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karoljopek@ump.edu.pl

3 Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus
University in Toruń, 87-100 Toruń, Poland; maciejzdun@umk.pl
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Abstract: Despite significant advances in treatment of acute coronary syndromes (ACS) many
subjects still develop heart failure due to significantly reduced ejection fraction. Currently, there are
no commonly available treatment strategies that replace the infarcted/dysfunctional myocardium.
Therefore, understanding the mechanisms that control the regeneration of the heart muscle is
important. The development of new coronary vessels plays a pivotal role in cardiac regeneration.
Employing microarray expression assays and RT-qPCR validation expression pattern of genes in long-
term primary cultured cells isolated form the right atrial appendage (RAA) and right atrium (RA)
was evaluated. After using DAVID software, it indicated the analysis expression profiles of genes
involved in ontological groups such as: “angiogenesis”, “blood vessel morphogenesis”, “circulatory
system development”, “regulation of vasculature development”, and “vasculature development”
associated with the process of creation new blood vessels. The performed transcriptomic comparative
analysis between two different compartments of the heart muscle allowed us to indicate the presence
of differences in the expression of key transcripts depending on the cell source. Increases in culture
intervals significantly increased expression of SFRP2, PRRX1 genes and some other genes involved
in inflammatory process, such as: CCL2, IL6, and ROBO1. Moreover, the right atrial appendage gene
encoding lysyl oxidase (LOX) showed much higher expression compared to the pre-cultivation state.

Keywords: coronary vessels; neovascularization; cell culture; transcriptomic analysis

1. Introduction

Cardiovascular diseases are the most common cause of death worldwide. Coronary
artery disease (CAD), manifested frequently by myocardial infarction and, subsequently,
end-stage heart failure (HF), are still an unsolved clinical problems that focus the attention
of the scientific world [1]. Unfortunately, young patients constitute a large group of those

Int. J. Mol. Sci. 2021, 22, 8794. https://doi.org/10.3390/ijms22168794 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3753-755X
https://orcid.org/0000-0002-7399-0303
https://orcid.org/0000-0002-1126-1084
https://orcid.org/0000-0002-1575-3123
https://orcid.org/0000-0003-2398-9571
https://doi.org/10.3390/ijms22168794
https://doi.org/10.3390/ijms22168794
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22168794
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22168794?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 8794 2 of 19

affected, and they should be the main group of interest in the search to find effective
therapeutic options. Effective and fast development of new coronary blood vessels seems
to be essential for regeneration of the injured myocardium and eventually restoration of
cardiac hemodynamic function [2]. Tian et al. suggest that distinct coronary vessels arise
de novo in the postnatal stage that are not from the embryonic coronary vessels [3].

Neovascularization is the process of blood vessel development and growth through
three distinct biological processes: vasculogenesis (limited to the embryonic development),
angiogenesis, and arteriogenesis [4]. It is now well established that mammalian heart after
injury heals primarily by fibrosis. Cardiac fibroblasts, as a major cell population of the
heart, proliferate at the site of injury and, by synthesis of the collagen-rich extracellular
matrix (ECM) network, play a pivotal role in cardiac fibrosis [5,6]. During the compound
process of cardiac repair, cardiac fibroblasts are key players and their proliferation is often
accompanied by recruitment of blood vascular endothelial cells [7,8]. Endothelial cells,
present at the site of injury and stimulating repair processes, in particular neovasculariza-
tion, may also generate new fibroblast subsets by undergoing endothelial–mesenchymal
transition (EndoMT) [9,10]. This source of fibroblasts forms the basis of the first model to
explain stimulation of neovascularization during cardiac regeneration. Ubil et al. indicate
that resident fibroblasts generate a substantial number of endothelial cells in the injured
heart tissues [11]. It was demonstrated, by employing genetic fate map techniques (based
on Col1a2-CreERT transgene), that cardiac fibroblasts rapidly adopt an endothelial-cell-like
phenotype through mesenchymal–endothelial transition (MEndoT) in the heart after injury.

However, previous studies demonstrate that resident fibroblast lineages mainly medi-
ate cardiac fibrosis [7,12], suggesting that most fibroblasts adopt fibroblast cell fate after
cardiac injury. Thus, it appears preexisting endothelial cells mainly mediate neovascular-
ization after injury, and non-endothelial cells like fibroblasts contribute minimally, if any,
to endothelial cells. The fibroblast-associated genetic lineage tracing data, presented by
He et al. [13], indicated that fibroblasts do not contribute significantly to endothelial cells
in the injured heart, and thus pointing to no contribution of MEndoT to neovascularization.
Instead, it was shown that preexisting endothelial cells are essential for creation of new
coronary vessels.

