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ABSTRACT

Large portions of higher eukaryotic proteomes are
intrinsically disordered, and abundant evidence
suggests that these unstructured regions of
proteins are rich in regulatory interaction interfaces.
A major class of disordered interaction interfaces
are the compact and degenerate modules known
as short linear motifs (SLiMs). As a result of the
difficulties associated with the experimental identi-
fication and validation of SLiMs, our understanding
of these modules is limited, advocating the use of
computational methods to focus experimental dis-
covery. This article evaluates the use of evolutionary
conservation as a discriminatory technique for motif
discovery. A statistical framework is introduced to
assess the significance of relatively conserved
residues, quantifying the likelihood a residue will
have a particular level of conservation given the
conservation of the surrounding residues. The
framework is expanded to assess the significance
of groupings of conserved residues, a metric that
forms the basis of SLiMPrints (short linear motif
fingerprints), a de novo motif discovery tool.
SLiMPrints identifies relatively overconstrained
proximal groupings of residues within intrinsically
disordered regions, indicative of putatively func-
tional motifs. Finally, the human proteome is
analysed to create a set of highly conserved
putative motif instances, including a novel site on
translation initiation factor eIF2A that may regulate
translation through binding of eIF4E.

INTRODUCTION

During the past decade, there has been increasing focus on
the role of intrinsically disordered polypeptide regions in
protein functionality (1–4), resulting in a more complete
understanding of the complex wiring of the interactome,
and revealing an unexpected level of complexity and
cooperativity (5). Short linear motifs (SLiMs) in particular
are highly overrepresented in these regions, playing a vital
regulatory role by acting as targeting signals, modification
sites and ligand binding modules (6–8). SLiMs have ex-
tremely compact protein interaction interfaces [generally
encoded by less than four major affinity and specificity
determining residues within a stretch of 2–10 residues
(9)], and this small footprint promotes high functional
density. This property facilitates competitive and coopera-
tive binding, allowing complex switches to evolve from a
multiplicity of SLiMs, which can be regulated further by
the modification state of the protein and local abundance
of interaction partners (10–13). The limited size of the
interfaces results in micromolar binding affinity for
SLiM interactions, enabling the transient and reversible
interactions necessary for many dynamic cellular binding
events, such as those required for the rapid transmission of
intracellular signals (14). Furthermore, SLiMs have an
inherent evolutionary plasticity, allowing novel instances
to evolve de novo, adding functionality and regulatory
constraints to proteins, thus rewiring pathways, a property
central to the evolvability of complex systems (15). This
evolutionary mechanism promotes redundancy and intro-
duces robustness (16); therefore, motifs often possess weak
phenotypes so that malfunctioning motifs are rarely seen
to be the primary cause of disease, although exceptions
exist (17–19). However, this evolutionary plasticity also
has drawbacks, as it renders motifs highly susceptible to
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mimicry by rapidly evolving pathogens that use them to
hijack cellular processes (17,20).

The relatively weak phenotypic effects of most SLiM
mutations can lead to difficulties in experimental discov-
ery. Therefore, multiple computational approaches have
been proposed to discover motifs in biological data, pin-
pointing sites likely to be functional SLiMs (21). The
eukaryotic linear motif (ELM) (22) and Minimotif (8)
servers identify regions of a protein matching regular
expressions of known functional SLiMs, filtering
matches on discriminatory attributes based on analysis
of curated experimentally validated motifs; SLiMSearch
(23) performs a similar task for user-defined SLiMs.
Tools such as SLiMFinder (24,25) and Dilimot (26) use
the same attributes to attempt novel SLiM discovery by
identifying overrepresented convergently evolved motifs in
interaction, localization or gene ontology data. More
recently, de novo discovery methods acting on protein
primary sequence, utilizing features of a motif that
contrast with a disordered context as a pointer to func-
tionality, have been suggested. For example, a-MoRF (27)
uses a machine learning approach to identify stretches
with the potential to adopt a-helices within regions of dis-
order; ANCHOR (28) applies biophysical principles to
identify stretches of protein sequences that may fold
when given stabilizing energy contributed by a globular
partner; SLiMPred (29) uses machine learning to identify
characteristic sequence features derived from known
SLiM occurrences.

Because of the lack of constraints associated with the
conservation of a stable globular fold, SLiMs are under
weaker evolutionary constraints than structured domains.
However, these short intrinsically disordered modules are
often under strong functional constraint; therefore, func-
tionally important residues within these motifs are more
conserved than adjacent non-functional residues (9,30).
As a post-processing step, conservation is often used for
classification in motif discovery methods. Classifying
putative SLiMs based on conservation has proved to be a
good discriminator of motif functionality (31,32). Recent
motif surveys have used these discriminators to classify
motifs and discover novel instances of SH3-domain binding
and KEN box motifs (33,34). Furthermore, pre-processing
by protein masking based on evolutionary constraint has
also been shown to increase the ability of discoverymethods
to return previously experimentally validated functional
motifs (30), which has recently been exploited in
proteome-wide prediction of human SLiMs (35).

Homology-based methods revolutionized the discovery
of globular domains resulting in an explosion in the
number of known globular domains (36,37). However,
because of the length and degeneracy of SLiMs, these
methods are unsuitable for motif discovery. Intriguingly,
the human proteome is punctuated by regions of relatively
high conservation against a background of evolutionary
drift in intrinsically disordered stretches of proteins that
are indicative of a functional SLiM (30,35). This func-
tional constraint is often clearly visible in multiple
sequence alignments as an island of conservation in other-
wise rapidly evolving regions, and it is often successfully
used as a pointer by motif biologists attempting to

discover novel motifs (38). However, simply scanning
the alignments by eye is problematic, as we are accus-
tomed to finding patterns, and homing in on what seems
most interesting, but manual scanning is less useful to
guess how unlikely the observed regions are. Recently,
efforts have been made to automate this approach, using
profile–profile comparison to discover shared motifs in
distantly related viral proteins (39) and using hidden
Markov models to computationally identify short
stretches of conserved disordered regions in the yeast
proteome (40). In this article, we tackle the problem of
rapidly and robustly establishing the statistical signifi-
cance of the relative conservation of small clusters of
conserved residues within a disordered region. We also
introduce a de novo motif discovery method, SLiMPrints
(short linear motif fingerprints), to identify putative func-
tional motifs in the primary sequence using these relative
conservation statistics. The SLiMPrints method is applied
to the human proteome to produce a database of highly
conserved motif-like groupings of proximal residues in
disordered regions.

