6 ± 9.8 vs. 9.8 ± 3.5, P < 0.001) (Table 1).
Among patients with HF, 199 (40.6%), 63 (12.9%), and 228 (46.5%)
were classified as having HFrEF, HFmrEF, and HFpEF, respectively.

Diagnostic accuracy. The results of comparative analysis are
shown in Fig. 2. The concordance rate was 100% in HFrEF and
HFmrEF for all three approaches. With respect to HFpEF, the
concordance rate was 82%, 79%, and 99.5% for expert-driven, ML-
driven, and hybrid CDSS, respectively. Similar findings were
observed for no-HF. The overall diagnostic accuracy was 90%,
88.5%, and 98.3% for expert-driven, ML-driven, and hybrid CDSS,
respectively, showing a remarkable increase in accuracy by 8%
with the hybrid approach, i.e., AI-CDSS.
The expert-driven approach had a sensitivity and a specificity of

0.96 and 0.71, respectively (Supplementary Table 4), whereas the
ML-driven approach had a sensitivity and a specificity of 0.72 and
0.94, respectively (Supplementary Table 5). Strikingly, the hybrid
approach had a sensitivity and specificity of 0.94 and 0.99,
respectively (Supplementary Table 6).

Subgroup analysis. We divided the patients according to
echocardiographic parameters. Set A included all echocardiogra-
phy parameters, whereas set B included only LVEF, LAVI, and LVMI.
The concordance rate was lower in set B than in set A
(Supplementary Fig. 4). In our study, the age of the included
patients ranged from 20 to 92 years. Age did not affect the
accuracy of the system (Supplementary Table 7).

Fig. 1 Comparison of existing CDSSs and our proposed artificial intelligence-CDSS. CDSS Clinical Decision Support System, CKM clinical
knowledge model, I-KAT Intelligent Knowledge Authoring Tool, NCCN National Comprehensive Cancer Network, NICE National Institute for
Health and Care Excellence, PM prediction model.
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Accuracy of AI-CDSS in a prospective cohort of patients with
dyspnea
A total of 100 consecutive patients who presented with dyspnea
to the outpatient clinic were enrolled. Of these, the data of three
patients were not complete; thus, the data of 97 patients were
used in the final analysis. Of the 97 patients, 43 (44%) had HF. In
this prospective cohort, the concordance rate of the non-HF
specialists was 76%, whereas that of AI-CDSS was 98% (Fig. 3).

Especially, the diagnosis of HFmrEF and HFpEF was low among the
non-HF specialist, whereas the diagnosis of no-HF was comparably
high.

DISCUSSION
Correct diagnosis of HF can be challenging for physicians, even for
HF specialists. In this study, we first created AI-CDSS by using the

Table 1. Characteristics of the study population retrospective patients (n= 598).

No heart failure Heart failure P value*

All HFrEF HFmrEF HFpEF

Age (years) 64.8 ± 13.8 73.1 ± 13.8 70.3 ± 14.6 74.7 ± 14.1 75.2 ± 10.6 <0.001

Male (%) 37 52 54.3 52.4 50.0 0.005

HF symptoms, signs (%) 81.5 89.8 94.0 84.1 87.7 0.015

Clinical history (%) 14.8 51.6 66.3 55.6 37.7 <0.001

Physical exam (%) 9.3 51.4 60.8 49.2 43.9 <0.001

Abnormal ECG (%) 46.0 93 99.5 96.8 86.2 <0.001

NT-pro-BNP (pg/L) 82.4 ± 68.0 10075 ± 11778 15665 ± 12604 8634 ± 9666 5595 ± 9306 <0.001

Echocardiography

LVEF (%) 64.1 ± 6.5 45.5 ± 17.4 27.1 ± 7.5 45.3 ± 2.6 61.6 ± 6.5 <0.001

LAVI (mL/m2) 31.2 ± 8.5 53.9 ± 21.1 60.5 ± 18.6 52.6 ± 27.5 48.0 ± 19.4 <0.001

LVMI (mg/m2) 83.4 ± 18.3 127.3 ± 44.7 151.0 ± 41.5 129.0 ± 50.7 106.0 ± 33.9 <0.001