The aim of the present study was to analyze the transcriptomic profile of genes
encoding proteins that could be recognized as new molecular markers regulating neovascu-
larization process in the cardiac muscle during in vitro long-term primary cell culture. The
pivotal role of the vascular network for development and regeneration of cardiac muscle
stimulated research aimed at creating a specific transcriptomic map for cultured porcine
myocardial cells. The present study focuses on factors related to the process of creating
new vessels, and the expression patterns depending on the duration of the cultivation and
the heart compartment from which the cells were isolated (right atrial appendage and right
atrium) are considered.

2. Results

Daily observation of cell cultures, during 30 days of in vitro culture, was performed,
and documented with pictures from inverted microscope employing relief contrast (IX73,
Olympus, Tokyo, Japan; Figures 1 and 2). The morphology of the cells in the cultures
obtained, regardless of the source of the cells, is very similar. Characteristically, first
cells appear on the bottle bottom 4–5 days after the culture was established. Cardiac
cells changed their shape from irregular, slightly elongated to clearly spindle-like during
primary in vitro culture. Observed cells adopted an elongated shape, and form densely
covered cell clusters. Typical of cultured cells was the tendency for the cells to overlap with
longer cultivation, even in the absence of significant confluence.
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Figure 1. Changes in right atrial appendage (RAA) cells morphology during long-term in vitro primary culture at 
individual time intervals. D: day of culture; 10×, 20×: magnification. 

 
Figure 2. Changes in right atrium (RA) cells morphology during long-term in vitro primary culture at individual time 
intervals. D: day of culture; 10×, 20×: magnification. 

Changes in the transcriptome profile of cultured cells were observed at individual 
time intervals. Whole transcriptome profiling by Affymetrix microarray allowed us to 
analyze gene expression changes between the starting point and 7, 15, and 30 days of pig 
cardiac cells in vitro primary culture. Using Porcine Gene 1.1 ST Array Strip, microarray 
transcriptome screening was performed. For both cells obtained from RAA and RA, we 
observed upregulated and downregulated genes. Genes considered as differentially 
expressed and selected for downstream analysis showed ratio higher than abs |2| and 
corrected p-values less than 0.05. This set of genes consisted of 4239 differentially 
expressed genes (DEGs) for RA and 4662 DEGs for RAA. During the initial analysis of the 
microarray results, to better understand the intergroup differences in the global 
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time intervals. D: day of culture; 10×, 20×: magnification.
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Figure 2. Changes in right atrium (RA) cells morphology during long-term in vitro primary culture at individual time
intervals. D: day of culture; 10×, 20×: magnification.

Changes in the transcriptome profile of cultured cells were observed at individual
time intervals. Whole transcriptome profiling by Affymetrix microarray allowed us to
analyze gene expression changes between the starting point and 7, 15, and 30 days of pig
cardiac cells in vitro primary culture. Using Porcine Gene 1.1 ST Array Strip, microarray
transcriptome screening was performed. For both cells obtained from RAA and RA,
we observed upregulated and downregulated genes. Genes considered as differentially
expressed and selected for downstream analysis showed ratio higher than abs |2| and
corrected p-values less than 0.05. This set of genes consisted of 4239 differentially expressed
genes (DEGs) for RA and 4662 DEGs for RAA. During the initial analysis of the microarray
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results, to better understand the intergroup differences in the global expression of overall
DEGs, principal component analysis (PCA) of the samples was performed to examine
variance between the analyzed sample groups. The results presented in Figure 3 clearly
indicate the presence of four main clusters: transcript expression levels obtained from
cells before cultivation (0H) both for RA and RAA groups create the first one; results for
RAA 7D and RAA 30D provide two next clusters, whereas other groups create the last
cluster. Overall, there is a major variance between the sample groups representing different
culture period for RAA, with less differences among samples for RA, where RA 7D, RA 15D
and RA30D groups are focused in one cluster. Additionally, variation within all analyzed
groups is negligible, indicating similar gene expression changes evoked by long-term
in vitro cultures of individual samples (for example both RAA 7D or RA 15D). However,
our present study focuses on genes related to the process of creating new vessels, and we
have identified 224 different transcripts for RA and 222 for RAA. The 5 most significantly
upregulated and downregulated genes obtained for RAA and RA in all culture periods
(7D, 15D, 30D) in relation to the transcript levels before cultivation (0H), their symbols,
fold changes and corrected p-values are shown in Supplementary Tables S1–S6. In all the
attached tables, a common group of genes (17) is noticeable, the expression level of which
varies depending on the source of the cells, whereas the direction of expression change
(upregulation or downregulation) in both cell cultures was maintained.
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Figure 3. Principal component analysis (PCA) plot of all differentially expressed genes (DEGs), based on the first two
principal components (PC1 and PC2) loadings against each other. Percentage of variance is given in brackets.