MATERIALS AND METHODS

Islands of conservation in rapidly evolving
disordered regions

Figure 1 shows three functionally important stretches in
Epsin 2 matching the DPW (Asp-Pro-Trp) regular expres-
sion of an AP2 binding motif (ELM entry LIG_
AP2alpha_2) (41). Panel A is more conserved than its
surrounding residues, yet not to such a degree that
would suggest that the motif stands out as being under
strong functional constraint. In contrast, the DPW motif
in panel B permits more confidence in the assumption that
the motif is functional because of conservation in a wide
range of species, despite residing in a region with other-
wise high mutation rates. Finally, the DPW pattern in
panel C occurs within an ENTH domain and is under
structural and functional constraints, as are its neighbour-
ing regions, and the motif cannot be discriminated from
surrounding residues based on conservation. In this
article, we aim to statistically quantify the conservation
of residues and motifs compared with their flanking
regions and investigate discriminatory ability of these
statistics to identify islands of conservation (similar to
Figure 1, panel B) for ranking and discovery of putative
SLiM instances.

Benchmarking and human proteome data sets

The benchmarking data set for the analysis consists of a set
of SLiM instances from the ELM database (March 2012;
Supplementary Table S1) (22), a gold standard curated
collection of experimentally validated motifs. The data
set contains 1885 motif instances in 1234 proteins. The
residues of these 1234 proteins were defined as ‘ELM
residues’ for a defined position (fixed or degenerate, but
not wild card) in an annotated ELM occurrence and as
‘non-ELM residues’ for the remaining residues. The
human proteome data set consists of 20 253 reviewed
proteins from the UniProt database (November 2011) (42).
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Orthologue alignment construction

Multiple sequence alignments of least divergent
orthologues were constructed for each protein in the
benchmarking data sets using the GOPHER algorithm
(43) against a database of EnsEMBL metazoan (plus
Saccharomyces cerevisiae) genomes (release 59) (44). To
maximize proteome coverage while minimizing redun-
dancy, a data set consisting of one protein sequence per
protein-coding gene was constructed as previously
described (35). Homologues for each protein sequence
were identified using a BLAST search (45), and
orthologues were predicted using default GOPHER par-
ameters. Multiple sequence alignments for sets of
orthologues were generated using MUSCLE (46). As a
result of their complex (47) and rapid evolution (48), dis-
ordered regions are notoriously difficult to align (49). As
the quality of the alignment is reflected in the quality of
the conservation score, the orthologue alignments were
processed to remove potential biases. Long branches are
pruned as described by Chica et al. (32), to remove the
contribution to the conservation score of stochastically
aligned residues and low-complexity regions in highly di-
vergent proteins. Only proteins that have residues aligned
to the query sequence, regardless of physicochemical simi-
larity, for >80% of the length of the query sequence are
retained. Alignments with orthologues in <10 metazoan
species after the pruning and filtering steps were not
considered.

Relative local conservation

Simple column based conservation metrics calculate con-
servation scores for a residue solely based on information
from one column, and therefore cannot measure the attri-
butes associated with islands of functional constraint in-
dicative of a putatively functional SLiM. However,
relative local conservation (RLC) (30), a conservation
metric for scoring the constraint on a residue relative to

a window of adjacent residues, allows such regions to be
pinpointed. The RLC scoring scheme provides the basis
for the motif discovery algorithm presented in this article;
hence, it will be described again briefly in the following
section, highlighting the improvements made to the
scheme to allow efficient and accurate prediction of rela-
tively overconstrained residues from protein alignments.

The residue conservation score, Ci, for each column i of
the alignment is calculated. As the method functions in-
dependently of the scoring scheme, in theory, any
conservation-scoring scheme can be used, provided a
model can be proposed for the background distribution
of residues under no constraint. In this analysis, we use CS
(32), a tree-weighted information content-based column
score. The score is calculated based on identity, as the
consideration of conservative substitutions markedly
reduced the statistical power of the method (data not
shown). The calculation of a relative conservation score
requires a background conservation level for comparison.
In this analysis, the background conservation level is
calculated as the mean conservation of the flanking
residues of the residue of interest. Considering only the
constraints imposed on local residues negates the bias
introduced by the disparity in conservation levels
between globular and intrinsically disordered regions
and the obvious effect this disparity, in association with
varying proportions of globularity in a protein, would
have on the mean conservation of a protein. A mean back-
ground conservation score is calculated across a window
spanning N residues on either side of the residue i,
raw residue conservation scores of each residue in a
protein are converted to an RLC score by subtracting
the mean background conservation across the appropri-
ate window, and the RLC score is normalized by dividing
by the standard deviation of conservation scores across
the window (Equation 1). For this study, N was 30,
yielding a window spanning from 30 residues upstream

Figure 1. (A–C) are sections of human Epsin 2 containing functionally important residues matching the regular expression for the AP2-binding motif
DPW aligned against a selection of vertebrate Epsin 2 orthologues. Pairs of lower case letters denote amino acids flanking a region inserted compared
with human Epsin 2 and the number specifies the length of the insertion. The alignment is coloured using the Clustal colouring scheme. (A and B)
are known functional AP2-binding motifs and (C) is part of the N-Terminal ENTH domain. Lower panel: RLC scores for the section of the
alignment (see ‘Materials and Methods’ section for a description of the RLC scoring scheme).
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to 30 residues downstream of each amino acid.

