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1  | INTRODUC TION

Pop-Inference is an application written in MATLAB (The 
MathWorks Inc., Natick, MA, USA) code that uses randomization 
tests and the bootstrap to compare population parameters ex-
tracted from two or more populations. The application was written, 
and has been used, as an educational tool in postgraduate courses of 
population biology at the University of Oviedo, Spain. Students are 
often puzzled by the possibility of comparing population parameters, 
such as the population growth rate, using one single observation of 
the parameter per population. They feel that comparing just single 
numbers is wrong and that they need some estimation of the vari-
ability of the demographic parameters. Even among PhD students, 
it is not rare the feeling that several replicate estimates of the pa-
rameter should be independently obtained to compare populations. 

However, the comparison of population using single observations of 
the growth rates is common (e.g., Angert, 2006; Bruna & Oli, 2005). 
It is not conceptually different to compare, for example, two sample 
means. A sample mean is obtained after applying a simple formula 
to magnitudes obtained from individuals in a sample. A population 
growth rate is a nonlinear function of the fates of a sample of indi-
viduals during the projection interval. Of course, they are different 
because one is an individual property and the other is a population 
property, but both parameters are magnitudes averaged across the 
individuals obtained after sampling a population. And most import-
ant, confidence intervals may be constructed, using the information 
in the sample.

A significant difference in a demographic parameter implies that 
populations differ in their patterns of survival, growth, and/or re-
production. The reverse is not necessarily true (for a discussion on 
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the logics and interpretation of experiments, see Underwood, 1990). 
Two populations may exhibit identical values for some demographic 
parameter with contrasting vital rates (e.g., opposite values for sur-
vival and fecundity). Two populations differ if they have different 
survival, growth, and/or reproduction patterns, that is, a different 
composition of individual life histories. An individual life history is 
defined by the stage at the start and at the end of the projection in-
terval (death is considered a stage) of the individual and the number 
of recruits produced. After nonsignificant tests, if two populations 
do not have different composition of life histories, we cannot reject 
the hypothesis of a common origin of individuals. However, we can-
not say they come from the same population or from two popula-
tions subject to the same environmental constraints.

Pop-Inference tests the hypothesis that the observed differ-
ences between populations are beyond the expected differences 
from sets of individuals sampled at random from a single population. 
The application obtains the distribution of differences among popu-
lations under the null hypothesis of a common origin for individuals 
and then compares the observed difference with this distribution. 
The program also estimates the power of the comparison tests and 
obtains the confidence intervals for a set of demographic parame-
ters. The application relies in randomization tests (Edgington, 1980; 
Manly, 2007) and the bootstrap (Efron & Tibshirani, 1993). Details 
of their application to matrix population models may be found in 
Caswell (2001). See a detailed description in Appendix S1.

The interest of the application is not limited to the numerical 
output of inferential tests, the p-values. The major objective is the 
understanding of the whole process of decision taking involving pop-
ulations. As important as the p-values are (i) the analysis of the dis-
tributions of the test statistics under true and false null hypotheses 
and (ii) the analysis of the effects of increased densities on power, 
p-values, and confidence intervals. Pop-Inference may be used by 
students in a dual way. At a first stage, to learn how to analyze and 
interpret differences among populations and then to analyze differ-
ences among populations using data from their own projects.

Tests on differences in demographic parameters, construction of 
confidence intervals, and life table response experiments (LTRE) are 
routinely performed using both randomization tests and the boot-
strap (e.g., Angert, 2006; Bruna & Oli, 2005; Cerná & Münzbergová, 
2013; Münzbergová, 2007). However, in most cases, authors use ad 
hoc, home-made, scripts not easily available, and at any case, dif-
ficult to use with students. Packages with functions and routines 
for demographic analysis, covering part of the topics exposed here, 
are indeed available. For example, the popbio package (Stubben & 
Milligan, 2007), but again, they are not friendly for their classroom 
use. To the best of my knowledge, no application or script is available 
to estimate power of tests comparing demographic parameters.

Inspiration came from Caswell (2001) and Manly (2007). Caswell 
(2001) provided pieces of MATLAB code to estimate population pa-
rameters, the algorithms for randomization tests and the bootstrap, 
the calculation of confidence intervals, the equations and discussion 
for the LTRE, and the steps to construct projection matrices from 
pre- and postbreeding censuses.

