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In metabolic engineering, modification of metabolic networks is an important biotechnology and a challenging
computational task. In the metabolic network modification, we should modify metabolic networks by newly
adding enzymes or/and knocking-out genes to maximize the biomass production with minimum side-effect. In
this mini-review, we briefly review constraint-based formalizations for Minimum Reaction Cut (MRC) problem
where the minimum set of reactions is deleted so that the target compound becomes non-producible from the
view point of the flux balance analysis (FBA), elementary mode (EM), and Boolean models. Minimum Reaction
Insertion (MRI) problem where the minimum set of reactions is added so that the target compound newly
becomes producible is also explained with a similar formalization approach. The relation between the accuracy
of the models and the risk of overfitting is also discussed.

© 2015 Tamura et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A metabolic network represents relations between chemical
reactions and compounds in a cell of organisms. Althoughmuch knowl-
edge about metabolic networks is available in public databases and
references, we often have to modify metabolic networks in various
situations. For example, in metabolic engineering, we should modify
metabolic networks by newly adding enzymes or/and knocking-out
genes to maximize the biomass production with minimum side-effect.
The former and latter correspond to adding and deleting chemical
ura), Rogi@kuicr.kyoto-u.ac.jp

. on behalf of theResearchNetwork of
reactions, respectively, in a metabolic network. For another example,
when we reconstruct a genome-scale metabolic network from a
newly determinedDNA sequence, the reconstructedmetabolic network
may need some modification to be consistent with the existing knowl-
edge. Thus, in metabolic network modification, we often add or/and
delete reactions so that specified constraints are satisfied.

Although there may exist various modification problems, we focus
on the following two major problems in this mini-review: (i) Minimum
Reaction Cut (MRC) problem: delete the minimum set of reactions so
that the target compound becomes non-producible, and (ii) Minimum
Reaction Insertion (MRI) problem: add the minimum set of reactions so
that the target compound newly becomes producible. It should be
noted that, for most cases, a target compound can be replaced by a set
of target compounds in a straight-forward manner. In order to solve
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Fig. 2. A framework of the bilevel programming [2].
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these problems, three mathematical models have been utilized: flux
balance analysis (FBA) model, elementary mode (EM) model, and
Boolean model. In this mini-review, we explain these three models in
the context of MRC, and briefly review MRI.

Before explaining details of each model, we briefly explain MRC.
Suppose that a metabolic network of Fig. 1 is given. Rectangles and
circles represent reactions and compounds, respectively. {c1,…,c13} is
a set of compounds, and {r1,…,r5} is a set of reactions. For example,
reaction r1 has the substrates (reactants) {c1, c2}, and products {c6, c7}.
If either indegree (the number of input nodes) or outdegree (the
number of output nodes) of a compound node is 0, it is called an external
node. {c1, c2, c3, c4, c5, c6, c9, c10, c13} is a set of external nodes in Fig. 1, and
the external nodes consist of source nodes and sink nodes. Compound
nodes with indegree 0 are called source nodes and are assumed to be
supplied by the external environment. {c1, c2, c3, c4, c5} are source
nodes. On the other hand, compound nodes with outdegree 0 are called
sink nodes. {c6, c9, c10, c13} are sink nodes. Target nodes are chosen from
sink nodes. In Fig. 1. {c9} is chosen as a target node.

For example, in MRC, the solution in the Boolean model is deleting
{r2, r3} because c9 is produced only from r2 or r2. However, in the EM
and FBA models, if there is a chemical reaction “A + B → C + D”, C
and D should also exist for the reaction to take place, in addition to A
and B, because steady states are assumed (see latter sections for details
of EM and FBAmodels). Therefore, deletion of any single reaction is the
solution of MRC in the FBA and EMmodels since all reactionsmust take
place at a time if some reaction takes place.

2. Flux Balance Analysis-based Method

Flux balance analysis (FBA) is a constraint-based mathematical
framework using the stoichiometry of a given metabolic network. In
many cases, FBA is used to optimize a biologically relevant objective
function to identify optimal flux distributions [19,32]. In FBA, the state
of the whole metabolic network is represented by fluxes for all
reactions, and the sum of incoming fluxes must be equal to the sum of
outgoing fluxes for each compound, where fluxes may be weighted
according to the stoichiometry coefficients.

For MRC and MRI in the FBA model, in addition to the objective
function in the standard FBA, the number of added or deleted reactions
should also be taken into account. Furthermore,wemayneed to consider
two objectives: cellular objective and bioengineering objective.