RLCi ¼

ci �
PiþN
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Calculation of the RLC score for residue i in a protein
sequence. N is the number of residues either side of
residue i, the window for the background conservation
comparison. wij is the weight applied to the residue j
when calculating the RLC for residue i. �i is the
standard deviation of the conservation values (C)
across the same window of residues used to generate
the mean background local conservation score. When
no weighting is used, or all residues have the same
disorder score, the residue weighting (see Equation 2)
wij becomes 1.

The RLC scoring scheme is weighted to offset the effect
of differences in conservation between intrinsically dis-
ordered and globular regions within a window. This bias
can be particularly strong at order/disorder boundaries, as
these regions are often fuzzily defined by disorder pre-
dictors, which can result in strong structural constraints
(i.e. those important for correct folding of a globular
domain), being mistaken for constraints on specificity and
affinity determining residues within interaction interfaces in
non-globular regions. A continuous weighted scheme
allows residues within the window with a similar tendency
to disorder to the residue being considered to contribute
more strongly to the mean background conservation score
of that residue. The scheme is also asymmetric, lessening
the contribution of residues of non-similar disorder state
in a manner that residues with a higher tendency to
order (those more likely to be under structural constraints
than the residue of interest) influence the RLC score
less than residues with a higher tendency to disorder
(Equation 2).

wij ¼ 1� di � dj
�� ��� �a

if
di�dj!a¼1

di<dj!a¼2 ð2Þ

where wij is the weight applied to the residue j when
calculating the RLC for residue i. a is a value that
controls the strictness of the weighting. dx is the IUPred
disorder score at residue x.

Masking of motif deficient regions

Large regions of protein space are deficient in motifs, and
masking these regions is a common technique to improve
the statistical power of motif discovery methods (26,30,32).
For this analysis, Pfam annotated domains (37), trans-
membrane regions and extracellular regions from
UniProt (42) and residues with an IUPred score <0.3
(50) are masked before the motif discovery step of the
method. Several difficult-to-handle regions observed to
introduce a bias to the conservation score were not con-
sidered and removed from the analysis: regions with homo-
geneous conservation (those with a CS standard deviation
for a window <0.01), ‘gappy’ weakly aligned regions
(>25% of the positions of a column of the alignment,

after long branch pruning, are gaps), ‘short’ unmasked
stretches of the protein <10 amino acids in length.

Probability of relative local conservation scores

Benchmarking a probabilistic framework to calculate
the likelihood that a residue will occur with a
given RLC by chance requires a background data set
that models the distribution of RLC scores for residues
under no functional constraint. For this analysis, we
followed the simplified hypothesis that residues in
disordered regions [as defined by IUPred score >0.3
(50)], but not in annotated ELM instances, are under
no functional constraint. The incomplete coverage of
ELM means that many functional residues in disordered
regions will be annotated as background non-ELM
residues for this analysis. Furthermore, residues flanking
annotated motifs contributing to the motif binding, but
not directly in the interface, may also be under functional
constraint and still defined as non-ELM residues.
However, the strong enrichment for functional residues
in the ELM residues set still makes this a valid bench-
marking exercise. RLC scores were calculated for
unmasked ELM residues and non-ELM residues in the
ELM benchmarking data set. The mean RLC of
non-ELM residues (280 994) is �0.06, which is close
to the expected mean of 0. As expected for a stochas-
tically occurring RLC distribution, approximately half
of the background residues (46.9% in the ELM bench-
marking data set, 49.1% in the human proteome data
set) have RLC scores >0. Conversely, the unmasked
ELM residues (3728 in 1002 ELM) are strongly enriched
for positive RLC scores (78.5% of these residues have
RLC >0, and the mean RLC score of these residues
is 0.78).
The distribution of RLC scores for unmasked

non-ELM residues in the benchmarking data set can be
roughly approximated by a Gaussian distribution with a
mean 0 and standard deviation, s, of 1 (Figure 2A). There
is a slight shift towards negative values, this is likely to be
because of the presence of highly conserved ELM in-
stances that raise the background conservation score
(and therefore lower the RLC scores) of nearby
non-ELM residues. The scoring scheme assumes that the
residues in the background data set are under no con-
straint, whereas the ELM benchmarking data set is obvi-
ously enriched for constrained residues. This is supported
by the observation that background distribution for
human proteome data set shows a much weaker bias.
Assuming a Gaussian distribution for RLC values
allows the probability of a given RLC value to be
calculated simply using the Gaussian cumulative distribu-
tion function (Equation 3). Overall, the heuristic approach
provides a satisfactory approximation for the probability
of a disordered residue occurring with a given RLC or
greater by chance, as is illustrated by the similarity of
pRLC to a uniform distribution (a true statistical P-value
should be uniformly distributed) for the non-ELM
residues (Figure 2B). However, we would stress that
these P-values are dependent on a number of model
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assumptions, and should be interpreted accordingly with
some caution.

pRLCi
¼

1

2
1+

2ffiffiffi
�
p

Z RLCiffiffi
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0

e�t
2

dt

 !
ð3Þ

Using the heuristic assumption of normality allows the
probability of a residue occurring with a given RLC or
more, pRLC, from a derivation of the Gaussian cumulative
distribution function.

Motif discovery hypothesis

Given the simplified hypothesis that intrinsic disorder is
under no evolutionary constraint, adjacent residues can be
considered to be evolving independently; therefore,
residues with stochastically high-RLC scores should be
spread out randomly throughout the disordered regions
of a protein. However, functional motif modules within
disordered regions, because of their linear nature and
functional importance, should be small proximal
groupings of relatively overconstrained residues (9). Iden-
tification of such groupings would allow putatively func-
tional motifs to be discovered. We call such groupings
‘SLiMPrints’, and the SLiMPrints prediction method is
described later in the text.