2  | NATURE OF DATA

Input data may be a standard projection matrix or raw demographic 
data. If data come as projection matrices, fecundity matrices and 
transitions matrices must be specified for each population (see 
definitions in Caswell, 2001). Additional data include the number of 
individuals studied, and the nature of the census (pre- or postbreed-
ing). The number of individuals used to construct the matrix is a criti-
cal variable. It is not possible to compare two or more populations 
using their projection matrices if the numbers of individuals used for 
their construction are not available. For any group of nonidentical 
matrices, significant differences always appear if a sufficiently large 
number of individuals is assumed (or was used to obtain the matri-
ces). This is not different to ordinary sampling design and hypothesis 
testing (Snedecor & Cochran, 1980).

Raw demographic data describe the fate of every individual in 
the population during the projection interval in terms of survival, 
growth, and reproduction. For each stage, raw demographic data 
must always include the number of individuals dying during the pro-
jection interval and the number of individuals remaining, promoting 
to higher classes or going back to previous stages. Depending on the 
available information on reproduction, different classes of raw data 
are possible. Parents for every new individual in the population may 
be identified and their destinations or origins are known, or parents 
cannot be identified. For the latter case, three types are allowed in 
the application: type 1, reproductives are not identified (anonymous 
reproduction in Caswell, 2001); type 2, reproductives are identified 
but their origin or destination is not known and; type 3, reproductives 
are identified and their origin or destination is known. The distinction 
is relevant, as it is critical to obtain average fecundity and to allocate 
individuals to different histories for bootstrapping (Appendix S2).

Data may come from two different sampling designs: pure ran-
dom sampling of individuals or sampling a fixed number of individu-
als in each stage. In the first case, the proportion of each stage in the 
sample reflects their proportion in the population and is an estima-
tion of the population stage structure. If the number of individuals 
sampled in at least one stage is fixed, collected data do not reflect 
the population stage structure. This is relevant for the bootstrap and 
randomization tests. For pure random sampling, individuals are resa-
mpled with no restrictions. For fixed numbers per stage, resampling 
is restricted to each stage. More uncertainty and larger confidence 
intervals are obtained in the first case.

The timing for the collection of demographic data has an influ-
ence on the estimation of fecundities in the projection matrices. 
Fecundity is the average number of new individuals produced by 
an individual during the projection interval. Therefore, it is a com-
bination of the maternity function (the average number of recruits 
produced by a reproductive female/individual) and survival. As a 
simplification, it is often assumed that data are collected immediately 
before (prebreeding) or after the reproductive season (postbreed-
ing censuses). See Akçakaya, Burgman, and Ginzburg (1999) for the 
implications in matrix construction. No mortality during the repro-
ductive period is considered. This is not realistic, but in most cases 
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data can be accommodated to any of these approaches. Mortality of 
adults and recruits during the breeding season appears in the data 
as a reduction of fecundity. In prebreeding censuses, newly born in-
dividuals must survive the entire projection interval to be counted. 
In postbreeding censuses, individuals must survive during the whole 
projection interval, to the onset of the next reproductive period, and 
then, to reproduce with the fertility associated with their new stage 
(see also Caswell, 2001).

3  | DESCRIPTIVE INFORMATION ON 
POPUL ATIONS

Descriptive information for each population includes six demo-
graphic parameters that will be used to compare populations and 
sensitivity and elasticity matrices. Except for the composition of his-
tories, for each parameter, the application calculates the observed 
value, the 90% and 95% confidence intervals, and the simulated me-
dian. Confidence intervals are calculated using bootstrap techniques 
(Efron & Tibshirani, 1993). See Appendix S3 for a complete output.

(i)	  	� The asymptotic population growth rate, λ. It is the rate of popula-
tion increase when the population is at the stable stage structure. 
The rate is referred to a fixed time interval, the projection inter-
val. The growth rate is calculated as the dominant eigenvalue of 
the population matrix (e.g., Vandermeer & Goldberg, 2003).

(ii) 	� The net reproductive rate (R0), defined as the average number 
of new individuals produced by a newly born individual during 
its lifetime. R0 is calculated as the dominant eigenvalue of the 
matrix R, which is obtained as R = FN, where N is the funda-
mental matrix whose elements are the expected times spent at 
each stage by individuals in the population, and F is a fecundity 
matrix with the expected number of recruits of each class pro-
duced by time step (Caswell, 2001).

(iii)	� The generation time (T) is the time needed by the population 
to increase by a factor of R0. Because of λT = R0, the generation 
time is estimated as T = ln R0/ln λ (Caswell, 2001).