In order to identify gene knockout strategies for microbial strain
optimization under such a complex situation, a bilevel programming
framework was introduced in [2] in which there are outer and inner
optimization problems as shown in Fig. 2. The outer problem optimizes
the bioengineering objective, whereas the inner problem optimizes the
cellular objective.

Here, we consider MRC under the bilevel programming framework.
Let vtarget denote the flux of the reaction that produces the target
compound. Our purpose is to find the minimum number of reactions
Fig. 1. An example of a metabolic network. Rectangles and circles represent chemical
reactions and compounds, respectively.
deletion of which always makes vtarget = 0. Then, MRC in the FBA
model can be formalized as follows by starting with K = 0, and incre-
ment K by 1 until vtarget = 0 is obtained, where K is the upper limit of
the number of deleted reactions.

Maximize
s j

−vtarget

subject to

Maximize
v j

vtarget

subject to

X

j

Si j � vj ¼ 0;∀i ∈ I;

LBj � s j ≤vj ≤UBj � s j;∀ j ∈ J;
s j ∈ 0;1f g;∀ j ∈ J;X

j ∈ J

1−s j
� �

≤K;

where sj is a 0–1 variable, sij is a stoichiometry matrix for the ith
compound and jth reaction, vj ( j = 1,…, n) is a flux vector, I is a set of
compounds, J is a set of reactions, and LBj and UBj are the lower and
upper bounds of vj ( j = 1,…, n), respectively. sj represents whether
jth reaction is knocked-out, where sj = 0 indicates that jth reaction is
knocked-out since vj is forced to be 0.

In the above, we used the same function (but with different signs)
as the objective functions in outer and inner optimization problems.
However, there are various versions of the problem setting based on
objective functions for the inner problem and the outer problem.

For example, the minimization of metabolic adjustment method
(MOMA) minimizes the difference between the wild and the knocked-
out flows [25]. In the flux variability analysis (FVA), both the maximum
and minimum values of the objective function are calculated, and the
range of them is accounted for [26]. OptKnock maximizes the bioengi-
neering objective in the outer problem, and the cellular objective in
the inner problem [2], where the upper bound of the number of
removed reactions is given as in the above. On the other hand,
RobustKnockmaximizes theminimal possible rate of the bioengineering
objective in the outer max–min problem, while the cellular objective is
maximized in the inner min–max structure [30].

3. Elementary Mode-based Method

An elementary mode (EM) represents a feasible and balanced
(steady-state) flux distribution of the network [24,23]. It must be
minimal with respect to utilized reactions (enzymes). Suppose that a
metabolic network of Fig. 3 is given, where reaction nodes are omitted.
{Aex, Bex, Cex, Dex} is a set of external compounds. In this network, there
are 5 EMs, which are shown in Table 1. Although all values in Table 1



Fig. 3. An example of a metabolic network, where reaction nodes are omitted. Elementary
modes (EMs) of this network is shown in Table 1.
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are either 0 or 1, any real number is allowed according to the coeffi-
cients of chemical reaction formula.

Themost standard version ofMRC in the EMmodel is formalized as a
minimal cut set (MCS) problem by [7]. MCS is aminimal set of reactions
in the network whose inactivation leads to a failure in certain network
functions. EMs and MCSs can be calculated by their developed software
tools called FluxAnalyzer and CellNetAnalyzer [9,8]. Because MCS can
induce side effects disabling desired functionalities, constraint MCSs
(cMCSs) have been proposed, which generalize MCSs and allow
for the additional definition of a set of desired modes [3]. In cMCSs, a
minimum number must be preserved for the desired modes.

Once EMs are given, MRC in the EMmodel (MCS) can be formalized
by Integer Linear Programming (ILP) [17]. Suppose that the objective is
to suppress production of Eex in the metabolic network of Fig. 3 by
knocking-out the minimum number of reactions. To this end, it is
enough to inactivate EMs including b4, which can be represented as:

Maximize r1 þ r2 þ r3 þ r4

subject to

r1 ∧ r3 ¼ 0;
r4 ¼ 0;
r1 ∧ r2 ∧ r3 ¼ 0;
r2 ∧ r4 ¼ 0;

where all variables are binary, and x ∧ y denotes the logical “AND” of
x and y (i.e., x ∧ y = 1 if and only if x = 1 and y = 1). The Boolean
Table 1
5 elementary modes (EMs) of a metabolic network of Fig. 3 when every coefficient of
chemical reaction formula is assumed to be 1.

r1 r2 r3 r4 b1 b2 b3 b4

EM1 1 0 1 0 1 1 0 1
EM2 0 0 0 1 0 0 1 1
EM3 1 −1 1 0 0 1 1 1
EM4 0 1 0 0 1 0 −1 0
EM5 0 1 0 1 1 0 0 1
constraints in the above are converted into the following linear
inequalities.

r1 þ r3≤1;
r4 ¼ 0;
r1 þ r2 þ r3≤2;
r2 þ r4≤1:

4. Boolean Model-based Method

In the Booleanmodel, all reaction and compound nodes are assigned
either 0 or 1. If 1 is assigned, it means that the compound is producible,
or the reaction can take place. On the other hand, if 0 is assigned, it
means that the compound is not producible or the reaction cannot
take place.