Motif building

Given the maximum allowable number of fixed positions,
l, in a returned motif and the maximum length of wild card
(any residue) ‘gaps’ allowed between fixed positions g, a
motif search space, M, can be defined based on the attri-
butes of known functional motifs (for this analysis l=5
and g=2). Restricting the search space to proximal
residues minimizes the likelihood of randomly occurring
high-scoring groups of residues; therefore, maximizes the
probability of discovering a functional motif against a
background of randomly constrained residues. A simple
motif-building algorithm (Figure 3) can be used to search
for motifs that are compatible with the motif search space.
The initial step takes all residues with an RLC above c, a
conservation cut-off (default c� 0), to define the residue
search space and initial motif search space, S and M1

(motif search space of length 1), respectively. For each

motif length i (up to the maximum length l), the motif
space Mi is established by extending the motif search
space Mi-1. Each motif, m, in Mi-1 is taken in turn and
expanded by the addition of each residue, r, (where r 2 S)
for which the offset of r is within the gap length g of either
side of motif m. Only deletions and insertions less than d
(default d=2) residues long within the region of the align-
ment spanned by the motif and matching the motif are
tolerated; no constraint is imposed on such regions not
matching the motif. Motifs with significantly differing
conservation scores for the defined residues (pRLC

variance >0.05), indicative of anchored residues in an
alignment, are discarded.

Motif scoring

Equation 4 introduces a metric to calculate the likelihood
of a group of highly conserved proximal residues. The
relative conservation probability of a motif, pmotif, deter-
mines the probability of each defined residue within
a motif having its given RLC or higher by chance
(Figure 4A). However, pmotif cannot be used to compare
motifs with differing numbers of fixed positions, as longer
motifs generally have lower pmotif scores, and it is not uni-
formly distributed as a true P-value. A significance value,
Sigmotif, representing the probability of a given motif
having that pmotif value or higher by chance, can then be
calculated for the motifs pmotif value using the cumulative
distribution function of the uniform product distribution
(Equation 5). This Sigmotif closely follows a uniform dis-
tribution (Figure 4B) and can be used as a heuristic stat-
istical measure to quantify the likelihood of a grouping of
highly conserved residues in a disordered region.

pmotif ¼
Yn
x¼1

p
RLCx

ð4Þ

where n is the number of defined positions in the motif and
pRLCx is the probability of the x-th residue of the motif
occurring with a given RLC or more.

Sigmotif ¼
ð�1Þnð�lnðpmotifÞÞ

�nlnðpmotifÞ
n
ðn,� lnðpmotifÞÞ

ðn� 1Þ!
ð5Þ

where Sigmotif, the probability of a given motif having that
pmotif value or higher by chance, calculated as the

Figure 2. Comparison of ‘non-ELM residues’ residues (white) against ‘ELM residues’ (grey) from the benchmarking data set from the ELM resource.
(A) RLC value comparison, grey dashed line shows a Gaussian distribution (m=0, s=1). RLC values on x-axis are lower limits of bins of size 0.25.
(B) pRLC value comparison, grey dashed line shows a uniform distribution. pRLC values on x-axis are lower limits of bins of size 0.05.
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cumulative distribution function of the uniform product
distribution, i.e. the distribution of the product of n
uniform distributions. Where n is the number of
non-wild card positions in the motif, pmotif is the relative
conservation probability of a motif (Equation 4) and � is
the incomplete gamma function.

eIF2A–eIF4E binding experiments

For all experiments, HeLa cells were maintained in high-
glucose Dulbecco’s modified Eagle’s medium supple-
mented with Glutamax (Life Technologies) and 10%
fetal bovine serum in standard tissue cultureware at

Figure 3. Schema of the SLiMPrints method.

Figure 4. Comparison of the pmotif and Sigmotif score distributions for ‘non ELM residues’ residues (grey) against ‘ELM residues’ (white). (A) pmotif

score distributions. pmotif values on x-axis are lower limits of bins of size 0.1. (B) Sigmotif score distributions. Sigmotif values on x-axis are lower limits
of bins of size 0.1.
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37�C and in a 5% CO2 atmosphere. Cells were seeded 24 h
before transfection with GeneJuice (Merck) according to
the manufacturer’s protocol and were harvested 48 h after
transfection. Cells were harvested for either
co-immunoprecipitation using the Pierce
Co-Immunoprecipitation kit (Thermo Scientific), or to
make an S10 lysate ready for precipitation with
7-methyl-Guanosine triphosphate (GTP) Sepharose 4B
(GE Healthcare), as per our previous protocol (51).
Antibodies to the FLAG epitope (Clone M2, affinity
purified) and to eIF2A were obtained from Sigma-Aldrich
and Bethyl Laboratories, respectively. The eIF4E
antibody was a kind gift from Prof. Simon Morley
(University of Sussex, UK).
A plasmid containing a complementary DNA IMAGE

clone of eIF2A corresponding to GenBank accession
BC011885 was obtained from Open Biosystems. The
primers eIF2A_CDS_F (GGTA aagctt ATGGCGCCGT
CCACGCCGCT) and eIF2A_CDS_R (ATGG ctcgag TT
AAATACCCAATTCCA) were used to amplify the open
reading frame and incorporate HindIII and XhoI restric-
tion enzyme sites into the respective 50 and 30 ends of the
amplification product. After restriction digest, the
sequence was subcloned into a pcDNA3.1(+) plasmid
(Invitrogen), which had been previously engineered to
include an N-terminal FLAG tag [as per the
N-terminally myc-tagged plasmid discussed in (52)], to
which the eIF2A open reading frame was fused. This
plasmid was subsequently used as a template for
Quikchange site-directed mutagenesis (Agilent
Technologies) using the following primers:
YRPPALR_ ARAAALA_F gaggaacctaaagttgcaacagct

gctagagccgcagctttagcaaataaaccaatcaccaattccaa; YRPPAL
R_ ARAAALA_R ttggaattggtgattggtttatttgctaaagctgcggc
tctagcagctgttgcaactttaggttcctc; YRPPALR_AAAAAAA
_F gaagtacccaatgaggaacctaaagttgcaacagctgctgcagccgcagct
gcagcaaataaaccaatcaccaattccaaattgcatgaaga; YRPPALR_
AAAAAAA_R tcttcatgcaatttggaattggtgattggtttatttgctgca
gctgcggctgcagcagctgttgcaactttaggttcctcattgggtacttc.
The sequence of all plasmids was confirmed by auto-

mated sequencing.