(iv) 	� �The stable stage structure (SSS) gives the proportion of indi-
viduals in each stage that any initial distribution of individuals 
converges to (Akçakaya et al., 1999). On reaching SSS, the pop-
ulation will keep a constant proportion of individuals at each 
stage or age through time. At SSS, the observed rate of growth 
also remains constant and equals λ. The SSS is calculated as the 
right eigenvector of the population matrix corresponding to 
the dominant eigenvalue (Caswell, 2001). The SSS is expressed 
as the proportion of each stage in the population. If sampling 
was at random, the observed stage distribution is also given. 
The distance between the observed and the stable stage dis-
tributions is calculated using the Keyfitz’s distance (Keyfitz & 
Caswell, 2005). The statistical significance of the distance to 
SSS is obtained by a randomization test. If the number of indi-
viduals studied in each stage is in some way controlled by the 
experimenter by setting minimum, maximum, or fixed numbers 

of individuals, the distance to SSS and its significance are mean-
ingless quantities and are not calculated.

(v) 	� The reproductive value (RV) is the Fisherian concept of age-spe-
cific reproductive value generalized by Goodman (1968). 
Intuitively, the RV represents the contribution of each stage 
to all other stages. The RV is calculated as the left eigenvector 
of the population matrix corresponding to the dominant eigen-
value (e.g., Lanciani, 1998; Vandermeer & Goldberg, 2003). The 
RV is expressed as the proportional contribution of each stage 
to the abundance of all stages (Caswell, 2001).

(vi)	� The collection of individual histories. An individual history is 
a summary of the events of the life cycle associated with the 
individuals in the population. The individual history describes 
the pattern of survival, growth, and reproduction affecting 
each individual. The history specifies whether the individual 
survives or not and the destination class if it does and gives the 
number of recruits produced during the projection interval and 
the stages to which new individual recruit. To implement the 
bootstrap and randomization tests, Caswell (2001) suggested 
the construction of auxiliary matrices whose columns represent 
the individuals with the associated events during the projection 
interval. This is explained more in detail in Appendix S1.

(vii)	� Sensitivity and elasticity matrices describe the changes in the 
asymptotic population growth rate, λ, as a consequence of 
changes in matrix entries (Caswell, 2001). Sensitivity describes 
absolute changes in λ due to of absolute changes in vital rates. 
Elasticity describes proportional changes in λ in response to 
proportional changes in vital rates. Practical limitations in the 
interpretation of sensitivity and elasticity matrices are dis-
cussed by Akçakaya et al. (1999). They are not used to compare 
populations.

Pop-Inference may also perform life table response experi-
ments (LTRE). LTRE evaluate how variability in vital rates contributes 
to the observed variability in λ. LTRE for both random and fixed effects 
are available, but only for one-way designs. An example of the use of 
LTRE is in Zuidema, De Kroon, and Werger (2007). Details for com-
putation were extracted from Caswell (2001). Sometimes, sensitivity 
or elasticity analysis is performed simultaneously to LTRE for a better 
evaluation of management strategies (e.g., Zuidema et al., 2007).

4  | COMPARING POPUL ATIONS

Nonoverlapping confidence intervals have been used to evalu-
ate differences in demographic parameters (Bruna & Oli, 2005). 
However, to test hypotheses about demographic parameters, rand-
omization tests are a better option and are the most commonly used 
method (e.g., Angert, 2006; Brault & Caswell, 1993). Randomization 
tests are described in detail in the books by Edgington (1980), Manly 
(2007), and Caswell (2001). Tests in Pop-Inference include global 
and pairwise comparisons and evaluate the null hypothesis that all 
populations in the study have a common origin. In other words, that 
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the observed differences among populations should be due to sam-
pling error associated with the random selection of individuals (with 
their associated histories). A significant global test indicates that 
at least one of the populations differ from the others, as the ob-
served differences are beyond the expected random allocation of 
individuals to populations, but it does not identify the population(s) 
differing.

Test statistics differ in global or pairwise tests and depending 
on the nature of the demographic parameter (scalar or vectorial). 
The λ, R0 and T are scalar parameters. SSS, RV and the collection of 
individual histories are vectorial parameters. The three vectors are 
probability vectors (summing up to 1). The four test statistics below 
are different ways to express differences among a set of values. A 
survey of distance indices with comments on their relevance in dif-
ferent scenarios is given in Cha (2007).