E/e 9.8 ± 3.5 18.6 ± 9.8 22.9 ± 10.34 17.4 ± 8.6 15.6 ± 8.3 <0.001

Septal e′ (cm/s) 6.9 ± 2.4 5.0 ± 2.1 4.2 ± 1.7 5.1 ± 2.3 5.6 ± 2.2 <0.001

TRV (m/s) 2.6 ± 1.5 2.9 ± 0.7 3.0 ± 0.7 2.8 ± 0.5 2.8 ± 0.7 0.001

GLS (n= 324) (%) 16.4 ± 3.9 10.8 ± 5.0 7.1 ± 2.7 10.4 ± 2.8 14.6 ± 4.3 <0.001

*P value between no heart failure and heart failure.
ECG electrocardiography, GLS global longitudinal strain, HF heart failure, LAVI left atrial volume index, LVEF left ventricular ejection fraction, NT-proBNP
N-terminal pro-B-type natriuretic peptide, TRV tricuspid regurgitation velocity.

Fig. 2 Comparative analysis of the diagnostic accuracy of different approaches in the retrospective cohort. CDSS Clinical Decision Support
System, HFmrEF heart failure with mid-range ejection fraction, HFpEF heart failure with preserved ejection fraction, HFrEF heart failure with
reduced ejection fraction.
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data of 1198 patients with and without HF and showed that AI-
CDSS had very high diagnostic accuracy in these patients. In a
prospective cohort of patients presenting with dyspnea to the
outpatient clinic, AI-CDSS consistently showed a remarkably high
diagnostic accuracy. By contrast, non-HF specialists showed a
relatively low diagnostic accuracy for HF. Therefore, AI-CDSS may
be useful for the diagnosis of HF, especially when HF specialists
are not available.
CDSS has been applied in clinical diagnosis11, preventive care12,

and chronic disease management13, among others. It provides a
proficient decision-making service to improve the quality of
healthcare, but has several complexities and limitations8. Gen-
erally, AI-CDSS acquires knowledge from structured and unstruc-
tured data using ML and natural language processing
techniques14,15. The amalgamation of ML-driven rule generation
with expert-driven knowledge acquisition enhances the system
accuracy10. Therefore, we chose the hybrid approach for the
knowledge acquisition of AI-CDSS, which includes three distinct
steps: expert-driven knowledge acquisition, ML-driven rule gen-
eration, and hybridization of both types of knowledge.
In expert-driven knowledge acquisition, we first built CKM by

transforming expert-driven knowledge into a mind map and
decision tree10. Finally, the decision tree was validated with the
PM of ML-driven knowledge.
In ML-driven knowledge acquisition, we created a PM with an

available big dataset. Various ML algorithms can be used to
analyze and extract the hidden patterns in the form of knowledge
models. In our study, we used white box AI and causal machine
algorithms such as decision tree, random forest, CHAID (Chi-
squared Automatic Interaction Detector), J48, and CART/CRT.
White-box model AI are selected for their transparency, which
enables easily determining all attributes for classification and
verification of new patient data16. They also increase the
physicians’ satisfaction level, because the rationale for a decision
is also provided to the physician using the features contributing to
the final decision. In addition, the computational complexity of the
decision tree constructing algorithms (white box) is relatively low.
By contrast, black box algorithms have no transparency in

knowledge modeling owing to difficulty in interpreting the inner
working layers of the models.
In the hybridization of the both knowledge types, we validated

the PM from the ML-driven approach against the mind map of
CKM from the expert-driven approach to produce the final hybrid
knowledge in form of R-CKM.
Finally, we developed a web-based application in the form of

cardiovascular AI-CDSS for use of physicians in real clinical
practice. For this purpose, the R-CKM knowledge was transformed
into MLM for knowledge shareability and computer-executable
format using I-KAT, which had been developed by our team7. The
resultant knowledge can be easily shared and integrated into
various formats of HF diagnosis systems, because the resultant
knowledge was built with consolidation of the standard data
model vMR (Virtual Medical Record) and the standard terminology
SNOMED CT (Systematized Nomenclature of Medicine—Clinical
Terms).
Because HF is a syndrome with various clinical features, its