The DAVID software analysis showed that the differently expressed genes belonged
also to terms associated with the formation of new vessels, like: “angiogenesis”, “blood
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vessel morphogenesis”, “circulatory system development”, “regulation of vasculature
development”, and “vasculature development” GO BP terms. Hierarchical clusterization
procedure was carried out for sets of these genes, with the results presented as heatmaps
(Figure 4).
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Figure 4. Heatmaps with hierarchical clusterization of the differentially expressed genes, both in
right atrial appendage (RAA) and right atrium (RA), belonging to “angiogenesis”, “blood vessel
morphogenesis”, “circulatory system development”, “regulation of vasculature development”, and
“vasculature development” GO BP terms. Each separate row on the y-axis represents a single
transcript. Normalized signal intensity acquired from the microarray analysis is represented by color
(green = higher expression; red = lower expression).
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Due to the structure of the GO database, single genes can often be assigned to many
ontological terms. For this reason, we explore the gene intersections between the selected
GO BP terms, and the relationship between genes and GO terms were mapped with
circle plots, with visualization of logFC values and gene symbols (Figure 5). All of those
genes were either upregulated or downregulated in the cells culture intervals compared
to controls.
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In order to further investigate the changes within chosen GO BP terms, we measured
the enrichment levels of each selected GO BP term. The enrichment levels were expressed
as z-score and presented as circular visualization (Figure 6).

Furthermore, to better understand the interaction between chosen GO BP terms,
hierarchical clusterization of the gene expression profiles was performed. The dendrogram
was combined with fold change (FC) of studied gene expressions and gene assignment
to studied terms (Figure 7). All genes belong to the ontologies of interest have been
grouped based on their patterns of expression, as well as their mutual associations inside
the ontological terms.

Created Venn diagram, to compare expression profile of two different compartments
of the heart, displays the information about the gene expression patterns, namely we can
distinguish commonly upregulated and commonly downregulated genes in RA and RAA
(Figure 8). As can be seen on the figure, the direction of changes is the same for both
analyzed groups. The middle part of the diagram shows common genes in top 50 group
both for RA and RAA. In contrast, the gene names listed in the lateral parts of the diagram
indicate the DEGs specific only to RAA (left side) and RA (right side of the diagram) in the
compared most altered 50 genes group. As can be seen, all the most altered genes listed in
the Supplementary Tables S1–S6 and subjected to quantification validation by RT-qPCR are
in the center of the diagram.
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Figure 6. The circle plot showing the differently expressed genes and z-score of the GO BP terms of interest. The outer circle
shows a scatter plot for each term of the fold change of the assigned genes. The inner circle shows the z-score of each GO
BP term. The width of each bar corresponds to the number of genes within a GO BP term, and the color corresponds to
the z-score.
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The most significantly upregulated and downregulated genes belonging to GO BP
terms of interest, presented on the Venn diagram and in Supplemental Tables S1–S6, were
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used to validate results obtained during microarray analysis. The RT-qPCR method was
applied in order to quantitatively validate the microarray results. The results of RT-qPCR
analysis were shown as a bar chart (Figure 9). The left side of the figure shows the results
obtained in the microarray analysis, while the right side shows the quantitative validation.
Importantly, the direction of change in all 17 genes has been quantified. None of the genes
showed any other change in expression than indicated by the results of the expression
microarrays. However, the scale of differences in transcript levels varied between both
methods analyzed. The most upregulated genes, in RT-qPCR, from the examined DEGs
included, among others, SFRP2-secreted frizzled related protein 2, PRRX1-paired related
homeobox 1 and CCL2-C–C chemokine ligand 2. The strongest downregulated genes
were ACTN2-actinin alpha 2, NEBL-nebulette and, mainly in RA, TNNC1-troponin C
type 1 (slow).
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transcript levels obtained from cells before cultivation. All of the presented sample means were deemed to be statistically
significant (p < 0.05).