For scalar population parameters in pairwise comparisons, the 
test statistic is the absolute difference between the two magnitudes,

where x1 and x2 are the parameter values for populations 1 and 2, 
respectively.

For global comparisons, the test statistic is the sum of squares 
of the parameter,

where n is the number of populations, xi is the parameter value for 
population i and ̄X is the average parameter across populations.

For vectorial parameters in pairwise comparisons, the test statis-
tic is

where m is the number of stages if SSS or RV are being compared 
among populations or the number of distinct individual histories, p1j 
and p2j are the proportions for stage or history j in populations 1 or 2. 
Dw is a standard measure of the difference of two probability vectors 
and also is the Keyfitz’s Delta (Keyfitz & Caswell, 2005). Dw takes 
values between 0, when both vectors are identical, and 1, when no 
overlap exists among the two vectors.

For global comparisons, the test statistic is

where m and n are as above, pij is the proportion of stage or his-
tory j in population i and p̄.j is the mean proportion of stage or his-
tory j across populations. Dg is an estimation of average distance 
between individual populations and the mean parameter calcu-
lated across populations. Dw and Dg are arithmetically equivalent 
when the number of populations is 2. Dg takes values between 0 
and 1.

The graphical output for comparison of populations includes 
the distribution of the test statistics under a true null hypothesis 
(Fig. 1). This distribution can be safely ignored if the interest of 
the user is strictly limited to the p-value associated with the test. 

For students, however, the distribution illustrates the rationale of 
inferential tests. The distribution of the test statistic is equivalent 
to the distribution of differences among populations that should 
be expected by chance, when both populations have a common 
origin. Comparison of the observed test statistic and the graphed 
distributions allows the students for the interpretation of the 
output of the randomization test, as it says how extreme is the 
observed value in relation to the expected value under the null 
hypothesis.

A large number of pairwise comparisons have an associated in-
crease in the overall probability of type I error, that is, rejecting a 
true null hypothesis (Quinn & Keough, 2002). As corrections usu-
ally come at the cost of decreased power, no action is taken by the 
application to this respect. The user must be aware of the problem 
and interpret multiple tests with caution. Appropriate corrections of 
p-values are available (Quinn & Keough, 2002).

Sometimes the hypothesis of interest involves differences 
among groups of populations, such as the comparison of a con-
trol population against all other or the comparison of groups of 
populations sharing some common property. Planned compar-
isons among these a priori defined groups of populations are 
possible. See Underwood (1997) for a definition, and discussion, 
of a priori tests. To create groups of populations, all individuals 
from populations being grouped collapse into a single group. New 
demographic parameters are extracted from this new and larger 
population. Note that no averaging of parameters from individ-
ual populations is carried out. Any number of comparisons among 
groups is possible: Comparisons may be orthogonal when each 
single population or group of populations is used only once in the 
comparisons or nonorthogonal. See Underwood (1997) for a dis-
cussion on the interpretation of orthogonal and nonorthogonal 
contrasts.

dw= |x1−x2|

dg=

n∑

i=1

(xi− x̄)2

Dw=
1

2

m∑

j=1

|p1j−p2j|

Dg=
1

2(n−1)

m∑

j=1

n∑

i=1

|pij− p̄.j|

F IGURE  1 Distribution of the differences in the composition of 
individual histories after 10,000 permutations of individuals of two 
populations (populations 2 and 3 in Appendix S3). Permutations 
simulate random allocation of individuals to two samples taken 
from the same population and give the distribution of the test 
statistic under the null hypothesis of a common origin for both 
populations. The proportion of permutations with a test statistic 
larger than the original was 0.0906, and therefore, the original 
difference (0.1307) was not statistically significant at α = 0.05
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5  | E VALUATION OF POWER

Nonsignificant results may appear because, in fact, populations do 
not differ or because power was small. Power of a statistical test is 
the probability of rejecting a false null hypothesis (or the probabil-
ity of detecting a real difference) (Quinn & Keough, 2002). Power is 
positively related to sample size, the magnitude effect, and the sig-
nificance level. An evaluation of power is important but seldom pos-
sible before the experiment. After the study, an evaluation of power 
may help to understand the output and gives some indications for 
future studies (Underwood, 1997).