Availability

Data sets used in the ELM benchmarking and human
proteome analysis are available at http://bioware.ucd.ie/
�slimdb/. A webserver for the SLiMPrints method is
available at http://bioware.ucd.ie/slimprints.html.

RESULTS

RLC-based probability measures as discriminators for
functionality

The ELM benchmarking data set was used to test the
power of the CS, pRLC and the Sigmotif statistics to distin-
guish ELM and non-ELM residues, and the results are
visualized as ROC (receiver operating characteristic)
curve plots (Figure 5A). The upper left hand corner of a
ROC curve plot is optimal, showing perfect discrimination
between true positives (TPs) and false positives, whereas
lines close to the diagonal suggest that a metric has no

predictive power. Although absolute column-based con-
servation can clearly discriminate residues contained
within ELMs (red line) compared with background
residues (diagonal), considering the local conservation
improves performance (blue line, pRLC). The clustering
of motif residues (green line, Sigmotif) clearly improves
performance still further (calculated on the defined
residues of the TP ELM instance against ELM regular
expression hits in the non-ELM residues). Thus, it is not
simply the relative conservation, but a metric that con-
siders the grouping of more than one conserved residue
that discriminates functional motifs most clearly.

ELM benchmarking of SLiMPrints as a SLiM
discovery method

The SLiMPrints method was applied to proteins of the
ELM benchmarking data set (22) (see ‘Materials and
Methods’ section), and returned motifs were analysed. A
total of 1234 alignments containing 1885 ELM instances
were tested (Supplementary Table S1). Of these, because
of the strict filtering criteria, 883 instances were in regions
not considered by the method: 330 instances were in
regions defined as ‘globular’, 282 instances in 196
proteins had insufficient orthologues in the metazoan
alignments, 67 were in regions defined as ‘gappy’, 23
were in ‘short’ regions and 8 were in extracellular
regions. A total of 1002 ELM instances were contained
in regions retained after the filtering step. Approximately
34 million overlapping motifs were considered by the
method [estimated based on the number of residues in
the search space (284 722) and the default motif attributes
for allowable number of defined positions (5) and
maximum gap length between defined positions (2)].

The ELM benchmarking data set returned 6391 distinct
non-overlapping SLiMPrint motifs at a Sigmotif cut-off
of 0.05, including 591 ELM motifs (Supplementary
Table S2), i.e. 59.0% (591/1002) of the discoverable ELM
motifs were ‘rediscovered’ in the benchmarking data set
using solely their conservation fingerprint defined by
Sigmotif. In total, 9.2% (591/6391) of all motifs returned
were overlapping experimentally validated functional
ELMs. There is a strong and increasing enrichment of
annotated ELMs as Sigmotif cut-offs decrease (Figure 5B),
a desirable attribute for the discovery of low-hanging fruit
in a whole proteome analysis. At Sigmotif scores <0.001,
18.9% (147/629) of the returned motifs were ELMs encom-
passing 14.7%of the annotated ELMs in the benchmarking
data set, whereas at Sigmotif scores<0.00001, 45.5% (15/33)
of the returnedmotifs were ELMs. Although 5800 ofmotifs
returned were classified as non-ELM motifs because they
did not overlap a region annotated as a functional motif in
the ELM database, many of the high-scoring non-ELM
motifs are experimentally validated functional motifs not
annotated in the ELM database meaning that, in reality,
the specificity of the method is far higher than this bench-
marking suggests. For example, of the 18 motifs with
Sigmotif scores <0.00001, but without ELM annotation,
the highly conserved 453PALPxKmotif in Rap guanine nu-
cleotide exchange factor 1 binds to the SH domain of Crk
(53), the tyrosine of the 1068PxPYAT motif conserved in
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roundabout homologue 1 fromhuman toworm is phospho-
rylated by ABL kinase, suggesting a switchable binding site
(54), and a PxWVxR motif in Mint1 mediates binding to
calcium/calmodulin-dependent serine protein kinase (55).

It is worth noting that there are clear differences in the
ability of the method to rediscover motifs within different
classes of ELM. Modification (42.8%) and cleavage
(19.4%) classes are returned at much lower efficiency
than ligand (63.3%) and targeting (59.7%) classes. This
is expected, as these sites, modification sites in particular,
are well known to be evolutionarily plastic (56), and their
differential conservation has been seen previously (9).

SLiMPrints SLiM discovery on the human proteome

Of 20 253 human alignments, 18 212 had sufficient
orthologues to run the SLiMPrints method. Approxi-
mately 368 million overlapping motifs were considered
in a search space of 3 065 433 unmasked residues. To in-
vestigate the success of this SLiM discovery effort, the 172
motifs (in 168 different proteins) returned at Sigmotif �1

e�5

were examined (Supplementary Table S3). On manual
curation, 50 of these putative sites seemed to be the
result of forced alignment of non-homologous positions
in the alignment between highly divergent species.
Twenty-three had experimental evidence for functionality,
although only five are annotated in the ELM database
(Table 1). The remaining 98 are of unknown function
and have strong conservation compared with their sur-
rounding residues (Supplementary Table S3). Greater
than half (54) of the 98 motifs discovered in humans are
identical in fly, 19 in worm and 5 in yeast. Approximately
two-thirds (66) of these 98 motifs are also predicted as
putative motifs by the ANCHOR motif discovery tool
(mean ANCHOR probability: >0.5), which uses a com-
plementary pairwise energy estimation approach (28). A
full interactive list of the annotated results is available at
http://bioware.ucd.ie/�slimdb/SLiMPrints/.