A pathway analysis was also performed for the differentially expressed genes based
on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. This analysis al-
lowed us to determine the biological pathways, and for the present study “signaling
path-ways regulating pluripotency of stem cells” and “hypertrophic cardiomyopathy” was
chosen. Presented involve a significant enrichment of differentially expressed genes in the
examined group (p < 0.05). Differentially expressed genes belonging to these pathways
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were assigned to a predetermined color scale, which was subsequently imposed on the
gene/protein symbol field (Figures 10 and 11).
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3. Discussion

A properly functioning vascular network is essential for delivery of oxygen, nutrients
and messenger molecules such as hormones and growth factors, as well as removal of
carbon dioxide and metabolic products from different tissues. The vascular network is
crucial for the functioning of the entire organism, however vascularization seems to play
a particularly important role in the heart. The heart is essential for life, but it has limited
regenerative capacity in the adult and decreased extent of microvasculature can have
serious and irreversible consequences like heart failure (HF). Given these factors, the whole
complex process of neovascularization [14] taking place within the heart tissue is so crucial
to understanding. Moreover, because the myocardium itself could serve as a source of
treatment, via resident cardiac progenitor cells [15] therefore generation of new blood
vessels for delivery oxygen and nutrients to newly created cells is necessary for proper
cardiac function. Regardless of the source of the cells involved in the development of new
coronary vessels, regulation at the molecular level is a key aspect for the effectiveness
of vascularization.

Porcine hearts were chosen for this study because easy access to them and more
importantly due to many similarities to the human beings. Although significant insight
into the molecular and cellular basis has come from small animal models, significant
differences exist with regard to cardiovascular characteristics between these models and
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humans. Therefore, large animal models are essential to develop the discoveries from
murine models into clinical therapies and interventions [16]. Moreover, it was shown
the porcine heart borne a close resemblance to the human heart in terms of its coronary
circulation and hemodynamic similarities and offered ease of implementation of methods
and devices from human healthcare facilities [17].

In cells isolated from both the right atrial appendage (RAA) and right atrial (RA) wall
during long-term culture both exhibited increased expression of SFRP2 gene in all analyzed
time periods. Secreted frizzled-related proteins (sFRP) are a family of glycoproteins that
can bind to Wnt ligands or frizzled (FzD) receptors, thus the SFRP family may be involved
in the regulation of Wnt signaling via both the canonical and noncanonical pathways [18].
The Wnt signaling pathway plays important roles in many organ development, including
the heart, where it plays a pivotal role in the formation and subsequent expansion of
cardiac progenitor cells in the mesoderm [19]. Moreover, both the β-catenin-dependent
and β-catenin independent signaling pathways are implicated in angiogenesis in a variety
of organs in both normal and pathological conditions [20,21]. Given these facts, Wnt
signaling regulation, e.g., by sFRP family, seems to be extremely important in the process
of creating new blood vessels. Among the whole group, sFRP2 is considered to be the most
potent [22]. Secreted frizzled-related proteins were initially described to be antagonists of
Wnt signaling, by sequestration of soluble Wnt ligands, which prevents their binding to
FzD receptors [23–25]. However, recent studies showed that sFRP have a more complex
relationship with the Wnt pathway. Many researchers have proposed an additional ag-
onistic effect on Wnt signaling by direct binding to FzD receptors or by influencing the
Wnt activating effect of soluble Wnt ligands. Skah et al. employing sFRP2−/−mice have
shown that the antagonistic or agonistic effect of SFRP2 might depend on the expression
level [26]. Additionally, further studies provided by Xavier et al. confirmed the hypoth-
esis that sFRP can either promote or suppress Wnt/β-catenin signaling, depending on
its concentration and the cellular context [27]. Other investigators proved, that exposure
to sFRP1 activated the non-canonical Wnt signaling pathways enhancing the velocity of
endothelial cell spreading on laminin and collagen, and finally a pro-angiogenic response
was observed [28]. Courtwright et al., employing a chick chorioallantoic membrane (CAM)
assay, were the first to discovered a pro-angiogenic effect of sFRP2 [29]. Moreover, authors
indicated that sFRP2 exerts pro-angiogenic effects through activation of non-canonical
Wnt/Ca2+ pathways, without affecting the canonical Wnt pathway. Furthermore, the
upregulation of sFRP2 in the tumor vasculature indicate that this stimulator can exert an
angiogenic effect in a wide variety of human tumors [30–32]. Other research found that
sFRP2 an important mechanism mediating ischemic cardio protection through induction
angiogenesis/arteriogenesis [33].