diagnosis can be very challenging even for HF specialists. In
patients with HF, pulmonary congestion can develop because of
congestion in the left heart, causing dyspnea. However, dyspnea
as a symptom can also arise from lung disease, anemia, and
mental disorders17. Leg swelling is a typical sign of congestion in
the right heart. However, it also has many differential diagnoses,
including kidney disease, adverse effect of drugs, and chronic
venous insufficiency, among others18. In clinical practice, many
patients are diagnosed as having HF even if they do not have HF,
and vice versa. A correct diagnosis of HF is crucial because
patients with HF have a grave prognosis that is comparable to that
of oncologic malignancies19, and there exist therapy that can
improve survival in patients with HF4,6. Consequently, misdiagno-
sis of HF can hinder the chance of improving the outcomes. AI-
CDSS is a tool that helps in making better medical decisions,
thereby reducing clinical errors and improving the quality of life. It
has the potential to generate alerts and reminders, diagnostic
assistance, therapy critiquing and planning, and image recogni-
tion and interpretation.

Fig. 3 Comparative analysis of the diagnostic accuracy of physicians and AI-CDSS in the prospective cohort. Abbreviations are as in Fig. 2.

D.-J. Choi et al.

4

npj Digital Medicine (2020)    54 Scripps Research Translational Institute



Currently, HF is classified according to LVEF into HFrEF, HFmrEF,
and HFpEF. With respect to HFrEF, a decrease in LVEF may alert
physicians to the possible diagnosis of HF. By contrast, for HFpEF
>50%, the normal systolic function may “blind” the physicians and
HFpEF may remain undiagnosed. We showed that AI-CDSS
showed acceptably high concordance for diagnosing HF regard-
less of type, whereas non-HF specialists misdiagnosed HFpEF in
almost half of the patients.
In medicine, IBM WFO demonstrated high concordance with

oncologists in treatment recommendations14. In the field of
cardiology, our study presents the clinical feasibility of AI for
diagnosing HF.
There are several limitations in this study. The intervention of

the physicians is crucial in knowledge creation and validation.
However, the level of expertise varies from physician to physician,
so that the CKM developed by physicians in a hospital may differ
from that developed in another hospital. Similarly, because the
attributes in the PM depend on the patient data used, they may
also differ from variables recommended in the guidelines.
Therefore, further studies are necessary to validate the AI-CDSS
in other study populations.
In conclusions, AI-CDSS showed high diagnostic accuracy for HF,

independent of HF types. Therefore, AI-CDSS may be useful for the
diagnosis of HF, especially when HF specialists are not available.

METHODS
Study population and data collection
Retrospective cohort. We included 1198 patients with and without HF
from January 2016 to December 2017. We divided the patients into two
datasets. The first 600 patients were used for the generation of AI-CDSS as
a training dataset for ML, whereas the remaining 598 patients were used
for the validation of the AI-CDSS as the test dataset. HF was defined as
present when patients had symptoms (dyspnea, orthopnea) or signs of HF
(rales, pitting edema, ascites) and met one of the following criteria: lung
congestion, objective findings of left ventricular systolic dysfunction, or
structural heart disease. Clinical information including demographics,
symptoms, signs, medical history, laboratory examination, electrocardio-
graphy, and echocardiography was obtained. Control patients, i.e., those
without HF, were randomly selected from the electronic medical records.

Prospective pilot cohort. For an additional validation of AI-CDSS, we
enrolled 100 consecutive patients presenting with dyspnea to the
outpatient clinic. The treating physicians performed history taking and
physical examination, ordered diagnostic tests, and made a final diagnosis,
i.e., HF or no-HF, according to their clinical judgment. The data were first
recorded in an electronic clinical research form, and then automatically
transferred to the AI-CDSS. A direct extraction of patients’ data from
electronic medical record was circumvented because of the information
security regulation at our institution.
The study protocol was approved by the institutional review board of

the Seoul National University Bundang Hospital. For the retrospective
cohort, the requirement for written informed consent was waived by the
institutional review board. Each patient in the prospective cohort provided
informed consent before study enrollment. The study complied with the
Declaration of Helsinki.