Pop-Inference calculates power of the tests used to com-
pare populations using randomization and the bootstrap. First, the 
application obtains the distribution of the test statistic under the 
null hypothesis, assuming that all individuals have a common origin. 
Individuals from the populations being compared are pooled and 
then randomly allocated (without replacement) to the populations 
and the test statistic calculated again. The procedure is repeated a 
large number of times (say 10,000). From the distribution of simu-
lated values, a critical value of the test statistic (leaving out 5% of 
largest observations) is obtained. Now, the application obtains the 
distribution of the test statistic assuming that the null hypothesis 
is false. Populations are independently resampled with replacement 
(simulating a new sample from each original population) and the test 
statistics computed again from the bootstrap samples. The propor-
tion of values from this distribution larger than the critical value 
obtained assuming a true null hypothesis is an estimation of power 
(Fig. 2). Graphs of the distribution of the test statistics under the 
true and false null hypothesis illustrate the whole process to evalu-
ate power. The interpretation of these graphs can be found in almost 
every Statistics textbook (e.g., Sokal & Rohlf, 1981; Underwood, 
1997).

Variation in power, in p-values of tests and in the width of con-
fidence intervals are explored at increasing densities (Fig. 3). They 
are of limited value when analyzing real population data, but are 
useful to students to understand the relationship between width of 
confidence intervals, power, and sample size (e.g., Quinn & Keough, 
2002). In the three cases, the application evaluates what would hap-
pen if an increased number of individuals was sampled and identical 
vital rates obtained. This is not realistic because, by chance, different 
composition of vital rates should be obtained for each sample size. 
Simultaneously, increased sample sizes should render more precise 
composition of life histories. But the simulation would suggest ap-
proximate sample sizes to detect significant differences.

6  | KNOWN LIMITATIONS AND 
UNCERTAINTIES

There are a few limitations imposed by the simplicity of the program-
ming code: Only two tailed tests are available; data from all popula-
tions must be of the same type, with identical sampling designs, and 
populations must have the same number of stages.

Randomization tests evaluate differences between collections of 
individuals. They are not tests on populations (Manly, 2007, page 2). 
The tests tell if an observed difference between two collections of 
life histories might have appeared by chance. Extrapolation to pop-
ulations requires that individuals (with their life histories) were col-
lected independently and at random and are a fair representation of 
their respective populations.

Differences in the width of confidence intervals of vital rates 
among populations might influence the output of statistical tests. 
Obtaining extreme demographic parameters is more likely in popu-
lations with larger confidence intervals, and thus, the probability of 
erroneously detecting differences increases. In some way, this might 
be similar to the effect of heterogeneity of variances in ordinary 
hypothesis testing (Underwood, 1997). This aspect requires further 
attention.

As with any other inferential procedure, failing to reject the null 
hypothesis (i.e., nonsignificant tests) does not mean that popula-
tions are identical or are under identical environmental constraints 
(Underwood, 1990). Different processes might lead to similar or 
identical composition of life histories or identical demographic 
parameters.

7  | E VALUATION OF POP-INFERENCE  A S A 
TE ACHING TOOL

No formal evaluation tests were performed on the students’ re-
sponse to the application. However, after 3 years of use, a few con-
clusions may be obtained. At the beginning of the course, students 
often have problems to extrapolate concepts of ordinary sampling 
design and hypothesis testing to populations. In general, replication, 
random sampling, and independence of observations are concepts 
already assimilated by postgraduate students. Their extrapolation to 

F IGURE  2 Distribution of the test statistic used to evaluate 
differences in λ between two populations when the null hypothesis 
is true (blue bars) and false (yellow bars). The critical value leaves 
out the 5% of larger values to the right of the distribution of the 
test statistic when the null hypothesis is true. Power, 0.7943, is 
the proportion of observations of the test statistic larger than the 
critical value when the null hypothesis is false. Distributions were 
obtained after 10,000 random permutations of individuals of two 
populations (populations 2 and 3 in Appendix S3)
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populations is facilitated by considering populations as collections of 
individual life histories. A particular life history may be seen as an indi-
vidual “property,” as could be size or weight. Demographic parameters 
(including λ) are obtained after some working out of the life histories 
stored in auxiliary matrices. Conceptually, that is not very different to 
the extraction of well-known parameters such as a variance.

Due to the lack of tabulated test statistics to compare de-
mographic parameters, the need for randomization tests is well 
understood by the students. Randomization tests are made very 
intuitive by graphing the distribution of the test statistic under the 
true (and false, for power analyses) null hypothesis. Understanding 

the nature and interpretation of the randomization tests has a 
beneficial side effect. They reveal the importance of sample size 
and how individuals are sampled from populations. Students are 
given the keys to design better sampling programs to study de-
mography of wild populations.
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