It is difficult to clearly determine the effect of sFRP2 on the Wnt pathway and how
it will translate into the formation of new vessels in the heart. Nevertheless, numerous
research results suggest a pro-angiogenic effect of sFRP2 overexpression, which may
suggest that in the conditions of in vitro culture, the increasing mRNA level of the SFRP2
gene will be a factor promoting the angiogenesis process.

A significant increase in the mRNA levels of paired related homeobox 1 (PRRX1), a
member of the paired homeobox family, and functions as a transcription co-activator [34].
PRRX1 is the epithelial-mesenchymal transition (EMT) inducer involved in the organo-
genesis of many tissues during developmental processes, additionally EMT is associated
with dissemination steps in the processes of cancer growth that enables carcinoma cells
to lose epithelial properties, gain invasive capacity and acquire stem cell properties [35].
Moreover, expression of PRRX1 is stable in different tissues in the human body, including
heart [36]. The role of this transcription factor in creation of new vessels was demonstrated
in Ihida-Stansbury et al.’s study, where authors using Prrx1−/− showed the essential role
of PRRX1 for the development and integrity of healthy lung blood vessels [37], whereas
other investigators described a correlation between PRRX1 expression and angiogenesis in
non-small cell lung cancer (NSCLC), and explored this factor as marker of tumor angiogen-
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esis [38]. Higuchi et al. have shown a link between vasculogenesis during rat embryonic
pituitary development and the presence of PRRX1-positive mesenchymal stem/progenitor
cells [39]. According with results obtained by Wang et al. PRRX1 seems to be promising
biomarker in clear cell renal cell carcinoma as an enhancer of new vessels creation [40].

It is well established, that inflammation and angiogenesis are interdependent and
highly linked processes in ischemia and tumor formation. A significant upregulation of
transcript level of few factors involved in inflammatory process appears to be important.
Secretion of C–C chemokine ligand 2 (CCL2) results in the attraction of blood monocytes
into sites of inflammatory responses and tumors [41]. This main activity of the member of
the CC-chemokine group (characterized by the presence at the N-terminal two cysteine
residues adjacent to each other), makes CCL2 an important component involved in wound
healing promotion, also by regulation of angiogenesis [42]. Bonapace et al. demonstrated,
that anti-CCL2 treatment decreased breast cancer metastases in mice, but interruption of
anti-CCL2 treatment precipitated an unexpected influx of monocytes into the metastatic
site and overshooting IL-6 levels within the metastatic microenvironment. This led to local
enhancement of angiogenesis, metastatic disease and a fatal outcome [43]. CCL2 expression
with high expression of IL-6 and subsequent induction of VEGF-A in monocytes and, re-
sults in increased local vascular density. Upregulation of mRNA levels of IL6 in both RAA
(30D/0H) and RA (15D/0H and 30D/0H) appear to be important. Accumulating evidence
establishes IL-6 as a key player in supporting angiogenesis, where by inflammation may
help drive tumor formation, growth, and metastasis [44]. Some studies have also shown,
that IL6 signaling can lead to STAT3 activation, further by promoting expression of vascular
endothelial growth factor (VEGF) and fibroblast growth factor (bFGF) by tumor cells, sup-
porting the rapid vascularization within tumor tissues [45–47]. The current transcriptomic
screening studies show increased mRNA levels of ROBO1. Roundabout receptors (ROBO)
belong to the immunoglobulin (Ig) superfamily of cell adhesion molecules (CAMs) [48].
ROBO together with their Slit ligands form one of the most crucial ligand-receptor pairings
among the axon guidance molecules. Rama et al. by creation of conditional knockout mice
deficient in various Slit and Robo proteins have found that Slit2 potently and selectively
promoted angiogenesis via Robo1 and Robo2 in mouse postnatal retina and in a model
of ocular neovascular disease [49]. Other investigators on the model of hepatocellular
carcinoma (HCC) demonstrated, that Robo1 expression promoted tumor angiogenesis
and may be considered as an alternative target for anti-angiogenesis treatment [50]. After
7 days (7D/0H) of culturing the cells obtained from the RAA, increase transcript expres-
sion of the transmembrane protein, which can interact with the intracellular domain of
ROBO1, namely FLRT3. The fibronectin leucine rich transmembrane protein (FLRT) family
may function in cell adhesion and/or receptor signaling [51]. Jauhiainen et al. described
the role of FLRT3 in the regulation of angiogenesis and vascular patterning via modula-
tion the VEGF-signaling [52]. Moreover, gene-targeting experiments in mice demonstrate
demonstrated that Flrt2 is required in the epicardium to promote heart morphogenesis [53].