Moreover, reaction and compound nodes are represented by
logical “AND” and “OR” functions, respectively. For example, in Fig. 1,
r1 represents a chemical reaction “c1 + c2 → c6 + c7”. In the Boolean
model, for r1 to take place, both c1 and c2 are necessary. Therefore, the
condition of r1 is represented by r1 = c1 ∧ c2. Similarly, c9 is producible
if either r2 or r3 takes place. Therefore, the condition of c9 is represented
by c9 = r2 ∨ r3.

For MRC in the Boolean model, the Boolean reaction cut (BRC)
problem has one of the most standard problem settings. In BRC,
the number of deleted reactions is minimized to make the target
compounds non-producible, and an ILP-based method for solving it
was developed in [29].

Another standard problem setting is to minimize the side effect
instead of the number of deleted reactions. The Optimal enzyme drug
target identification algorithm based on metabolic networks (OPMET)
was developed in [28]. OPMET identifies the optimal enzyme combina-
tionwhose inhibition achieves the required effect of eliminating a given
target set of compounds, while incurring minimal side-effects.

As MRC in the FBAmodel can be formalized by the bilevel program-
mingwith the inner andouter problems,MRC in the Booleanmodel also
has such two layers of problems. Because each set of deleted reactions
can have multiple 0/1 assignments which satisfies all Boolean
constrains, some objective function should be optimized in the inner
problem even in the Boolean model. This is necessary especially for
properly accounting for the effect of directed cycles in metabolic
networks. For this purpose, [29] introduced the notion of maximal
valid assignment (MaxVA), where MaxVA is a 0/1 assignment that
is maximal with respect to the number of 1s, when a set of deleted
reaction is given.

In the above problem settings, themain desired effects and side non-
desired effects are considered in a single metabolic network. A reason-
able extension is to consider them inmultiple networks. [17] developed
an ILP-basedmethod for theminimum knockout for multiplemetabolic
network problem (MKMN). InMKMN,when a set of source compounds
and a set of target compounds are given,wemust find theminimum set
of reactions whose knockout ensures that the target compounds are not
producible in N1, but are producible in N2.

In ILP, every constraint must be represented by linear equations or
inequalities. Boolean constraints can be transformed into linear equa-
tions or inequalities as follows.

LP1 [29]: Since the Boolean “AND” relation y = x1 ∧ x2 ∧ ⋯ ∧ xk
can be converted into y ∨ x1 ∨ x2 ∨⋯ ∨ xkð Þ ∧ y ∨ x1ð Þ ∧ y ∨ x2ð Þ ∧⋯ ∧
y ∨ xkð Þ ¼ 1, it can be represented by the following linear inequalities:

yþ 1−x1ð Þ þ 1−x2ð Þ þ⋯þ 1−xkð Þ ≥ 1;
1−yð Þ þ x1 ≥ 1;
1−yð Þ þ x2 ≥ 1;
⋯
1−yð Þ þ xk ≥ 1;

where all variables are binary.



Fig. 4.Anexample of ametabolic network forminimumreaction insertion (MRI) problem.
The area of the dotted line is a host network and initially available. We should add the
minimum set of reactions so that the target compound becomes producible.
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Similarly, as the Boolean “OR” relation y = x1 ∨ x2 ∨ ⋯ ∨ xk can be
converted into y ∨ x1 ∨ x2 ∨⋯ ∨ xkð Þ ∧ y ∨ x1ð Þ ∧ y ∨ x2ð Þ ∧⋯ ∧ y ∨ xkð Þ ¼
1, it can be represented by the following linear inequalities:

1−yð Þ þ x1 þ x2 þ⋯þ xk ≥ 1;
yþ 1−x1ð Þ ≥ 1;
yþ 1−x2ð Þ ≥ 1;
⋯
yþ 1−xkð Þ ≥ 1;

where all variables are binary.
LP2 [1]: Another type of linear function representation of Boolean

functions is as follows: The Boolean “AND” can be represented by the
following linear inequalities:

ky ≤ x1 þ x2 þ…þ xk;
y ≥ x1 þ…þ xk− k−1ð Þ;

where all variables are binary.
Similarly, the Boolean “OR” can be represented by the following

linear inequalities:

ky ≥ x1 þ x2 þ…þ xk;
y ≤ x1 þ…þ xk;

where all variables are binary.
To calculate theMaxVA, using the notion of time is convenient in the

ILP formalization [29]. However, in a naive algorithm, the number of
variables isO((m+ n)2), wherem and n are the numbers of compounds
and reactions, respectively. Because, the computational time for solving
ILP is often exponential for the number of variables, the naive method
cannot be applied for large scale networks.