Echocardiography
All images were obtained using a standard ultrasound machine with a 2.5-
MHz probe. Standard techniques were used to obtain M-mode, two-
dimensional, and Doppler measurements in accordance with the American
Society of Echocardiography guidelines20. Tissue-Doppler-derived peak
systolic, early, and late diastolic velocities of the septal mitral annulus were
recorded. Left ventricular end-systolic and end-diastolic volumes were
measured from apical four- and two-chamber views and LVEF was
calculated using Simpson’s biplane method.

Generation of cardiovascular AI-CDSS
The traditional CDSSs usually focus on the expert-driven approach with
collaboration between physicians and knowledge engineers, where the

knowledge engineer is an expert in AI language who investigate the
underlying problems, develop the main concepts, and efficiently represent
the knowledge in the domain. The fundamental knowledge resource is the
clinical practice guidelines and physicians’ expertise. The AI-CDSS uses
patient data as the second important resource of knowledge after
processing with ML algorithm (ML-driven approach). Figure 1 shows the
difference between the traditional CDSSs and the cardiovascular AI-CDSS.
The existing CDSSs maintain the knowledge base by the knowledge
engineers. In contrast, AI-CDSS focuses on the hybrid approach of expert-
driven knowledge acquisition and ML-driven rule generation and over-
comes the physicians’ dependency on knowledge engineers. In AI-CDSS,
the clinical knowledge model (CKM), a classical top-down decision tree, is
generated by domain expert (physician) using guidelines and their
experiences; it is called the Expert-Driven Knowledge. The second step is
to create ML-based prediction model (PM) using several ML algorithms,
which is called the machine learning (ML)-driven knowledge. The third
step is to generate the refined-CKM (R-CKM) by the computer scientists
using a quick, simple, and iterative agile software development. The R-CKM
generation is composed of making prediction model of ML-driven
knowledge and validation of expert-driven knowledge with respective
ML-driven knowledge using several ML algorithms with training dataset of
600 patients’ data; it is called the hybrid knowledge. Finally, the R-CKM
knowledge is transformed into shareable and interoperable setting in the
form of Health Level-7 (HL7) complaint standard knowledge representa-
tion, termed Medical Logic Module (MLM), using the Intelligent Knowledge
Authoring Tool (I-KAT) developed by our group. The executable MLM in
the shareable knowledge base is executed to generate decisions based on
the patients’ input to assist the physicians. More details of cardiovascular
AI-CDSS are explained in the Supplementary methods.

Study variables
HF was defined when patients had signs or symptoms of HF and either
lung congestion, objective findings of LV systolic dysfunction, or structural
heart disease. The diagnosis of HF was confirmed by two independent HF
specialists who had >10 years of clinical experience. The diagnosis by the
experts was considered the gold standard.
According to the LVEF on echocardiography, patients were classified as

having HFrEF (LVEF < 40%), HFmrEF (40% ≤ LVEF < 50%), and HFpEF
(LVEF ≥ 50%).
The diagnostic accuracy of AI-CDSS was measured using experts’

diagnosis as the gold standard. Concordance was defined as present when
experts and AI-CDSS had the same diagnosis, i.e., both HF or both no-HF.
Discordance was defined to exist when there was a disagreement between
diagnoses.

Statistical analysis
Descriptive statistics were calculated to determine the clinical character-
istics and outcomes of the registry population. Data were presented as
numbers and frequencies for categorical variables and as mean ± standard
deviation or median with interquartile range for continuous variables. For
the comparison between groups, the χ2 test (or Fisher’s exact test when
any expected cell count was <5 for a 2 × 2 table) was used for categorical
variables, whereas unpaired Student’s t-test was used for continuous
variables. Concordance was expressed as the percentage agreement.
Pearson’s correlation was used to calculate the association between expert
opinion and AI-CDSS judgment.
A two-sided P value of <0.05 was considered statistically significant.

Statistical tests were performed using IBM SPSS Statistics version 23 (SPSS
Inc., Chicago, IL, USA).

Role of the funding source
The funder of the study had no role in study design, data collection, data
analysis, data interpretation, or writing of the report. The corresponding
author had full access to all the data in the study and had final
responsibility for the decision to submit for publication.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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