High transcript levels were observed in some genes, but significantly lower mRNA lev-
els for many genes coding mainly structural proteins, such as like myosin (MYH7, MYL3),
actin (ACTC1), actinin (ACTN2) or troponin (TNNC1) were observed. The expression profile
at the molecular level appears to promote blood vessel formation when we look at factors
positively regulating neovascularization (upregulation of SFRP2, PRRX1 or cytokines).
However, in the case of genes encoding structural proteins, there is a noticeable need to
further optimize the culture conditions, because without specific “building blocks” that
build vessels, the expression of transcription factors alone that stimulate vascularization
will be insufficient for the formation of new vessels.

4. Materials and Methods
4.1. Animals

Porcine (Sus scrofa f. domestica) hearts, delivered on ice in the shortest possible time
after slaughter, from a local slaughterhouse were the source of cells for in vitro culture. For



Int. J. Mol. Sci. 2021, 22, 8794 14 of 19

our study, a pubertal crossbred Polish Landrace (PBZ ×WBP) gilts, bred on commercial
local farm were used. They had a mean age of 155 days (range 140–170 days) and the mean
weight were 100 kg (95–120 kg). All the animals were housed under identical conditions
and fed the same forage.

4.2. Tissue Collection from Porcine Hearts

The hearts were excised within 25 min of slaughter. The heart, located in the peri-
cardium, is situated in the middle mediastinum on the ventral side, between the 3rd and
6th rib. A slightly larger portion is located on the left side of the body (60%). The base of
the heart is directed dorsally and cranially while the apex of the heart is directed ventrally,
caudally and slightly to the left. In this position, the heart is held in place by the cranial
vena cava, the caudal vena cava, the aorta and the sternopericardial ligaments. After cut-
ting the sternum and the diaphragm, the heart was removed along with the lungs, trachea,
esophagus and tongue. The hearts in pericardium were then severed and transported to
the laboratory within 30 min. Each time the delivered hearts will be assessed for their
suitability for downstream analyzes. Hearts were disqualified from further study by obser-
vations of macroscopic injury at the slaughterhouse; contaminated during transport and
preliminary preparation; with evident signs of inflammation (connective tissue adhesions)
or ischemia (patchy necrosis, thinning of any segment of the ventricular myocardium).
Then, the hearts were removed from the pericardial sacs. After identification of left and
right side of porcine heart, right atrial appendage and piece of its free wall (ca. 1 cm× 1 cm)
of whole thickness were extracted. The extracted fragments were manually prepared with
surgical instruments to remove the visceral lamina of the serous pericardium (epicardium).
As the research material is usually disposed of after slaughter, being a remnant by-product,
no ethical committee approval is needed for the project.

4.3. Enzymatic Dissociation and Primary Cell Culture

The right atrial appendage (right auricle) and right atrium were extracted from the
delivered material, washed in ice-cold PBS solution, to remove the blood and, in the next
stage, after the two-step mincing by sterilized scissors in Petri dishes, the tissue undergoes
enzymatic digestion in DMEM + collagenase type II (2 mg/mL) solution conducted in
37 ◦C for 40 min with gentle mixing. After the end of digestion, the remaining tissue
will be separated with nylon strainers of 70 µm pore size. The filtrate (containing cells of
interest) was centrifuged (5 min, 200× g, RT), in order to remove the remaining collagenase
from the cell environment. Cell pellet obtained was washed with the PBS buffer and then
initially placed on 25 mL cultures bottles in culture medium (DMEM/F12, Sigma-Aldrich,
Saint Louis, MO, USA), 20% FBS (Foetal Bovine Serum, Gibco, Thermo-Fischer Scientific,
Waltham, MA, USA), 10% HS (Horse Serum, Gibco, Thermo-Fischer Scientific, Waltham,
MA, USA), EGF (20 ng/mL; Sigma-Aldrich, Saint Louis, MO, USA), bFGF (10 ng/mL;
Sigma-Aldrich, Saint Louis, MO, USA) 1% P/S, and preincubated for 4 h in 37 ◦C, 5%
CO2. This stage aims to deplete the fibroblasts, which show much higher adhesion affinity.
After this time, the supernatant (including nonadherent cardiac muscle cells) was pelleted
by centrifugation (5 min, 200× g, RT) and transferred to the new 25 mL culture bottle,
previously coated with 0.1% gelatin solution. The cells were cultured in DMEM/F12
complemented with 20% FBS, 10% HS, EGF (20 ng/mL), LIF (10 ng/mL) and 1% P/S at
37 ◦C in a humidified atmosphere of 5% CO2. The culture medium was changed every
three days.