To handle this problem, [29] developed an feedback vertex set
(FVS)-based method. An FVS is a set of nodes whose removal makes a
network acyclic. They formalized the MRC in the Boolean model by ILP
in which the number of variables is O(f(m + n + f)), where f is the
size of the FVS.

The problems formalized by ILP can also be solved by SAT-based
methods since both are NP-complete problems, where SAT denotes
the Boolean satisfiability problem. MRC may also be represented as an
abduction problem if it is formalized by a logic programming-based
method. Meta-level abduction is a method of abducting missing rules
to account for observations. [5] showed that meta-level abduction can
consistently produce both positive and negative causal relations. [31]
developed an inductive logic programming approach to estimate possi-
ble reaction states. Their method finds hypotheses that logically
explains the causal relations. Because the reaction states correspond to
which reactions are active, the problem setting may correspond to
MCS in the Boolean model.

5. Minimum Reaction Insertion

MRC problems are for finding reaction deletion strategies to satisfy
given constrains. Different from MRC, the minimum reaction insertion
(MRI) problems are for finding reaction addition strategies to satisfy
constraints.

In the given network ofMRI, reactions are classified into the currently
available part and the currently non-available part. We call the former
and latter a host network and a reference network, respectively. In
Fig. 4, only {r1} belongs to the host network, whereas none of {r2, r3, r4,
r5} belongs to the host network. Suppose that {c1, c2, c3, c4, c5} is a set
of source nodes, {c6, c9, c10, c13} is a set of sink nodes, and c10 is a target
node. In the Boolean model, adding {r2, r4} is the solution, whereas
adding {r2, r3, r4, r5} is the solution in the FBA model.

When a metabolic network is newly reconstructed from a DNA
sequence, a host network is often constructed according to the ortholog
information of DNAs. However, this network often has gaps, and some
of necessary compounds are not producible in this initial model. In
such a case, gaps are often found and filled by FBA-based simulations.
GapFind identifies non-producible metabolites based on the initial FBA
model, and GapFill fills these gaps by the minimum set of additional
reactions [10]. GapFill utilizes a customized multi-organism database
that restores the connectivity of these metabolites to the parent
network.

[16] developed a software tool, minRect, for solving MRI in the
Boolean model. They call the parent network and multi-organism
database as the host network and reference network, respectively. In
the inner problem of MRI in the Boolean model, the notion of the
minimal valid assignment is employed in order to account for the effect
of directed cycles instead of the maximal valid assignment, since MRC
and MRI are complementary problems.

Cell growth rate and gene essentiality are also utilized for the
modification of metabolic networks. GrowMatch identifies the gaps
based on the inconsistencies of cell growth rates between the simula-
tion results on the model and the biological experiment results [11].
6. Discussion

6.1. Comparison Among the FBA, EM, and Boolean-based Models

In this article, we have briefly reviewed studies on MRC and MRI
problems in the FBA, EM and Boolean-based models. The FBA and EM
models can be classified into flow-based models. The flow-based
models can realize more detailed simulation, because they account for
the chemical reaction coefficients, the upper and lower bounds of each
flux, and the steady state. Therefore, if the purpose of the research is
to construct an exactmodelwhichmeets the data obtained in biological
experiments, the flow-basedmodels are better than the Booleanmodel.

However, at the same time, this high performance of the flow
models includes the risk of the overfitting. Because knowledge and
data about metabolic networks are not yet perfect, an exact model
may be useful only for the data used to reconstruct themodel. Although
the Boolean model is less detailed than the flow-based models, it is
considered to be more robust from this point of view.

For example, in MRC of Fig. 1, deleting r5 is one of the optimal
solution of the flow models. However, if there is an unknown reaction
r6 whose substrates are c8 and c12 and products are c10 and c13, then c9
is still producible even if r5 is deleted. This shows that the flow-based
models are less robust for the lack of information in the downstream
of a flux. On the other hand, the optimal solution of the Boolean
model is to delete {r2, r3}. Even if there is the hidden reaction r6, deleting
{r2, r3} is still the optimal solution in the Boolean model. Thus, the
Boolean model is more robust for the lack of information in the
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downstream of a flux, and there is a tradeoff between the accuracy of
the model and the risk of the overfitting.