SCF complex subunit F-box only protein 9

A striking motif in the human proteome analysis was an

43LxxFRxxWxxEL motif in FBXO9 (F-box only protein
9). The motif is conserved without degeneracy in any
position from human to fungi (Figure 6A), although not
present in plants. Motifs are often lost over large evolu-
tionary distances, e.g. only 7.7% of human proteins are
conserved in Caenorhabditis elegans (9); thus, for a motif
of this length to be conserved without substitution over
such a large range of species is unusual. The spacing of the
conserved positions suggests a strong hydrophobic helical
moment with a hydrophobic face (Leu43, Phe46, Trp50,
Leu54), flanked by oppositely charged residues (Arg48,
Glu53) (Figure 6C). ANCHOR (28), a method that quan-
tifies the potential of a region to adopt secondary structure
on binding, a strong indicator of a putative motif, also
predicts the region to be functional (data not shown).
A SLiMSearch analysis (23) of the human proteome
returned only one other protein [F-box/WD repeat-
containing protein 8 (FBXW8)] containing the motif
(Figure 6B). Interestingly, FBXW8 and FBXO9 are not
close homologues, they have different domain architec-
tures, and several F-box containing proteins that are
more closely related to FBXO9 lack the motif, even
allowing for strong degeneracy conserving only physi-
cochemical similarity ([�xx[HYFW][KR]xx[FHYW]xx
[DE]�). The function of the motif may relate to the
protein’s role as the substrate-recognition component of
the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin
ligase complex.

Eukaryotic initiation factor eIF2A

Another notable result was the 446AYxPPxxR motif dis-
covered in human translation initiation factor eIF2A
(Q9BY44; Sigmotif <1e�5), a transfer RNA (tRNA)-
binding protein thought to function in a translation initi-
ation pathway independent of the ternary complex which
contains eIF2, GTP and the initiating Met-tRNAi (76).

Figure 5. (A) ROC curve of CS (dashed and dotted), RLC (dashed) and Sigmotif (solid) metrics. (B) Proportion of motifs returned at different
Sigmotif scores that are experimentally validated functional motifs from the ELM database.
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This bears a striking similarity to the YxPPx�Rmotif that
mediates binding of the adenosine triphosphate (ATP)-de-
pendent RNA helicase DDX3X to a key initiation factor,
eIF4E (77) (ELM LIG_eIF4E_2). It should be noted that
these motifs were only added to the ELM database (22)
since the ELM benchmarking exercise. The YxPPxx[KR]
motif in human eIF2A is conserved in fungi, plants and
amoeba (Figure 7A), indicating that it might have an evo-
lutionarily ancient functional relevance, as befits a protein
involved in a core process like protein synthesis. Using data
from the eIF2A alignment (Figure 7A) and LIG_eIF4E_1,
we performed a SLiMSearch (23) analysis of
YxPPx[ILMVA][KR] instances in the human proteome:
all highly significant hits (Sigmotif <0.001) occur in messen-
ger RNA (mRNA) translation-related proteins (Table 2),

with the exception of carnitine deficiency-associated gene
expressed in ventricle 3 (CDV3), which has no known
function. Specifically, returned proteins are known compo-
nents of eIF complexes (eIF3g, eIF2A) or known to be
direct binders of eIF-related proteins [ATP-dependent
RNA helicase DDX3X, ATP-dependent RNA helicase
DDX3y, nucleolar MIF4G domain-containing protein 1,
(NOM1), Tudor domain-containing protein 3 (TDRD3)].
With the exception of the divergent instances in DDX3X
and DDX3Y, all instances seem to have evolved
convergently having different domain architecture and no
obvious homology outside the motif (Figure 7B).

During translation in eukaryotes, a number of
subcomplexes of eukaryotic initiation factors (eIFs)
assemble into a preinitiation complex, bringing together

Table 1. Highly significant hits (Sigmotif scores <1
e�5) in the human proteome analysis with experimental evidencea

Protein name Motif Context Function Start Reference

Stromal membrane-associated protein 2 DLLG tapvmDLLGldapv Clathrin binding 185 (57)
AP-1 complex subunit g-1 LLDL.G sqandLLDLlGgndit Clathrin binding 627 (58)
Dedicator of cytokinesis protein 4 PP.PP gklisPPvPPrptqt SH3 domain binding 1787 (59)
Tyrosine-protein kinase ABL1 AP.PP.R kkkktAPtPPkRsssfr SH3 domain binding 610 (60)
Son of sevenless homologue 1 PPP.PPb devpvPPPvPPrrrpe SH3 domain binding 1149 (61)
Arrestin domain-containing protein 3 P.Y rflppPlYseidp WW domain binding 391 (62)
Enhancer of filamentation 1 D.YD.PR vgsqnDaYDvPRgvqfl SH2 domain binding 314 (63)
RAF proto-oncogene serine/threonine-protein kinase RS.S.PN lsqrqRStStPNvhmvs 14-3-3 binding 255 (64)
AP-3 complex subunit b-1 LLD.DDb tkdvsLLDlDDfnpvs Clathrin binding 817 (65)
Sorting nexin-33 W.DWDD dddddWdDWDDgctvv Aldolase binding 116 (66)
Tyrosine-protein phosphatase non-receptor type 3 RS.Sb npamrRSlSvehle 14-3-3 binding 355 (67)
Rap guanine nucleotide exchange factor 1 PALP.K qtdtpPALPeKkrrsa SH3 binding 453 (53)
Fez family zinc finger protein 2 FSI.IM sktlaFSIerIMaktse Engrailed homology 1 29 (68)
Protein AF-9 KKR.K eelsaKKRkKsssea Nuclear localization signal 295 (69)
Serine/threonine-protein kinase LATS2 PPPPY pdrrcPPPPYpkhll WW domain binding 513 (70)
AP-1 complex subunit g-like 2 LLDLL sqlldLLDLLdgasg Clathrin binding 625 (58)
Arrestin domain-containing protein 2 P.P.PP.Y rlgalPerPeaPPeYsevva WW domain binding 332 (62)
Arrestin domain-containing protein 2 P.P efryrPpPlysee WW domain binding 383 (62)
Protein sprouty homologue 4 N.Y.D.P tshveNdYiDnPslalt TKB domain binding 49 (71)
Cyclic adenosine monophosphate-dependent
transcription factor ATF-6 alpha