4.4. Morphological Observation of Cells during Long-Term Primary In Vitro Culture

Using inverted light microscope with relief contrast (IX73, Olympus, Tokyo, Japan)
daily observation of cultured cells was performed. In present study, the images obtained
during the cultivation period corresponding to the time intervals used in the molecular
analysis are shown (7D, 15D, and 30D).
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4.5. RNA Extraction and Reverse Transcription

Total RNA from all of the samples (both before and after in vitro cultivation) was
isolated according to the method published by Chomczyński and Sacchi [54] employing
TRI reagent (Sigma-Aldrich; Merck KGaA, Saint Louis, MO, USA). By using successively
chloroform, 2-propanol and 75% ethanol during the procedure, we obtained RNA. The
RNA samples were re-suspended in 20–40 µL of RNase-free water and stored at −80 ◦C.
RNA integrity was determined by denaturing agarose gel (2%) electrophoresis, and then,
the RNA was quantified by measuring the optical density (OD) at 260 nm (NanoDrop
spectrophotometer; Thermo Scientific, Inc., Waltham, MA, USA). RNA samples were
reverse-transcribed into cDNA using RT2 First Strand kit (Qiagen, Hilden, Germany),
according to the manufacturer’s protocol. Then, 500 ng of an RNA sample was used for
reverse transcription.

4.6. Microarray Expression Study and Data Analysis

In the first step, total RNA (50 ng) from each pooled sample (for all individual time
intervals using during analyzes we pooled RNA from 4 different cultures obtained from
other hearts) was subjected to two rounds of sense cDNA amplification (Ambion® WT
Expression Kit). The synthesis of cRNA was performed by in vitro transcription (16 h,
40 ◦C). Then, cRNA was purified and re-transcribed into cDNA. Subsequently, cDNA
samples were used for biotin labelling and fragmentation using Affymetrix GeneChip®

WT Terminal Labeling and Hybridization kit (Affymetrix, Santa Clara, CA, USA). Next, the
biotin-labelled samples were loaded onto and hybridized to the Affymetrix® Porcine Gene
1.1 ST Array Strip. Hybridization was conducted at 48 ◦C for 20 h, in an AccuBlock™ Digital
Dry Bath (Labnet International, Inc. NY, USA) hybridization oven. Microarrays were then
washed and stained, according to technical protocol, using an Affymetrix GeneAtlas™
Fluidics Station (Affymetrix, Santa Clara, CA, USA). The strips were scanned using an
Affymetrix GeneAtlas™ Imaging Station (Affymetrix, Santa Clara, CA, USA). The scans of
the microarrays were saved on hard drives as *.CEL files for downstream data analysis.

Quality control (QC) studies were performed using the Affymetrix GeneAtlas™
(Affymetrix, Santa Clara, CA, USA) software, according to the manufacturer’s standards.
The generated *.CEL files were subjected to further analysis performed using the R sta-
tistical language and Bioconductor package with the relevant Bioconductor libraries. To
correct background, normalize and summarize results, we used the Robust Multiarray
Averaging (RMA) algorithm. Assigned biological annotations were obtained from the
“pd.porgene.1.1.st” library, employed for the mapping of normalized gene expression
values with their symbols, gene names, and Entrez IDs, allowing us to generate a complex
gene data table. To determine the statistical significance of the analyzed genes, moderated
t-statistics from the empirical Bayes method were performed. The obtained p-values were
corrected for multiple comparisons using Benjamini and Hochberg’s false discovery rate
and described as adjusted p–values. The selection of significantly altered genes was based
on a p-value beneath 0.05 and expression higher than two-fold. The differentially expressed
gene list (separated for up and down-regulated genes) was uploaded to the DAVID soft-
ware (Database for Annotation, Visualization and Integrated Discovery). To retrieve gene
ontology biological process (GO BP) terms containing differently expressed transcripts, the
DAVID software was employed. The selection of significantly altered GO Term was based
on a p-value (Benajamini) <0.05 and volume of at least 5 genes.