In the flowmodels, if free variables are introduced or inequalities for
the stoichiometric constraint are allowed for internal nodes, the flow
model may become more robust for the incorrectness of the distant
nodes. However, in such a case, there may be a risk that constraints
are not appropriately propagated.

The main difference between the FBA model and EM model is as
follows. The basic version of the FBA model requires an objective
function, and is formalized as a linear program. On the other hand, in
the EM model, all EMs are often enumerated and then are utilized in
some optimization problem. These suggest that the FBA model needs
an objective function on some target flow(s), whereas the EM model
(and also the Boolean model) does not. Therefore, it is suggested that
the FBAmodel is suitable if the objective function iswell-defined, other-
wise the EM model and/or the Boolean model might be more suitable.

The basic version of the FBA model is efficiently solvable since the
linear programming problem is solvable in polynomial time. However,
most optimization problems including MCS are NP-hard. For the EM-
based model, since the number of EMs may be exponential to the size
of the network, the EM-basedmethods are not feasible formanyoptimi-
zation problems with large-scale networks. The EM-based methods are
useful for analyzing details of the flow-basedmodels. Although theMRC
of the Booleanmodel is also NP-hard, improvements of ILP solvers such
as CPLEX lead to the speedup for solving the Boolean MRC.

Here, we briefly discuss the scalability of each method based on
several reports on computational experiments using real metabolic
network data. Related to the FBA-based MRI, the gap-filler method
was applied to completion of the metabolic network in the EcoCyc
database (version 15.5), which contained 1888 reactions [12]. For
the FBA-based MRC, a more complex version was implemented by
SimOptStrain, which simultaneously adds and deletes reactions.
Although the number of deleted reactions is limited to 10, SimOptStrain
was successfully applied to iAF1260, which includes 2077 reactions and
1039 unique metabolites [6]. For the Boolean-based MRC, a more
complex version, MKMN (Multiple Knockout for Multiple Networks),
was solved by a fast approximation algorithm for the network with
609 reactions and 622 compounds [17]. The Boolean-based MRI was
solved for the network with 150 reactions and 93 compounds [16],
where an approximation algorithm may be applicable for larger net-
works. For the EM-based methods, enumerating all EMs was succeeded
for the network with 328 nodes, but failed with 1881 nodes [17]. These
results suggest that the FBA-based methods are the most scalable, the
Boolean-based methods are modestly scalable, and the EM-based
methods are less scalable.
6.2. Implementation and Application

Many of the constraint-based methods are realized in a software
package called COBRA Toolbox, which works on MATLAB [22]. CPLEX
is a software tool for solving many types of constraint programming
problems including linear programming, mixed integer programming,
quadratic programming, and quadratically constrained programming
[4].

Although we separately discussed MRC and MRI in this article,
adding and deleting reactions at the same time is a reasonable approach
in the metabolic network modification. OptReg identifies reaction
activations or inhibitions to suggest up-regulation or down-regulation
of genes to overproduce biochemicals [21]. OptStrain firstly adds the
minimum set of reactions to maximize the theoretical maximum
production, and then maximizes the biochemical production by the
bilevel programming where the number of deleted reactions is limited
[20]. Different from OptStrain, SimOptStrain simultaneously adds and
deletes reactions tomaximize the biochemical production and the cellu-
lar growth in the outer and inner problems, respectively [6]. Applying
existing ideas for MRC and MRI to this problem may be a promising
future direction.

The FBA-based methods are often used in the process of
reconstructing genome-scale metabolic networks, and industrial meta-
bolic engineering. For example, iJO1366 is an FBA-based genome-scale
metabolic network of Escherichia coli, and can be used for the simulation
of cell growth rate for gene knockouts [18]. iNL403 is a core metabolic
network of human brains, and used for the simulation of Alzheimer's
disease [15]. In these models, the initial models are constructed from
genome-sequences and literatures, and then the modification is often
conducted to satisfy the experimental data and/or the connectivity of
the network. Efficient production of biofuel using microorganisms
with metabolic engineering is another important application [13].

For the Boolean model, measures of the impact of knockouts were
studied for finding novel drug targets and/or crucial genes for diseases.
For example, [14] studied the effect of deletion of each enzyme in the
metabolic network of a Boolean model, and [27] considered almost
the same problem from the viewpoint of the Boolean aspect of the
flux balance mode. Formalizing an optimization problem as MRC with
such measures may be useful for finding a gene set as a drug target
and/or factors of diseases.
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