R.LL panqrRhLLgfsak Cleavage site 415 (72)

Procollagen galactosyltransferase 2 EL vpsrdEL KDEL motif 624 (73)
Ubiquitin carboxyl-terminal hydrolase 8 P.DR.KK siknvPqiDRtKKpavkl SH3 binding motif 404 (74)
CCAAT/enhancer-binding protein beta K.EP.Eb ppaelKaEPgfEpadck Sumo site 173 (75)

aContext contains the motif and flanking regions of five residues, defined residues are bold and underlined. Start is the position of the motif in the
protein.
bDenotes motifs annotated in ELM.

Figure 6. (A) Alignment of the 50 residues flanking the LxxFRxxWxxEL motif in FBXO9 orthologues showing the conservation across many diverse
species, conserved residues are coloured by ClustalX colouring scheme. (B) Domain architecture of FBXO9 and FBXW8. Red diamond denotes
position of LxxFRxxWxxEL motif. (C) Helical wheel representation of the LxxFRxxWxxEL motif.
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Figure 7. (A) Alignment of the 50 residues flanking the YxPPxLR motif in eIF2A orthologues showing the conservation across many diverse species,
conserved residues are coloured by ClustalX colouring scheme. (B) Light grey boxes are domains involved in RNA metabolism, green domains are
domains involved in translational regulation and grey domains have no obvious link to RNA processing. Red diamond denotes position of
YxPPxLR motif. (C) Schematic of constructs used in assays with sequence variants shown. (D) Equal amounts of protein from S10 HeLa cell
extracts were obtained after transfection with either no plasmid or wild-type or mutant forms of FLAG-tagged eIF2A and were subjected to
SDS–PAGE and immunoblotting with the antibodies indicated (left hand panels). The extracts were then subjected to m7GTP Sepharose chroma-
tography (right hand panel, lanes 2–5) to recover proteins associated with eIF4E. Untransfected cell extract was also incubated with control 4B
Sepharose resin (lane 1). (E) Extracts from HeLa cells transfected as described in panel D were subjected to co-immunoprecipitation as described in
‘Materials and Methods’ section with AminoLink agarose resin coupled to FLAG-M2 antibody. Immunoblotting of proteins from the total cell
extract (left hand panels) or eluted proteins (right hand panels) was carried out using the antibodies indicated.
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the mRNA with a small (40S) ribosomal subunit [reviewed
in (78)]. Key to this process is the m7GTP cap structure
present at the 50 end of all mRNAs, which is bound by
eIF4E during the process of cap-dependent translation.
This protein resembles a cupped hand, with the internal
surface used for interactions with the cap structure (79).
The dorsal surface of the protein acts as a site of inter-
action with a number of other proteins, which compete
with each other to form complexes that are either compe-
tent for translation (e.g. when the scaffold proteins
eIF4GI or eIF4GII bind, forming the eIF4F complex,
and recruit the 40S subunit) (80) or inhibitory (e.g. when
4E-BPs 1–3 bind, preventing the recruitment of other
proteins) (81). The LIG_eIF4E_1 motif, YxxxxL�, is re-
sponsible for this competitive complex formation in the
eIF4E-interacting proteins eIF4GI, eIF4GII and the
4E-BPs (82), and the YxPPx�R motif of DDX3X is
thought to competitively bind at the same site (77).
These results identify potential novel eIF4E-binding
partners, which could play important roles in initiation
regulation, although we cannot rule out the possibility
that there is a second initiation-related protein that recog-
nizes the same motif.
To explore this possibility further, we investigated

whether the eIF2A and eIF4E proteins interact. Before
this work, no protein interaction was known, although a
genetic interaction has been reported in yeast, with an
eIF2A/eIF4E knockout strain arresting at the G2/M
border (83). We investigated the potential interaction of
eIF4E and eIF2A in HeLa cells. Our initial work to
co-immunoprecipitate the endogenous eIF2A protein
from HeLa cells showed that eIF2A and eIF4E could be
detected after elution from resin cross-linked to an eIF2A
antibody, and neither protein bound to an agarose resin
control (data not shown). These results indicate that eIF4E
does indeed interact with eIF2A, either directly or as part
of the same complex, as supported by m7GTP-Sepharose
chromatography and co-immunoprecipitation using an
anti-FLAG antibody (Figure 7). It should be noted that
a small amount of eIF2A is detected in the elution from
the 4B control Sepharose resin (Figure 7D), suggesting
there is some intrinsic ability of this protein to bind non-
specifically to the resin. However, in the reciprocal
immunoprecipitation experiment, eIF4E only elutes with
FLAG-tagged eIF2A proteins (Figure 7E), confirming
that the interaction between the two proteins is genuine.