It is important to compare the expression profile in RA and RAA to understand the
molecular basis for new vessel formation. A Venn diagram that was used to detect relations
between lists of differentially expressed genes in both heart’s compartments and to explore
the intersection of genes of analyzed terms from the functional analysis. In order to create
the diagram, the 50 most altered genes for both heart compartments were analyzed.
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4.7. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) Analysis

Determination of the transcript levels for analyzed genes was conducted using a
Light Cycler® 96 Real-Time PCR System, Roche Diagnostics GmbH (Mannheim, Germany)
with SYBR Green as a detection dye. Levels of analyzed transcripts were standardized
in each sample, in reference to hypoxanthine 1 phosphoribosyltransferase (HPRT1) and
β-actin (ACTB) as an internal control. For each of the amplification reactions, 1 µL of
cDNA solution was mixed with 5 µL of mastermix (RT2 SYBR Green FAST Mastermix,
Qiagen), 3 µL of PCR-grade water and 1 µL of specific starter pair (10 µM). We have
used the Primer3 software for primer design (Table 1). The exon–exon design method
was used as an additional method to avoid the possible amplification of genomic DNA
fragments. The primers were also designed using the sequence of several transcript variants
of genes of interest available in the Ensembl database. For target cDNA quantification, we
have performed relative quantification with the 2−∆∆Cq method. In order to confirm the
specificity of the results and size of amplified products, 2% agarose gel electrophoresis of
the products was performed.

Table 1. Primers. Oligonucleotide sequences of primers used for RT-qPCR analysis.

Gene Primer Sequence (5′–3′) Product Size (bp)

SFRP2
F GGCCTCAGGAATGGATAGCT

167
R CCCCAAACATCACACCCAAG

DDAH1
F AGCGCGAAGGTATACGAGAA

238
R GAAGCGATTAGACTTGGCGG

LOX
F GTACAACCTGAGATGCGCTG

208
R GCTGAATTCGTCCATGCTGT

FLRT3
F TCGCAACAATCCCTGGTACT

216
R ACTGTGTTGGGGATCGAAGT

PRRX1
F GGACACACTACCCAGATGCT

155
R TTTGAGGAGGGAAGCGTTCT

ROBO1
F GATGTGATTGCAGACCGACC

222
R AGTGTCACCCAGCTTAGCAT

IL6
F ACCGGTCTTGTGGAGTTTCA

170
R GCATTTGTGGTGGGGTTAGG

ACTA2
F CCGAGATCTCACCGACTACC

178
R CTCGTAGCTCTTCTCCAGGG

CCL2
F CCACACCGAAGCTTGAATCC

206
R CTTGCTGCTGGTGACTCTTC

TNNC1
F GAGCTGGGCAAAGTGATGAG

193
R ACATGCGGAAGAGGTCAGAA

MYH7
F CCAACACCAACCTGTCCAAG

173
R CAGGATGGGGCAGATCAAGA

NEBL
F GCACGATCCAGTTTCAGGTC

163
R GGCGTTGTCTTTATGGTGCA

MYL3
F TCTTCGACAAGGAGGGCAAT

191
R TTTCCTGGGGTGAGAGGTTC
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Table 1. Cont.

Gene Primer Sequence (5′–3′) Product Size (bp)

ACTC1
F GTCATGGTGGGTATGGGTCA

151
R CGTTGTAGAAGGTGTGGTGC

NPPA
F CAGCAGCCTCTATCCTCTCC

153
R CCTGTATCCCTGGCAGTTCT

BMP10
F CCTGGGTCTGGGTGGTTATT

181
R TGGGGCAATGATCCAAGAGT

ACTN2
F TCGGGGCTGAAGAGATTGTT

189
R AGCTGGTGTGGAAGTTCTGA

5. Conclusions

The study evaluated cardiac muscle cells derived from the right atrial appendage
and right atrium. The salient of the study was that in vitro condition significantly altered
mRNA expression levels in evaluated cells, suggesting that the employed culture conditions
may create a favorable environment for neovascularization. The expression profile of
factors positively regulating neovascularization such as, SFRP2, PRRX1 or cytokines were
upregulated, and ACTN2, ACTC1 or MYH7 were down regulated. Nevertheless, further
optimalization of the culture conditions is still needed, because transcript levels of genes
coding pivotal structural proteins were significantly lower.
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