Although functionally important, the eIF4E ligand may
not be necessary for binding: surface plasmon resonance
has identified additional sites essential for the eIF4E:-
eIF4G interaction (SDVVL) (84) and the eIF4E:-4E-BP
interactions (PGVT[ST]) (85), whereas the C-terminal
domain of DDX3X (DDX33536–3661) was shown to
weakly interact with eIF4E despite the YxPPx�[KR]
motif being N-terminal (DDX338–44) (77). Therefore, we
investigated whether the motif was sufficient for eIF4E
binding in eIF2A using mutations at the potential eIF4E
binding site, from YRPPALR to either ARAAALA (M1)
or AAAAAAA (M2), transfected into HeLa cells (Figure
7C). The binding is not abrogated when the proposed site
of interaction is mutated. Thus, as with other 4E-binding
proteins, interaction of the two proteins is not dependent
on the motif in eIF2A, and we speculate that eIF2A has a
second site of interaction. Although not necessary for
binding, point mutations in the DDX3X YxPPx�[KR]
motif were shown to impair its regulatory activity (77).
Given this, we propose that the observed eIF2A-eIF4E
interaction and the strong evolutionary conservation of
the YxPPxx[KR] motif in eIF2A is highly suggestive that
the motif is involved in regulation of eIF4E activity, even if
it may not be necessary and/or sufficient for binding to
eIF4E, and it should be the focus of further study. As
eIF2A is able to supply Met-tRNAi to the 40S ribosome
in a GTP-independent manner (86), how it may function in
concert with the wider initiation factor machinery is of
particular interest. For instance, this new interaction may
allow the formation of a cap-dependent translation initi-
ation complex that does not require the usual eIF4G
scaffold proteins or the eIF2-containing ternary complex.

Challenges for using conservation in SLiM discovery

Intrinsically disordered regions of proteins have much
greater evolutionary fluidity than globular regions (48),
as the same property of disorder may be maintained by
sequences undergoing regular mutation, insertions and de-
letions. Yet, it is clear that functional motifs contained
within these regions are, in general, more evolutionarily
conserved than surrounding residues (30), a fact that has
already been exploited in the identification of novel in-
stances of previously known SLiMs (23,34,87) and in the
discovery of novel motif classes (35). This rationale is
further supported by recent studies in mononegavirales,
which used profile–profile comparison (39), and in yeast,

Table 2. Significant SLiMsearch hits (Sigmotif <0.001) for the YxPPx[ILMVA][KR] regular expressiona

Gene Protein Context Position

eIF2A Eukaryotic translation initiation factor 2A kvataYrPPaLRnkpit 457
DDX3X ATP-dependent RNA helicase DDX3X askgrYiPPhLRnreat 49
DDX3Y ATP-dependent RNA helicase DDX3Y askgrYiPPhLRnreas 49
TDRD3 Tudor domain-containing protein 3 ptqqfYqPPrARn 650
NOM1 Nucleolar MIF4G domain-containing protein 1 gsgekYiPPhVRqaeet 349
CDV3 Protein CDV3 homologue mtsgvYrPPgARltttr 180
ZC2HC1A Protein FAM164A srtqvYkPPaLKksnsp 180
eIF3g Eukaryotic translation initiation factor 3 subunit G nktgkYvPPsLRdgasr 224

aContext contains the motif and flanking regions of five residues, defined residues are bold and underlined. Start is the position of the motif in the
protein.
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which used a phylogenetic hidden Markov model (40), to
identify conserved residues versus the background conser-
vation of disordered protein regions in an analogous
approach.

Many issues confound the ability of the SLiMPrints
method to return functional motifs. Methodologically,
multiple alignment tools are not designed to align dis-
ordered regions (49), often misaligning short conserved
regions and forcing the alignment of regions that lack
common evolutionary descent. Alignment might be
further impaired by potential issues arising from splice
variation and incomplete sequencing/annotation of some
species. Large gaps in species coverage compound this
issue further, especially (in the case of the human
analysis) at the vertebrate/invertebrate boundary.
Ultimately, this introduces noise and loss of signal, and
subsequently negatively affects the quality of the conser-
vation metric. Indeed, in this study, we found 50 of the 172
highest ranking motifs to be affected by alignment error.
Improvements to species coverage, alignment tools
and conservation metrics, in conjunction with the
development of accurate methods to successfully recognize
poorly aligned residues in disordered regions, will dras-
tically improve the ability of the next generation of
conservation-based motif discovery tools. Users of
SLiMPrints, or of any conservation approach to identify
motifs, need to pay careful attention to the quality of
the sequence annotation/protein prediction, alternative
splicing and other factors that can influence interpretation
considerably.

The SLiMPrints method also has a clear hypothesis,
searching for strong islands of conservation in a dis-
ordered sea of evolutionary drift. A large proportion of
motifs simply do not exhibit this characteristic. Numerous
motifs occur in regions containing multiple overlapping
motifs, regulatory modification sites and disordered
domains that create an extended region of many
conserved residues (9,10). Motifs are also gained and
lost relatively quickly (on an evolutionary timescale),
and, as a result, motifs often do not have a level of
conservation that is indicative of a strong functional con-
straint. However, despite these issues, there is clearly a
strong signal in the evolutionary constraint of many func-
tional motifs.

Because of the issues highlighted previously, the
SLiMPrints method is not capable of discovering all func-
tional motifs in a proteome, but rather to highlight inter-
esting putative motifs, identifiable by their conservation
pattern. The method should excel in the identification of
the ‘low-hanging fruit’ of easily identified motifs. As such,
it will prove valuable for the identification of protein
motifs of likely functional importance in lesser-studied
proteins, giving experimentalists a starting point to inves-
tigate the functionality of these proteins. Other methods
designed for de novo identification of motifs from primary
sequence, such as a-MoRF (27), ANCHOR (28) and
SLiMPred (29), are complementary to the SLiMPrints
approach. As each of these approaches recognize
putative functionality based on different hypotheses
(supported by observed attributes of functional motifs),

future methods that incorporate the best features of each
method should show stronger overall performance.

CONCLUSIONS

We have shown that novel motif classes can be discovered
using a conservation-based metric and anticipate that ap-
plication of the statistical framework described in this
article will aid in the systematic identification of functional
modules in disordered regions, particularly for poorly
annotated proteomes. SLiMPrints represents a useful
addition to the growing toolkit of bioinformatics
methods for motif discovery that simplify and accelerate
the process of documenting regions of potential interest,
guide experimental discovery of novel SLiMs and enrich
our current knowledge of protein interaction interfaces
within intrinsically disordered regions. Furthermore, the
whole proteome search for putative functional human
SLiMs has provided a valuable resource for further experi-
mental validation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3.
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